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1 Introduction

Strongly-coupled gauge theories exhibit various phases depending on the gauge group, mat-

ter contents, spacetime dimensions, and so on. When we increase the number of dynamical

matters, the theory flows to an IR-free phase. On the other hand, when reducing dynam-

ical matters, the theory becomes strongly-coupled and non-perturbative. Among various

strongly-coupled phases, the confinement phase is a most fascinating one since our world is

described by QCD which is actually confining. The low-energy dynamics of the confining

gauge theories is described by mesons and baryons and exhibits chiral symmetry breaking.

We cannot see dynamical quarks as low-energy asymptotic states.

In supersymmetric gauge theories, there is a very special class of the confinement

phases, which is known as “s-confinement”. Usually, confinement appears, being accompa-

nied by some symmetry breaking, such as chiral symmetry breaking. However, the SUSY

gauge theories sometimes show confinement without any symmetry breaking at the origin

of the moduli space of vacua. This is called “s-confinement” [1]. In addition to this special

property, supersymmetry allows us to exactly study the non-perturbative dynamics of the

gauge theory because of non-renormalization theorems and holomorphy [2, 3]. In 4d, the

s-confinement phases are classified in [1, 4] for classical and exceptional gauge groups while

the corresponding 3d analysis is not completely performed.

In this paper, we study the s-confinement phases of the 3d N = 2 supersymmetric

Spin(N) gauge theory with vector matters and spinor matters. The 3d SUSY gauge the-

ories contain Higgs and Coulomb branches in the moduli spaces of vacua. In general, the

Coulomb branch is drastically modified and different from the classical picture. In [5], we

studied the 3d N = 2 Spin(7) gauge theory with vector and spinor matters. We found that

the Coulomb moduli space is one- or two-dimensional depending on the matter contents

and also found various s-confinement phases. These phases were beautifully connected to

the quantum-deformed moduli space of the 4d N = 1 Spin(7) gauge theory via a non-

perturbative superpotential which is generated by the twisted monopoles. In this paper,

we will find the similar confinement phases for the Spin(N) (N > 7) cases and argue that

the Coulomb moduli space is more complicated and in some cases we need three coordi-

nates for describing it. We will give a systematic way of studying the quantum Coulomb

branch and the 3d s-confinement phases. These confinement phases are also connected to

the 4d quantum-deformed moduli spaces [6, 7].

The rest of this paper is organized as follows. In section 2, we briefly review the

Coulomb branch operators which were studied in [8, 9]. In sections 3, 4, 5, 6, 7, 8 and 9,

we study the 3d N = 2 Spin(N) (8 ≤ N ≤ 14) gauge theory with vector and spinor

matters. We will give a detailed analysis of the quantum Coulomb branch for each rank.

In section 10, we will summarize our results and comment on future directions.

2 Coulomb branch in Spin(N) theories

In this section, we will briefly review some Coulomb branch operators in the 3d N = 2

Spin(N) gauge theory. These were studied in [8, 9] for the cases where the theory contains
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only vector matters. In [5], we studied these operators in the 3d N = 2 Spin(7) theory

with vector and spinor matters. In these examples, we found that almost all the classical

Coulomb branches are lifted and the quantum Coulomb moduli space is described by only

a few operators. Here we review these operators and explain why these directions can

remain massless.

For theories with only vector matters, the classical Coulomb branch whose expectation

value breaks the gauge group as

so(N)→ so(N − 2)× u(1), (2.1)

can remain exactly massless and the other directions are all lifted [8]. We denote this

operator as Y in this paper. Along this branch, the spinor matters are all massive and

integrated out while the vector matters reduce to the massless vector representations of the

unbroken Spin(N−2) group. When the number of the vector representations of Spin(N−2)

is less than N − 4, there is no stable supersymmetric vacuum [8] due to the runaway

superpotential

Weff ∼

(
1

Y 2
SO(N−2) det MQQ

) 1
N−Nv−4

(Nv < N − 4). (2.2)

Therefore, for Nv < N − 4, this direction cannot be flat. The theories with Nv ≥ N − 4

vector matters can have this Coulomb branch operator. The Spin(N) theory only with

spinor matters also cannot have this branch since the low-energy Spin(N − 2) theory has

no dynamical matter and its vacuum is unstable due to the monopole superpotential [8].

This observation is consistent with the semi-classical analysis of the Coulomb branch. For

concreteness, let us take N = 2n + 1. The classical Coulomb branch is described by

the fundamental monopole creating operators Yi (i = 1, · · · , n). In the presence of vector

matters, these monopoles generate a non-perturbative superpotential except for Yn:

W =
n−1∑
i=1

1

Yi
(2.3)

The monopole Yn has too many fermion zero-modes from the vector matters and can-

not contribute to the superpotential. As a result, only a one-dimensional direction

Y ∼Y 2
1 Y

2
2 · · ·Y 2

n−1Yn can survive the non-perturbative effects and become exactly massless.

The second Coulomb branch denoted as Z appears when the Spin(N) theory includes

spinor matters or when we put the 4d N = 1 Spin(N) theory on a circle [5, 8–11]. This

operator corresponds to the gauge symmetry breaking

so(N)→ so(N − 4)× su(2)× u(1). (2.4)

Along this breaking, the remaining massless components of the spinor representations are

charged under the Spin(N −4)×SU(2) and chargeless under the U(1). Therefore, the low-

energy Spin(N−4)×SU(2) theory may have a stable SUSY vacuum because of the massless

dynamical quarks. If we consider this branch for the theory only with vector matters, the

– 2 –
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low-energy SU(2) theory has no massless charged field and the supersymmetry is broken

by the monopole superpotential (similar to (2.3)) of the SU(2) sector. As a result, this

branch Z is available only for the theories with spinor matters. When we consider the 4d

theory on a circle, the twisted monopole corresponds to this operator.

In the following sections, we will study the 3d N = 2 Spin(N) gauge theories with

7 < N < 15, where we will find that the quantum Coulomb branch becomes more richer

and we need additional operators to parametrize those additional Coulomb branches. Since

the corresponding breaking patterns depend on the rank of the gauge group, we will give a

case-by-case analysis in what follows. See [12–15] for various branching rules of Spin(N).

3 Spin(8) theories

We start with the 3d N = 2 Spin(8) gauge theories with Nv vectors, Ns spinors and

Nc conjugate spinors. The corresponding 4d theories were studied in [16, 17]. There are

three 8 dimensional representations in a Spin(8) group, which are denoted as 8v,8s and

8c. Those are related by triality, outer automorphism of the D4 Dynkin diagram. For the

purpose of listing up all the s-confinement phases, it is sufficient to consider the six cases

which will be discussed in the following subsections.

When the Coulomb branch Y obtains a non-zero expectation value, the gauge group

is spontaneously broken as

so(8)→ so(6)× u(1) (3.1)

8v → 60 + 12 + 1−2 (3.2)

8s → 41 + 4−1 (3.3)

8c → 4−1 + 41. (3.4)

All the components of the spinor matters are charged under the unbroken U(1) gauge

subgroup. Hence, they are all massive and integrated out from the low-energy spectrum. In

order to obtain a stable SUSY vacuum along the Y direction, the low-energy SO(6) theory

also must have a stable SUSY vacuum. This is possible only for Nv ≥ 4 [8]. Therefore, the

Spin(8) theory only with spinor matters generates the monopole potential (2.3) along the

Y -branch and does not need this operator.

The second Coulomb branch Z corresponds to the breaking

so(8)→ so(4)× su(2)× u(1) (3.5)

8v → (4,1)0 + (1,2)±1 (3.6)

8s → (2,2)0 + (2∗,1)±1 (3.7)

8c → (2,1)±1 + (2∗,2)0. (3.8)

Notice that the vector representation does not contain any massless field charged under the

SU(2) subgroup and cannot make the SU(2) vacuum of the low-energy theory stable. There-

fore, this branch exists only for the theory with spinor matters. When there is only a single

spinor, the low-energy SU(2) theory has a deformed moduli space MSSYSU(2) ∼ 1 [18, 19]

– 3 –
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Spin(8) SU(5) U(1)v U(1)s U(1)R

Q 8v 1 0 Rv

S 8s 1 0 1 Rs

η= Λb
Nv ,Ns,Nc

1 1 10 2 10(Rv−1)+2(Rs−1)+12 = 10Rv+2Rs

MQQ :=QQ 1 2 0 2Rv

MSS :=SS 1 1 0 2 2Rs

P4 :=SQ4S 1 4 2 4Rv+2Rs

Y :=Y 2
1 Y

2
2 Y3Y4 1 1 −10 −4 −12−10(Rv−1)−4(Rs−1) = 2−10Rv−4Rs

Table 1. 3d N = 2 Spin(8) theory with (Nv,Ns,Nc) = (5,1,0).

and thus the origin of the moduli space is excluded from the quantum moduli space. In

order that the Z-branch with all the matter fields turned off can be a flat direction, the

theory must contain at least two spinors.

3.1 (Nv, Ns, Nc) = (5, 1, 0)

The first example is the 3d N = 2 Spin(8) gauge theory with five vectors and one spinor.

In this case, the Y -branch is allowed since the low-energy theory contains a 3d N = 2

SO(6) gauge theory with five vectors, which has a supersymmetric vacuum and we can

safely take the low-energy limit at this point. On the other hand, the Z-branch, where 〈Z〉
acquires a vev and all the matter fields are turned off, is not allowed. Consequently, we

expect that there is only a single Coulomb branch parametrized by Y .

The low-energy dynamics is described by MQQ,MSS , P4 and Y . The confining super-

potential is constrained by the global symmetries listed in table 1 and we find

W = Y
[
M2

SS det MQQ + P 2
4MQQ

]
+ ηYMSS , (3.9)

where the last term appears when we put the 4d Spin(8) theory on S1×R3. η is a dynamical

scale of the 4d gauge interaction. By integrating out the Coulomb branch operator, we can

go up to the 4d N = 1 Spin(8) theory with five vectors and one spinor and reproduce a

deformed moduli space [16].

3.2 (Nv, Ns, Nc) = (4, 2, 0)

The second example is the 3dN = 2 Spin(8) gauge theory with four vectors and two spinors.

As in the previous case, the low-energy SO(6) dynamics along the Y -direction is made stable

by four vector matters. Along the Z-direction, the low-energy theory includes an SU(2)

gauge theory with four fundamentals, which has a stable SUSY vacuum. Therefore, we

need to introduce the two Coulomb branch coordinates, Y and Z.

The low-energy dynamics is described by the Higgs branch operators MQQ,MSS , P2, P4

defined in table 2 and the two Coulomb branch coordinates. The confining superpotential

becomes

W = Z
[
M2

SS detMQQ +M2
QQP

2
2 + P 2

4

]
+ Y (P 2

2 +MSSP4), (3.10)

which is consistent with all the symmetries in table 2.
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Spin(8) SU(4) SU(2) U(1)v U(1)s U(1)R

Q 8v 1 0 0 Rv

S 8s 1 0 1 Rs

MQQ :=QQ 1 1 2 0 2Rv

MSS :=SS 1 1 0 2 2Rs

P2 :=SQ2S 1 1 2 2 2Rv+2Rs

P4 :=SQ4S 1 1 4 2 4Rv+2Rs

Z :=Y1Y
2

2 Y3Y4 1 1 1 −8 −4 −10−8(Rv−1)−4(Rs−1) = 2−8Rv−4Rs

Y :=
√
Y 2

1 Y
2

2 Y3Y4 1 1 1 −4 −4 −6−4(Rv−1)−4(Rs−1) = 2−4Rv−4Rs

Table 2. 3d N = 2 Spin(8) theory with (Nv,Ns,Nc) = (4,2,0).

3.3 (Nv, Ns, Nc) = (4, 1, 1)

Let us study the case where we introduce both spinor and conjugate spinor matters. The

s-confinement phase appears in the 3d N = 2 Spin(8) gauge theory with four vectors, one

spinor and one conjugate spinor. The corresponding 4d theory was studied in [17]. The

Higgs branch is identical to the 4d case and parametrized by three mesons MQQ,MSS ,MS′S′

and four vector-spinor composites P1, P3, P4, P
′
4. These are defined in table 3.

The Coulomb branch Y is allowed since the four vectors 60 ∈ 8v can make this direction

stable. The Z-direction is also allowed due to the two spinors. The matter content and

their quantum numbers are summarized in table 3 which includes the dynamical scale of

the gauge interaction in the corresponding 4d N = 1 Spin(8) theory. The superpotential

becomes

W = Z
[
MSSMS′S′ det MQQ +M3

QQP
2
1 + P3MQQP3 + P4P

′
4

]
+ Y

[
P1P3 +MSSP

′
4 +MS′S′P4

]
+ ηZ, (3.11)

where the last term appears only when we put the 4d theory on S1 × R3. By integrating

out the Coulomb branch operators, we can reproduce the deformed and un-deformed con-

straints of the 4d theory [17]. When Y obtains a non-zero vev, the composite operators

containing the spinor fields become massive. This is consistent with our definition of the

Coulomb branch Y along which the spinor matters become massive.

3.4 (Nv, Ns, Nc) = (3, 3, 0)

Let us consider the 3d N = 2 Spin(8) gauge theory with three vectors and three spinors.

The Y direction is not allowed since the low-energy SO(6) gauge theory contains only

three vectors and there is no stable SUSY vacuum. Along the semi-classical region of the

Y -branch, the runaway potential (2.2) is generated. Along the Z-branch, the resulting

SO(4)× SU(2) gauge theory obtains a stable SUSY vacuum due to a sufficient number of

matter fields to stabilize the vacuum.

The low-energy dynamics is described by the four chiral superfields MQQ,MSS , P2 and

Z, which are defined in table 4. By using the symmetries listed in table 4, the confining

superpotential is determined as

W = Z
[
detMQQ detMSS +MQQMSSP

2
2

]
. (3.12)
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Spin(8) SU(4) U(1)v U(1)s U(1)c U(1)R

Q 8v 1 0 0 Rv

S 8s 1 0 1 0 Rs

S′ 8c 1 0 0 1 Rc

η= Λb
Nv ,Ns,Nc

1 1 8 2 2 8(Rv−1)+2(Rs−1)+2(Rc−1)+12 = 8Rv+2Rs+2Rc

MQQ :=QQ 1 2 0 0 2Rv

MSS :=SS 1 1 0 2 0 2Rs

MS′S′ :=S′S′ 1 1 0 0 2 2Rc

P1 :=SQS′ 1 1 1 1 Rv+Rs+Rc

P3 :=SQ3S′ 1 3 1 1 3Rv+Rs+Rc

P4 :=SQ4S 1 1 4 2 0 4Rv+2Rs

P ′4 :=S′Q4S′ 1 1 4 0 2 4Rv+2Rc

detMQQ 1 1 8 0 0 8Rv

MQQP
2
3 1 1 8 2 2 8Rv+2Rs+2Rc

M3
QQP

2
1 1 1 8 2 2 8Rv+2Rs+2Rc

P1P3 1 1 4 2 2 4Rv+2Rs+2Rc

Z :=Y1Y
2

2 Y3Y4 1 1 −8 −2 −2 2−8Rv−2Rs−2Rc

Y :=
√
Y 2

1 Y
2

2 Y3Y4 1 1 −4 −2 −2 2−4Rv−2Rs−2Rc

Table 3. 3d N = 2 Spin(8) theory with (Nv,Ns,Nc) = (4,1,1).

Spin(8) SU(3) SU(3) U(1)v U(1)s U(1)R

Q 8v 1 1 0 Rv

S 8s 1 0 1 Rs

MQQ :=QQ 1 1 2 0 2Rv

MSS :=SS 1 1 0 2 2Rs

P2 :=SQ2S 1 2 2 2Rv+2Rs

Z :=Y1Y
2

2 Y3Y4 1 1 1 −6 −6 −10−6(Rv−1)−6(Rs−1) = 2−6Rv−6Rs

Table 4. 3d N = 2 Spin(8) theory with (Nv,Ns,Nc) = (3,3,0).

3.5 (Nv, Ns, Nc) = (3, 2, 1)

The next example is the 3d N = 2 Spin(8) gauge theory with three vectors, two spinors

and one conjugate spinor. The analysis of the Coulomb branch is the same as the previous

example. Since the number of the vector matters is less than four, the Y -branch cannot

be a stable vacuum due to the dynamically generated runaway potential (2.2). Along the

Z-direction, there are plenty of matter fields charged under the so(4) × su(2) and the

Z-direction can be made stable and supersymmetric.

The Higgs branch is described by the six composite operators, MQQ,MSS ,MS′S′ , P1, P2

and P3, which are defined in table 5. Table 5 summarizes the quantum numbers of the

moduli coordinates. The confining superpotential takes

W = Z
[
detMQQ detMSSMS′S′ + P1P2P3 +MQQP

2
2MS′S′ +MSSP

2
3 +M2

QQMSSP
2
1

]
.

(3.13)
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Spin(8) SU(3) SU(2) U(1)v U(1)s U(1)c U(1)R

Q 8v 1 1 0 0 Rv

S 8s 1 0 1 0 Rs

S′ 8c 1 1 0 0 1 Rc

MQQ :=QQ 1 1 2 0 0 2Rv

MSS :=SS 1 1 0 2 0 2Rs

MS′S′ :=S′S′ 1 1 1 0 0 2 2Rc

P1 :=SQS′ 1 1 1 1 Rv+Rs+Rc

P2 :=SQ2S 1 1 2 2 0 2Rv+2Rs

P3 :=SQ3S′ 1 1 3 1 1 3Rv+Rs+Rc

Z :=Y1Y
2

2 Y3Y4 1 1 1 −6 −4 −2 2−6Rv−4Rs−2Rc

Table 5. 3d N = 2 Spin(8) theory with (Nv,Ns,Nc) = (3,2,1).

Spin(8) SU(2) SU(2) SU(2) U(1)v U(1)s U(1)c U(1)R

Q 8v 1 1 1 0 0 Rv

S 8s 1 1 0 1 0 Rs

S′ 8c 1 1 0 0 1 Rc

MQQ :=QQ 1 1 1 2 0 0 2Rv

MSS :=SS 1 1 1 0 2 0 2Rs

MS′S′ :=S′S′ 1 1 1 0 0 2 2Rc

P1 :=SQS′ 1 1 1 1 Rv+Rs+Rc

P2 :=SQ2S 1 1 1 1 2 2 0 2Rv+2Rs

P ′2 :=S′Q2S′ 1 1 1 1 2 0 2 2Rv+2Rc

B :=S2S′2 1 1 1 1 0 2 2 2Rs+2Rc

F :=S2S′2Q2 1 1 1 1 2 2 2 2Rv+2Rs+2Rc

Z :=Y1Y
2

2 Y3Y4 1 1 1 1 −4 −4 −4 2−4Rv−4Rs−4Rc

Table 6. 3d N = 2 Spin(8) theory with (Nv,Ns,Nc) = (2,2,2).

3.6 (Nv, Ns, Nc) = (2, 2, 2)

The final example of the Spin(8) s-confinement phases is the 3d N = 2 Spin(8) gauge

theory with two vectors, two spinors and two conjugate spinors. The theory has a one-

dimensional Coulomb branch labeled by Z. The Y -branch is excluded from the moduli

space of vacua since the low-energy SO(6) theory along this direction does not have enough

vector matters to realize a stable supersymmetric vacuum. Along the semi-classical region

of Y , the runaway superpotential (2.2) is generated.

The low-energy dynamics is described by MQQ,MSS ,MS′S′ , P1, P2, P
′
2, B, F and Z

whose quantum numbers are summarized in table 6. The confining superpotential becomes

W = Z
[
M2

QQM
2
SSM

2
S′S′ +M2

QQB
2 +M2

SSP
′
2

2
+M2

S′S′P
2
2 + P2P

′
2B + F 2

]
. (3.14)
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4 Spin(9) theories

Let us move on to the 3d N = 2 Spin(9) gauge theories with Nv vectors and Ns spinors.

When the Coulomb branch operator Y obtains a non-zero vacuum expectation value, the

gauge group is broken as

so(9)→ so(7)× u(1) (4.1)

9→ 70 + 12 + 1−2 (4.2)

16→ 81 + 8−1. (4.3)

The spinor matters are all massive and integrated out while the vector matters reduce

to the massless 7 fields. For the theories only with spinors, this branch is not allowed

since the low-energy SO(7) pure SYM has no stable SUSY vacuum due to the monopole

potential (2.3). For the theories with Nv(≥ 5) vectors, on the other hand, the low-energy

SO(7) SQCD can have a stable SUSY vacuum at the origin of moduli space. Therefore,

for Nv ≥ 5, we need to introduce this coordinate.

The second Coulomb branch is denoted as Z and its expectation value breaks the

gauge group as

so(9)→ so(5)× su(2)× u(1) (4.4)

9→ (5,1)0 + (1,2)±1 (4.5)

16→ (4,2)0 + (4,1)±1. (4.6)

For the theories only with vectors, this branch is not allowed since the low-energy SU(2)

gauge theory has no dynamical field and its vacuum becomes runaway, Weff = 1
YSU(2)

. When

the theory includes the spinor matters, the low-energy SO(5)× SU(2) theory can obtain a

stable SUSY vacuum due to the presence of (4,2)0. Therefore, we need to introduce a Z

coordinate for the theories with spinors.

When Ns ≥ 4, there could be an additional Coulomb branch V which corresponds to

the gauge symmetry breaking

so(9)→ su(4)× u(1) (4.7)

9→ 10 + 41 + 4−1 (4.8)

16→ 60 + 4−1 + 41 + 12 + 1−2. (4.9)

Almost all the components of the vector matter are massive and reduce to a singlet. The

spinor matter reduces to 60 and the dynamics of the SO(6) ' SU(4) theory has a stable

SUSY vacuum for Ns ≥ 4. In the following subsection, we will only consider the theories

with Ns ≤ 3 spinors, where the runaway superpotential (2.2) is dynamically generated.

Therefore, this operator does not appear for Ns ≤ 3.

4.1 (Nv, Ns) = (5, 1)

The first example of the Spin(9) s-confinement is the 3d N = 2 Spin(9) gauge theory with

five vectors and one spinor. In this case, we need to introduce the two Coulomb branch
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J
H
E
P
0
3
(
2
0
1
9
)
1
1
3

Spin(9) SU(5) U(1)v U(1)s U(1)R

Q 9 1 0 Rv

S 16 1 0 1 Rs

η = Λb
Nv ,Ns

1 1 10 4 10Rv + 4Rs

MQQ := QQ 1 2 0 2Rv

MSS := SS 1 1 0 2 2Rs

P1 := SQS 1 1 2 Rv + 2Rs

P4 := SQ4S 1 4 2 4Rv + 2Rs

P5 := SQ5S 1 1 5 2 5Rv + 2Rs

Z := Y1Y
2

2 Y
2

3 Y4 1 1 −10 −4 2− 10Rv − 4Rs

Y :=
√
Y 2

1 Y
2

2 Y
2

3 Y4 1 1 −5 −4 2− 5Rv − 4Rs

Table 7. 3d N = 2 Spin(9) theory with (Nv, Ns) = (5, 1).

coordinates Z and Y . The Higgs branch is described by the five composite operators,

MQQ,MSS , P1, P4 and P5 (defined in table 7). The confining superpotential becomes

W = Z
[
M2

SS det MQQ +M4
QQP

2
1 +MQQP

2
4 + P 2

5

]
+ Y [P1P4 +MSSP5] + ηZ, (4.10)

where the last term appears when we consider the corresponding 4d theory on a circle. By

integrating out the Coulomb branches, we can reproduce the quantum-deformed moduli

space of the 4d theory [17]. From the superpotential above, we find that the composite

operators including the spinor fields become massive along the Y directions.

4.2 (Nv, Ns) = (3, 2)

The second example is the 3d N = 2 Spin(9) gauge theories with three vectors and two

spinors. In this case, we need not introduce the Coulomb branch coordinate Y since

the number of the vector matters is less than five and the runaway potential (2.2) is

generated. The Coulomb branch is one-dimensional and parametrized by Z. The Higgs

branch operators are listed in table 8. The confining superpotential is determined from

table 8 as follows.

W = Z
[
M3

QQ(M2
SS +B)2 +M2

QQP
2
1 (M2

SS +B) +MQQP
2
2 (M2

SS +B)

+MSSP1P2P3 + (P1P2)2 + P 2
3 (M2

SS +B) +N2
]

(4.11)

4.3 (Nv, Ns) = (1, 3)

The final example is the 3d N = 2 Spin(9) gauge theory with one vector and three spinors.

In this case, the Coulomb branch is again one-dimensional and parametrized by Z. The

Higgs branch is described by the five composite operators defined in table 9. The confining

superpotential is determined as

W = Z
[
MQQ(M6

SS +B3 +M2
SSB

2) +M4
SSP

2
1 + (P1B)2 + (B +M2

SS)N2
]
. (4.12)
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J
H
E
P
0
3
(
2
0
1
9
)
1
1
3

Spin(9) SU(3) SU(2) U(1)v U(1)s U(1)R

Q 9 1 1 0 Rv

S 16 1 0 1 Rs

MQQ := QQ 1 1 2 0 2Rv

MSS := SS 1 1 0 2 2Rs

P1 := SQS 1 1 2 Rv + 2Rs

P2 := SQ2S 1 1 2 2 2Rv + 2Rs

P3 := SQ3S 1 1 1 3 2 3Rv + 2Rs

N := S4Q3 1 1 1 3 4 3Rv + 4Rs

B := S4 1 1 1 0 4 4Rs

Z := Y1Y
2

2 Y
2

3 Y4 1 1 1 −6 −8 2− 6Rv − 8Rs

Table 8. 3d N = 2 Spin(9) theory with (Nv, Ns) = (3, 2).

Spin(9) SU(3) U(1)v U(1)s U(1)R

Q 9 1 1 0 Rv

S 16 0 1 Rs

MQQ := QQ 1 1 2 0 2Rv

MSS := SS 1 0 2 2Rs

P1 := SQS 1 1 2 Rv + 2Rs

B := S4 1 0 4 4Rs

N := S4Q 1 1 4 Rv + 4Rs

Z := Y1Y
2

2 Y
2

3 Y4 1 1 −2 −12 2− 2Rv − 12Rs

Table 9. 3d N = 2 Spin(9) theory with (Nv, Ns) = (1, 3).

5 Spin(10) theories

Next, we move on to the 3d N = 2 Spin(10) theory with Nv vectors, Ns spinors and Ns′

(complex) conjugate spinors. This case will be very special since we have to introduce a

dressed Coulomb branch operator. There are three Coulomb branches where vector and

spinor representations supply massless fields charged under the unbroken gauge group. The

first Coulomb branch Y leads to the following breaking pattern

so(10)→ so(8)× u(1) (5.1)

10→ 8v,0 + 12 + 1−2 (5.2)

16→ 8c,−1 + 8s,1 (5.3)

16→ 8c,1 + 8s,−1. (5.4)

The spinor fields are all massive and integrated out. In order to make the low-energy SO(8)

dynamics stable and evade the runaway potential (2.2), we can use 8v,0 from the vector
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representation. Since the 3d N = 2 SO(8) theory with Nv vectors has a stable SUSY

vacuum for Nv ≥ 6, the Y -branch is available for Nv ≥ 6.

The second Coulomb branch Z leads to the breaking

so(10)→ so(6)× su(2)× u(1) (5.5)

10→ (6,1)0 + (1,2)±1 (5.6)

16→ (4,1)±1 + (4,2)0 (5.7)

16→ (4,1)±1 + (4,2)0. (5.8)

In order that this branch becomes a flat direction, the vacuum of the low-energy SO(6) ×
SU(2) theory must have a stable SUSY vacuum. The SU(2) part is made stable by (4,2)0 ∈
16 or (4,2)0 ∈ 16. The SO(6) part is made stable by both vector and spinor matters.

The third Coulomb branch X needs a special care. This operator corresponds to the

gauge symmetry breaking

so(10)→ su(4)× so(2)× u(1) (5.9)

10→ 40,−1 + 40,−1 + 12,0 + 1−2,0 (5.10)

16→ 4−1,−1 + 4−1,1 + 61,0 + 11,2 + 11,−2 (5.11)

16→ 41,−1 + 41,1 + 6−1,0 + 1−1,2 + 1−1,−2. (5.12)

Notice that there are two U(1) factors and the Coulomb branch is related to the second

U(1) factor. Along this branch, the effective Chern-Simons level between so(2) and u(1) is

introduced, which is calculated as

k
so(2),u(1)
eff = −Ns +Ns′ . (5.13)

Therefore, the bare Coulomb branch X is not gauge invariant and its so(2) charge is

Ns − Ns′ . In order to construct a gauge invariant coordinate, we can use 6±1,0 from the

spinor representation or 12,0 from the vector representation. The vacuum of the low-energy

SU(4) theory can be made stable only by spinor matters.

5.1 (Nv, Ns, Ns′) = (6, 1, 0)

The first example is the 3d N = 2 Spin(10) theory with six vectors and one spinor. The

corresponding 4d theory was studied in [20, 21]. The Higgs branch is described by three

composite operators MQQ, P1 and P5 which are defined in table 10. The Coulomb moduli

are two-dimensional, which are parametrized by Y and Z. The Coulomb branch operator

X now has an SO(2) ' U(1) charge 2 and cannot be made gauge invariant. The confining

superpotential becomes

W = Z
[
MQQP

2
5 +M5

QQP
2
1

]
+ Y P1P5, (5.14)

which is consistent with the 4d result [20, 21]. Notice that when Y obtains a non-zero

vev, P1 and P2 become massive. This is consistent with the fact that the spinor fields are

massive along the Y -branch.
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E
P
0
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(
2
0
1
9
)
1
1
3

Spin(10) SU(6) U(1)v U(1)s U(1)R

Q 10 1 0 Rv

S 16 1 0 1 Rs

MQQ := QQ 1 2 0 2Rv

P1 := SQS 1 1 2 Rv + 2Rs

P5 := SQ5S 1 5 2 5Rv + 2Rs

Z := Y1Y
2

2 Y
2

3 Y4Y5 1 1 −12 −4 2− 12Rv − 4Rs

Y :=
√
Y 2

1 Y
2

2 Y
2

3 Y4Y5 1 1 −6 −4 2− 6Rv − 4Rs

Table 10. 3d N = 2 Spin(10) theory with (Nv, Ns, Ns′) = (6, 1, 0).

Spin(10) SU(4) SU(2) U(1)v U(1)s U(1)R

Q 10 1 1 0 Rv

S 16 1 0 1 Rs

MQQ := QQ 1 1 2 0 2Rv

P1 := SQS 1 1 2 Rv + 2Rs

P3 := SQ3S 1 1 3 2 3Rv + 2Rs

B := S4 1 1 1 0 4 4Rs

R := S4Q4 1 1 1 4 4 4Rv + 4Rs

Z := Y1Y
2

2 Y
2

3 Y4Y5 1 1 1 −8 −8 2− 8Rv − 8Rs

Table 11. 3d N = 2 Spin(10) theory with (Nv, Ns, Ns′) = (4, 2, 0).

5.2 (Nv, Ns, Ns′) = (4, 2, 0)

The second example is the 3d N = 2 Spin(10) theory with four vectors and two spinors.

The corresponding 4d theory was studied in [22, 23]. The Coulomb branch Y is not

available since the low-energy SO(8) theory with four vectors has no stable SUSY vacuum

(remember (2.2)). The X-branch is also not allowed in the same manner. As a result, the

Coulomb branch is one-dimensional, which is described by Z. Table 11 shows the moduli

coordinates and their quantum numbers. The confining superpotential becomes

W = Z
[
B2 detMQQ +M3

QQP
2
1B +M2

QQP
4
1 +MQQP3P

3
1 +BMQQP

2
3 + (P1P3)2 +R2

]
,

(5.15)

which is consistent with all the symmetries in table 11 and the 4d result [22].

5.3 (Nv, Ns, Ns′) = (4, 1, 1)

Let us move on to the 3d N = 2 Spin(10) theory with four vectors, one spinor and one

(complex) conjugate spinor. The Coulomb branch Y is not allowed for the same reason as

the previous example. The operator X is lifted since the low-energy SO(6) ' SU(4) theory

only has two massless vectors and its vacuum is unstable due to the runaway potential (2.2).

Consequently, the Coulomb branch is one-dimensional and described by Z. The confining
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J
H
E
P
0
3
(
2
0
1
9
)
1
1
3

Spin(10) SU(4) U(1)v U(1)s U(1)s′ U(1)R

Q 10 1 0 0 Rv

S 16 1 0 1 0 Rs

S 16 1 0 0 1 Rs′

MQQ :=QQ 1 2 0 0 2Rv

MSS :=SS 1 1 0 1 1 Rs+Rs′

P1 :=SQS 1 1 2 0 Rv+2Rs

P 1 :=SQS 1 1 0 2 Rv+2Rs′

R2 :=SQ2S 1 2 1 1 2Rv+Rs+Rs′

R4 :=SQ4S 1 1 4 1 1 4Rv+Rs+Rs′

T0 :=S2S
2

1 1 0 2 2 2Rs+2Rs′

T2 :=S2S
2
Q4 1 1 4 2 2 4Rv+2Rs+2Rs′

Z :=Y1Y
2

2 Y
2

3 Y4Y5 1 1 −8 −4 −4 2−8Rv−4Rs−4Rs′

Table 12. 3d N = 2 Spin(10) theory with (Nv, Ns, Ns′) = (4, 1, 1).

superpotential becomes

W = Z
[
(M4

SS
+M2

SS
T0 + T 2

0 ) detMQQ +M3
QQP1P 1(T0 +M2

SS
)

+M2
QQ(P 2

1P
2
1 +R2

2(T0 +M2
SS

)) +R2
2(R2

2 + T4) +R2
4(T0 +M2

SS
) + (R4MSS +B4)2

]
,

(5.16)

which is consistent with all the symmetries in table 12.

5.4 (Nv, Ns, Ns′) = (2, 3, 0)

Let us consider the 3d N = 2 Spin(10) theory with two vectors and three spinors. The

Coulomb branch Y is not allowed since the number of the vector matters is less than six.

The operator X is not available since the low-energy SO(6) theory with three vectors has

no stable SUSY vacuum. In this case, only the Z-branch is available. The confined degrees

of freedom are summarized in table 13. The confining superpotential becomes

W = Z
[
detMQQ detB +MQQ(P1B)2 +BR2

]
. (5.17)

5.5 (Nv, Ns, Ns′) = (2, 2, 1)

The next example is the 3d N = 2 Spin(10) theory with two vectors, two spinors and

one conjugate spinor. As in the previous case, the Coulomb branch is described by the

single operator Z. The Coulomb branch Y is not available since Nv is less than six. The

Coulomb branch X is not allowed since the low-energy SO(6) theory with three vectors

has a runaway potential (2.2). The moduli coordinates and their quantum numbers are

summarized in table 14. We will not explicitly write down the confining superpotential.
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J
H
E
P
0
3
(
2
0
1
9
)
1
1
3

Spin(10) SU(2) SU(3) U(1)v U(1)s U(1)R

Q 10 1 1 0 Rv

S 16 1 0 1 Rs

MQQ := QQ 1 1 2 0 2Rv

P1 := SQS 1 1 2 Rv + 2Rs

B := S4 1 1 0 4 4Rs

R := S4Q2 1 1 2 4 2Rv + 4Rs

Z := Y1Y
2

2 Y
2

3 Y4Y5 1 1 1 −4 −12 2− 4Rv − 12Rs

Table 13. 3d N = 2 Spin(10) theory with (Nv, Ns, Ns′) = (2, 3, 0).

Spin(10) SU(2) SU(2) U(1)v U(1)s U(1)s′ U(1)R

Q 10 1 1 0 0 Rv

S 16 1 0 1 0 Rs

S 16 1 1 0 0 1 Rs

MQQ :=QQ 1 1 2 0 0 2Rv

MSS :=SS 1 1 0 1 1 Rs+Rs′

M2,SS :=SQ2S 1 1 2 1 1 2Rv+Rs+Rs′

P1 :=SQS 1 1 2 0 Rv+2Rs

P 1 :=SQS 1 1 1 0 2 Rv+2Rs′

B :=S4 1 1 1 0 4 0 4Rs

F :=S2S
2

1 1 0 2 2 2Rs+2Rs′

R1 :=S3SQ 1 1 3 2 Rv+3Rs+Rs′

R2 :=S2S
2
Q2 1 1 1 2 2 2 2Rv+2Rs+2Rs′

Z :=Y1Y
2

2 Y
2

3 Y4Y5 1 1 1 −4 −8 −4 2−4Rv−8Rs−4Rs′

Table 14. 3d N = 2 Spin(10) theory with (Nv, Ns, Ns′) = (2, 2, 1).

5.6 (Nv, Ns, Ns′) = (0, 4, 0)

Next, we move on to the theories with spinor matters and without a vector. The first

example of the s-confinement is the 3d N = 2 Spin(10) gauge theory with four spinors.

Since the theory does not include the vector matters, the Coulomb branch Y is not available.

The direction Z can be made stable by the component (4,2)0 ∈ 16. The Coulomb branch

X is now charged under the so(2) subgroup and cannot be made gauge invariant since

there is no complex conjugate spinor (16) in the theory. As a result, the Coulomb branch

is one-dimensional and described by Z. The confining superpotential becomes

W = ZB4, (5.18)

which is consistent with all the symmetries in table 15.
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0
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1
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1
3

Spin(10) SU(4) U(1)s U(1)R

S 16 1 Rs

B := S4 1 4 4Rs

Z := Y1Y
2

2 Y
2

3 Y4Y5 1 1 −16 2− 16Rs

Table 15. 3d N = 2 Spin(10) theory with (Nv, Ns, Ns′) = (0, 4, 0).

Spin(10) SU(3) U(1)s U(1)s′ U(1)R

S 16 1 0 Rs

S 16 1 0 1 Rs′

MSS := SS 1 1 1 Rs +Rs′

F2 := S2S
2

1 2 2 2Rs + 2Rs′

B := S4 1 4 0 4Rs

C := S5S 1 5 1 5Rs +Rs′

Z := Y1Y
2

2 Y
2

3 Y4Y5 1 1 −12 −4 2− 12Rs − 4Rs′

Xdressed := S
2√

Y1Y 2
2 Y

3
3 Y

2
4 Y

2
5 1 1 −9 −1 2− 9Rs −Rs′

Table 16. 3d N = 2 Spin(10) theory with (Nv, Ns, Ns′) = (0, 3, 1).

5.7 (Nv, Ns, Ns′) = (0, 3, 1)

Let us consider the 3d N = 2 Spin(10) theory with three spinors and a single (complex)

conjugate spinor. The Coulomb branch Z is available since the low-energy SU(4) theory

with two fundamentals and six anti-fundamentals has a stable SUSY vacuum [24]. Simi-

larly, the Coulomb branch X is allowed although it is not gauge invariant. Therefore, we

need to introduce the dressed operator

Xdressed := XS
2
. (5.19)

The moduli coordinates and their quantum numbers are summarized in table 16. The

confining superpotential becomes

W = Z
[
B2(F2 +M2

SS
)2 + C2(F2 +M2

SS
)
]

+XdressedBC. (5.20)

5.8 (Nv, Ns, Ns′) = (0, 2, 2)

The final example is the 3d N = 2 Spin(10) theory with two spinors and two (complex)

conjugate spinors. The theory is “vector-like” in the sense that there are equal num-

bers of spinors and conjugate spinors. Since the theory is now “vector-like”, the bare

Coulomb branch operator X is gauge invariant and does not need “dressing”. The low-

energy SU(4) ' SO(6) theory along 〈X〉 6= 0 contains four vector matters and hence its

low-energy vacuum is stable and supersymmetric. The Coulomb branch Z is also allowed

since the low-energy SU(4) theory with four fundamental flavors has a stable SUSY vac-

uum. Table 17 summarizes the quantum numbers of the moduli coordinates.
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E
P
0
3
(
2
0
1
9
)
1
1
3

Spin(10) SU(2)s SU(2)s′ U(1)s U(1)s′ U(1)R

S 16 1 1 0 Rs

S 16 1 0 1 Rs′

MSS :=SS 1 1 1 Rs+Rs′

B :=S4 1 1 1 4 0 4Rs

B :=S
4

1 1 1 0 4 4Rs′

F2 :=S2S
2

1 2 2 2Rs+2Rs′

F3 :=S3S
3

1 3 3 3Rs+3Rs′

C6,2 =S6S
2

1 1 1 6 2 6Rs+2Rs′

C2,6 :=S2S
6

1 1 1 2 6 2Rs+6Rs′

Z :=Y1Y
2

2 Y
2

3 Y4Y5 1 1 1 −8 −8 2−8Rs−8Rs′

X :=
√
Y1Y 2

2 Y
3

3 Y
2

4 Y
2

5 1 1 1 −6 −6 2−6Rs−6Rs′

Table 17. 3d N = 2 Spin(10) theory with (Nv, Ns, Ns′) = (0, 2, 2).

6 Spin(11) theories

Here, we consider the 3d N = 2 Spin(11) theory with Nv vectors and Ns spinors. The

correponding 4d theory was studied in [25]. As will be explained in the following subsec-

tions, the s-confinement phases appear in (Nv, Ns) = (5, 1) and (Nv, Ns) = (1, 2). There

are three Coulomb branches whose branching rules include the fields neutral under the

unbroken U(1) subgroup but charged under the non-abelian subgroups. The first Coulomb

branch Y corresponds to the breaking

so(11)→ so(9)× u(1) (6.1)

11→ 90 + 12 + 1−2 (6.2)

32→ 161 + 16−1, (6.3)

where all the components of the spinor representation are massive and those masses are

proportional to the U(1) charges. The vector field reduces to the massless 9 representation.

When the Spin(11) theory has more than six vectors, the vacuum of the low-energy SO(9)

theory can be stable and supersymmetric due to the sufficient number of 9 vectors. In

the s-confining examples which will be discussed in the following subsections, the theory

contains Nv ≤ 5 vectors and generates a runaway potential (2.2). Therefore, this branch

does not appear in what follows. See [8], where the 3d N = 2 SO(11) theory with Nv

vectors is studied and this operator is introduced.

When the second Coulomb branch Z obtains an expectation value, the gauge group is

broken as

so(11)→ so(7)× su(2)× u(1) (6.4)

11→ (7,1)0 + (1,2)±1 (6.5)

32→ (8,2)0 + (8,1)±1. (6.6)
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Along this direction, the Spin(11) theory must have at least one spinor so that the vacuum

of the low-energy SU(2) theory has a stable supersymmetric vacuum. Otherwise, this

direction is quantum-mechanically lifted and excluded from the chiral ring due to the

SU(2) monopole potential Weff ∼ 1
YSU(2)

. In order to make the vacuum of the low-energy

SO(7) theory stable, we have to take (Nv, Ns) above the s-confinement bound of the Spin(7)

theory, which was studied in [5].

The third Coulomb branch X corresponds to the breaking

so(11)→ so(3)× su(4)× u(1) (6.7)

11→ (3,1)0 + (1,4)1 + (1,4)−1 (6.8)

32→ (2,6)0 + (2,1)−2 + (2,1)−2 + (2,4)−1 + (2,4)1. (6.9)

When there are two spinor matters, the low-energy SU(4) dynamics is stable by the two

massless components (2,6)0. The SO(3) vacuum can be made stable by (3,1)0 or (2,6)0.

Therefore, the Spin(11) theory with more than one spinor includes this branch.

6.1 (Nv, Ns) = (5, 1)

The first s-confining example is the 3d N = 2 Spin(11) gauge theory with five vectors

and one spinor. The corresponding 4d theory was studied in [25]. Since the number of

the vector matters is less than seven, the Coulomb branch Y is not available. The X-

branch is also not required since a single spinor (2,6)0 ∈ 16 cannot make the low-energy

SU(4) ' SO(6) vacuum stable, where the runaway potential (2.2) is generated. As a result,

there is a one-dimensional Coulomb branch parametrized by Z.

The low-energy dynamics is dual to a non-gauge theory with the Higgs branch fields

MQQ, B, P1, P2, R and the Coulomb branch field Z. Table 18 shows the quantum numbers

of these moduli fields. The confining superpotential takes

W = Z
[
B2 detMQQ +BM4

QQP
2
1 +BM3

QQP
2
2

+M2
QQP

2
1P

2
2 +MQQP

4
2 + P1P

2
2P5 +BP 2

5 +R2
]
. (6.10)

When we put the 4d theory on S1 × R3, an additional non-perturbative superpotential

∆W = ηZ is added to the above superpotential. By integrating out the Coulomb branch

operator, we can reproduce the quantum-mechanically deformed moduli space in the 4d

N = 1 Spin(11) theory with five vectors and one spinor [25].

6.2 (Nv, Ns) = (1, 2)

The second example is the 3dN = 2 Spin(11) gauge theory with one vector and two spinors.

The Y -branch is not available since there is only a single vector which is insufficient for the

stable SO(9) vacuum. The Z-branch is required since the SO(7) vacuum is made stable

by (7,1)0 and two (8,2)0. In addition to Z, the X-branch can be now turned on since

the SO(6) ' SU(4) theory with four vectors 6 can have a stable SUSY vacuum. The

Coulomb branch is two-dimensional and the Higgs branch is described by the fields listed

in table 19. We will not explicitly write down the confining potential but one can construct

it from table 19.
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Spin(11) SU(5) U(1)v U(1)s U(1)R

Q 11 1 0 Rv

S 32 1 0 1 Rs

MQQ := QQ 1 2 0 2Rv

B := S4 1 1 0 4 4Rs

P1 := SQS 1 1 2 Rv + 2Rs

P2 := SQ2S 1 2 2 2Rv + 2Rs

P5 := SQ5S 1 1 5 2 5Rv + 2Rs

R := S4Q5 1 1 5 4 5Rv + 4Rs

Z := Y1Y
2

2 Y
2

3 Y
2

4 Y5 1 1 −10 −8 2− 10Rv − 8Rs

Table 18. 3d N = 2 Spin(11) theory with (Nv, Ns) = (5, 1).

Spin(11) SU(2) U(1)v U(1)s U(1)R

Q 11 1 1 0 Rv

S 32 0 1 Rs

MQQ := QQ 1 1 2 0 2Rv

MSS := SS 1 1 0 2 2Rs

B := S4 1 0 4 4Rs

B′ := S4 1 1 0 4 4Rs

P1 := SQS 1 1 2 Rv + 2Rs

F1 := S4Q 1 1 4 Rv + 4Rs

F ′1 := S4Q 1 1 1 4 Rv + 4Rs

F2 := S4Q2 1 1 2 4 2Rv + 4Rs

T0 := S6 1 1 0 6 6Rs

T1 := S6Q 1 1 6 Rv + 6Rs

U0 := S8 1 1 0 8 8Rs

U1 := S8Q 1 1 1 8 Rv + 8Rs

Z := Y1Y
2

2 Y
2

3 Y
2

4 Y5 1 1 −2 −16 2− 2Rv − 16Rs

X :=
√
Y1Y 2

2 Y
3

3 Y
4

4 Y
2

5 1 1 −2 −12 2− 2Rv − 12Rs

Table 19. 3d N = 2 Spin(11) theory with (Nv, Ns) = (1, 2).

7 Spin(12) theories

Let us move on to the 3dN = 2 Spin(12) theory with Nv vectors, Ns (Weyl) spinors and Ns′

conjugate (another Weyl) spinors. The correponding 4d theory was studied, for instance,

in [26]. We will find three s-confinement examples for (Nv, Ns, Ns′) = (6, 1, 0), (2, 2, 0) and

(2, 1, 0). In this case, various directions of the classical Coulomb branches can be stable

and survive quantum corrections since we have two inequivalent spinors and the branching
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rules of these spinors are different. We start with the Y direction whose expectation value

leads to the breaking

so(12)→ so(10)× u(1) (7.1)

12→ 100 + 12 + 1−2 (7.2)

32→ 16−1 + 161 (7.3)

32′ → 161 + 16−1. (7.4)

Since the spinor matters are massive along this direction, the Spin(12) theory with only

spinors cannot have this branch as a flat direction due to the monopole potential. In order

to make the vacuum of the low-energy SO(10) theory stable, the theory must have Nv ≥ 8

vector matters. In this section, we will consider the cases with Nv ≤ 6 and then this

operator does not appear in the following discussion.

The second Coulomb branch Z corresponds to the breaking

so(12)→ so(8)× su(2)× u(1) (7.5)

12→ (8v,1)0 + (1,2)±1 (7.6)

32→ (8s,1)±1 + (8c,2)0 (7.7)

32′ → (8c,1)±1 + (8s,2)0 (7.8)

The SU(2) dynamics can be made stable and supersymmetric by the components (8c,2)0

or (8s,2)0. The SO(8) vacuum can be made stable by (8v,1)0, (8c,2)0 or (8s,2)0. In all

the s-confinement examples which we discuss in the following subsections, there are enough

8 dimensional representations so that this branch becomes a quantum moduli operator.

The third Coulomb branch X corresponds to the following breaking

so(12)→ so(4)× su(4)× u(1) (7.9)

12→ (4,1)0 + (1,4)1 + (1,4)−1 (7.10)

32→ (2,6)0 + (2,1)2 + (2,1)−2 + (2∗,4)−1 + (2∗,4)1 (7.11)

32′ → (2∗,6)0 + (2∗,1)2 + (2∗,1)−2 + (2,4)−1 + (2,4)1. (7.12)

The vacuum of the SO(4) dynamics can be made stable by the first components of the

above branching rules, which are neutral under the U(1) subgroup and hence massless. In

order to have a stable SUSY vacuum of the SU(4) ∼ SO(6) sector, we need at least four

6 representations. Therefore, the Spin(12) theories with two or more spinors will contain

the X operator in their spectrum of the chiral ring.

The final Coulomb branch V corresponds to the breaking

so(12)→ su(6)× u(1) (7.13)

12→ 61 + 6−1 (7.14)

32→ 200 + 6−2 + 62 (7.15)

32′ → 15−1 + 151 + 13 + 1−3. (7.16)
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Spin(12) SU(6) U(1)v U(1)s U(1)R

Q 12 1 0 Rv

S 32 1 0 1 Rs

MQQ := QQ 1 2 0 2Rv

P2 := SQ2S 1 2 2 2Rv + 2Rs

P6 := SQ6S 1 1 6 2 6Rv + 2Rs

B := S4 1 1 0 4 4Rs

F := S4Q6 1 1 6 4 6Rv + 4Rs

Z := Y1Y
2

2 Y
2

3 Y
2

4 Y5Y6 1 1 −12 −8 2− 12Rv − 8Rs

Table 20. 3d N = 2 Spin(12) theory with (Nv, Ns, Ns′) = (6, 1, 0).

Almost all the components are massive while the spinor field leads to a massless third-order

antisymmetric tensor of the unbroken SU(6), which can make the SU(6) vacuum stable.

As studied in [27], the SU(6) theory with a single three-index matter cannot have a stable

vacuum, which will lead to a runaway potential. Therefore, the Spin(12) theory with more

than one spinor can have this direction as a quantum flat direction.

7.1 (Nv, Ns, Ns′) = (6, 1, 0)

The first s-confinement example is the 3d N = 2 Spin(12) theory with six vectors and

one spinor. The Y operator is not allowed since the low-energy SO(10) theory along this

direction contains only six 10 representations, which generates a runaway potential (2.2)

and this vacuum is unstable. Along the Z direction, the low-energy SO(8) dynamics is made

stable by (8v,1)0 ∈ 12 while the SU(2) dynamics is also made stable by (8c,2)0 ∈ 32. The

X direction is unstable since the SU(4) ∼ SO(6) theory only contains two 6 representations,

which is insufficient for a stable supersymmetric vacuum. The V direction is also excluded

due to the similar reason. The confinement phase is described by the five Higgs branch

operators defined in table 20 and a single Coulomb branch Z. The superpotential becomes

W = Z
[
B2 detMQQ + P6Pf P2 +M4

QQP
2
2B +M2

QQP
4
2 +BP 2

6 + F 2
]
. (7.17)

The quantum numbers of the moduli operators are summarized in table 20. The corre-

sponding 4d theory was studied in [26] and (7.17) is consistent with the 4d result where

we have a quantum-deformed constraint.

7.2 (Nv, Ns, Ns′) = (2, 2, 0)

The next s-confinement example is the 3d N = 2 Spin(12) theory with two vectors and

two spinors. In this case, the Y branch is not allowed as in the previous case. The

Coulomb branch Z becomes stable since the low-energy Spin(8) theory has two vectors

and four spinors and it leads to a stable vacuum. Along the X-branch, the low-energy

SU(4) ' SO(6) theory contains four vectors and its vacuum is stable and supersymmetric.

The V direction is also allowed since the low-energy SU(6) theory contains two third-

order antisymmetric matters and becomes stable. As a result, the Coulomb branch is now
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Spin(12) SU(2) SU(2) U(1)v U(1)s U(1)R

Q 12 1 1 0 Rv

S 32 1 0 1 Rs

MQQ :=QQ 1 1 2 0 2Rv

MSS :=SS 1 1 1 0 2 2Rv

P2 :=SQ2S 1 1 2 2 2Rv+2Rs

B0 :=S4 1 1 0 4 4Rs

B2 :=S4Q2 1 1 2 4 2Rv+4Rs

B′2 :=S4Q2 1 1 2 4 2Rv+4Rs

F0 :=S6 1 1 1 0 6 6Rs

F2 :=S6Q2 1 1 2 6 2Rv+6Rs

T2 :=S8Q2 1 1 2 8 2Rv+8Rs

Z :=Y1Y
2

2 Y
2

3 Y
2

4 Y5Y6 1 1 1 −4 −16 2−4Rv−16Rs

X :=
√
Y1Y 2

2 Y
3

3 Y
4

4 Y
2

5 Y
2

6 1 1 1 −4 −12 2−4Rv−12Rs

V := (Y1Y
2

2 Y
3

3 Y
4

4 Y
2

5 Y
3

6 )
1
3 1 1 1 −4 −8 2−4Rv−8Rs

Table 21. 3d N = 2 Spin(12) theory with (Nv, Ns, Ns′) = (2, 2, 0).

three-dimensional and described by Z,X and V . We will not explicitly show the confining

superpotential. Table 21 shows the moduli fields and their quantum numbers. One can

write down the superpotential from table 21.

7.3 (Nv, Ns, Ns′) = (2, 1, 1)

The third example is the 3d N = 2 Spin(12) theory with two vectors, one spinor and

one conjugate spinor. The Coulomb branch Y is not allowed since the low-energy SO(10)

theory with two vectors generates a runaway potential (2.2) and its vacuum is unstable.

The Coulomb branch V cannot be turned on since the stability of this branch at least

requires two third-order anti-symmetric tensors 200 ∈ 32. The Coulomb branch Z is stable

since the SU(2) dynamics is made stable by the massless components of the two spinors

and since the SO(8) dynamics is also stable and supersymmetric by two vectors and two

spinors. The Coulomb branch X is also available since the low-energy SO(4) × SU(4)

dynamics can be stable due to (2,6)0 and (2∗,6)0. Table 22 shows the moduli fields and

their quantum numbers. We will not explicitly write down the superpotential, but one can

do it from table 22.

8 Spin(13) theories

Let us study the Coulomb branch of the 3d N = 2 Spin(13) gauge theory with Nv vectors

and Ns spinors whose dimension is 64. There are a lot of classical Coulomb branches

corresponding to the fundamental monopoles Yi (i = 1, · · · , 6). However, most of them

are quantum-mechanically excluded from the quantum moduli space via the monopole

– 21 –



J
H
E
P
0
3
(
2
0
1
9
)
1
1
3

Spin(12) SU(2) U(1)v U(1)s U(1)s′ U(1)R

Q 12 1 0 0 Rv

S 32 1 0 1 0 Rs

S′ 32′ 1 0 0 1 Rs′

MQQ :=QQ 1 2 0 0 2Rv

P2 :=SQ2S 1 1 2 2 0 2Rv+2Rs

P ′2 :=S′Q2S′ 1 1 2 0 2 2Rv+2Rs′

M1,SS′ :=SQS′ 1 1 2 2 Rv+Rs+Rs′

B :=S4 1 1 0 4 0 Rs

B′ :=S′4 1 1 0 0 4 4Rs′

F0 :=S2S′2 1 1 0 2 2 2Rs+2Rs′

F2 :=S2S′2Q2 1 2 2 2 2Rv+2Rs+2Rs′

F ′2 :=S2S′2Q2 1 1 2 2 2 2Rv+2Rs+2Rs′

C :=S3S′Q 1 1 3 1 Rv+3Rs+Rs′

C :=SS′3Q 1 1 1 3 Rv+3Rs+Rs′

T :=S3S′3Q 1 1 3 3 Rv+3Rs+3Rs′

D :=S4S′2Q2 1 1 2 4 2 2Rv+4Rs+2Rs′

D′ :=S2S′4Q2 1 1 2 2 4 2Rv+2Rs+4Rs′

U0 :=S4S′4 1 1 0 4 2 4Rs+4Rs′

U2 :=S4S′4Q2 1 1 2 4 4 2Rv+4Rs+4Rs′

Z :=Y1Y
2

2 Y
2

3 Y
2

4 Y5Y6 1 1 −4 −8 −8 2−4Rv−8Rs−8Rs′

X :=
√
Y1Y 2

2 Y
3

3 Y
4

4 Y
2

5 Y
2

6 1 1 −4 −6 −6 2−4Rv−6Rs−6Rs′

Table 22. 3d N = 2 Spin(12) theory with (Nv, Ns, Ns′) = (2, 1, 1).

potential such as (2.3) since almost all the components of the matter fields are massive along

those directions and we will obtain a pure SYM or an SQCD as a low-energy description,

which will not have enough charged matters to make the supersymmetric vacuum stable.

Therefore, we are left with a few Coulomb branch directions.

The first candidate denoted as Y corresponds to the breaking

so(13)→ so(11)× u(1) (8.1)

13→ 110 + 12 + 1−2 (8.2)

64→ 321 + 32−1. (8.3)

All the components of the spinor representations are massive and integrated out along this

branch while the vector matter reduces to a massless vector 110. Therefore, the moduli

space of the Spin(13) theory only with spinors cannot have this operator. In order to make

the low-energy SO(11) vacuum stable, there must be more than eight vector matters.
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The second Coulomb branch Z breaks the gauge group as

so(13)→ so(9)× su(2)× u(1) (8.4)

13→ (9,1)0 + (1,2)±1 (8.5)

64→ (16,2)0 + (16,1)±1. (8.6)

The vacuum of the low-energy SU(2) theory is made stable by the massless component

(16,2)0 ∈ 64 while the SO(9) part can have a stable SUSY vacuum via (9,1)0 ∈ 13 or

(16,2)0 ∈ 64. Therefore, the Spin(13) theory with spinor matters includes this branch.

The third candidate denoted as X corresponds to the breaking

so(13)→ so(5)× su(4)× u(1) (8.7)

13→ (5,1)0 + (1,4)1 + (1,4)−1 (8.8)

64→ (4,6)0 + (4,1)2 + (4,1)−2 + (4,4)−1 + (4,4)1. (8.9)

The vector field cannot make the low-energy SU(4) vacuum stable since there is no massless

component charged under the SU(4) subgroup. When the theory has at least one spinor,

the component (4,6)0 ∈ 64 makes the SO(5)× SU(4) dynamics stable and keeps it super-

symmetric. Therefore, the Spin(13) theory with spinor matters also includes this operator.

Finally, we mention that there could be an additional Coulomb branch operator V

which induces the gauge symmetry breaking

so(13)→ su(6)× u(1) (8.10)

13→ 10 + 61 + 6−1 (8.11)

64→ 200 + 6−2 + 62 + 15−1 + 151 + 13 + 1−3. (8.12)

Along this direction, the massless components 200 ∈ 64 can make the SU(6) vacuum

stable. However, this is only possible when there are two spinors in the theory [27]. In what

follows, we will only consider the Spin(13) theory with a single spinor and this operator is

not necessary.

8.1 (Nv, Ns) = (3, 1)

The 3d N = 2 Spin(13) theory with three vectors and one spinor exhibits s-confinement.

The Higgs branch in the moduli space of vacua is described by eleven composite operators

MQQ, P2, P3, R0, R1, R2, R3, T2, T3, U0 and U3, which are defined in table 23. The Coulomb

branch is two-dimensional. These are described by Z and X which are defined above. We

will not show a confining superpotential since the explicit form is cumbersome. Table 23

summarizes the quantum numbers of the moduli operators.
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Spin(13) SU(3) U(1)v U(1)s U(1)R

Q 13 1 0 Rv

S 64 1 0 1 Rs

MQQ := QQ 1 2 0 2Rv

P2 := SQ2S 1 2 2 2Rv + 2Rs

P3 := SQ3S 1 1 3 2 3Rv + 2Rs

R0 := S4 1 1 0 4 4Rs

R1 := S4Q 1 1 4 Rv + 4Rs

R2 := S4Q2 1 2 4 2Rv + 4Rs

R3 := S4Q3 1 1 3 4 3Rv + 4Rs

T2 := S6Q2 1 2 6 2Rv + 6Rs

T3 := S6Q3 1 1 3 6 3Rv + 6Rs

U0 := S8 1 1 0 8 8Rs

U3 := S8Q3 1 1 3 8 3Rv + 8Rs

Z := Y1Y
2

2 Y
2

3 Y
2

4 Y
2

5 Y6 1 1 −6 −16 2− 6Rv − 16Rs

X :=
√
Y1Y 2

2 Y
3

3 Y
4

4 Y
4

5 Y
2

6 1 1 −6 −12 2− 6Rv − 12Rs

Table 23. 3d N = 2 Spin(13) theory with (Nv, Ns) = (3, 1).

9 Spin(14) theories

The final example is the 3d N = 2 Spin(14) gauge theory with vector (14) matters and

one spinor (64). Since the dimension of the spinor representation is huge, the theory

with more than one spinor (64 or 64) will exhibit a conformal window or a non-abelian

Coulomb phase. Since we are now interested in the s-confinement phases of the Spin(N)

gauge theories, we focus on the Spin(14) theory with one spinor and some vectors.

There are two Coulomb branches which we have to take into account. The non-zero

vev of the first coordinate Z corresponds to the breaking

so(14)→ so(10)× su(2)× u(1) (9.1)

14→ (10,1)0 + (1,2)±1 (9.2)

64→ (16,1)±1 + (16,2)0. (9.3)

The Chern-Simons term for U(1) is not introduced as it should be. This is a necessary

condition that the Coulomb branch Z can be a flat direction. The resulting low-energy

theory contains the 3d N = 2 SO(10) × SU(2) SQCD with massless chiral superfields in

fundamental and spinor representations of SO(10) and SU(2), respectively. In order that

the coordinate Z can be a stable vacuum, there must be enough matters charged under

the SO(10) × SU(2). For example, the theories without a spinor matter cannot have this

flat direction since there is no massless field charged under the SU(2) and then the SU(2)

vacuum is unstable due to the monopole potential Weff ∼ 1
YSU(2)

.
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The second Coulomb branch X corresponds to the breaking

so(14)→ so(6)× su(4)× u(1) (9.4)

14→ (6,1)0 + (1,4)1 + (1,4)−1 (9.5)

64→ (4,4)−1 + (4,4)1 + (4,6)0 + (4,1)2 + (4,1)−2. (9.6)

This vacuum can be stable by massless components (6,1)0 or (4,6)0. The theory only

with vector matters cannot include this operator since the low-energy SU(4) dynamics is

unstable due to the SU(4) monopole potential (similar to (2.3)). For the theory with a

spinor matter, each gauge dynamics can be stable due to (4,6)0.

Notice that when we introduce more general matter contents (Nv vectors, Ns spinors

and Ns′ complex conjugate spinors), there may be additional Coulomb branches. For

instance, the classical Coulomb branch will include the following direction

so(14)→ su(6)× so(2)× u(1) (9.7)

14→ 60,1 + 60,−1 + 12,0 + 1−2,0 (9.8)

64→ 61,−2 + 201,0 + 61,2 + 15−1,−1 + 15−1,1 + 1−1,3 + 1−1,−3 (9.9)

64→ 6−1,−2 + 20−1,0 + 6−1,2 + 151,−1 + 151,1 + 1−1,3 + 11,−3, (9.10)

where the Coulomb branch operator corresponds to the second U(1) factor. We can use

two massless components 20±1,0 in order to have a stable vacuum of the low-energy SU(6)

gauge theory. When the theory has Nv ≥ 10 vector matters, there is another Coulomb

branch Y which corresponds to the breaking

so(14)→ so(12)× u(1) (9.11)

14→ 120 + 12 + 1−2 (9.12)

64→ 321 + 32′−1. (9.13)

All the components of the spinor are massive and only the vector matters can make the

low-energy SO(12) theory stable.

9.1 (Nv, Ns, Ns′) = (4, 1, 0)

The s-confinement phase appears only in the 3d N = 2 Spin(14) gauge theory with four

vectors and one spinor (or four vectors and one conjugate spinor). The Higgs branch is

described by seven composites: MQQ, P3, B4,2, B4,4, B6,3, B8,0 and B8,4. These are defined

in table 24. As explained above, there are two Coulomb branch coordinates Z and X. The

superpotential takes

W = Z
[
B2

8,0 detMQQ + detB4,2 +B8,0(M2
QQB

2
4,2 +MQQP3B6,3 +B4,2P

2
3 )

+B4,2B
2
6,3 +B2

4,4B8,0 +B2
8,4

]
+X

[
(M3

QQB4,2 +MQQP
2
3 )B8,0 +MQQ(B3

4,2 +B2
6,3) + P3B6,3B4,2 +B4,4B8,4

]
.

(9.14)
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Spin(14) SU(4) U(1)v U(1)s U(1)R

Q 14 1 0 Rv

S 64 1 0 1 Rs

MQQ := QQ 1 2 0 2Rv

P3 := SQ3S 1 3 2 3Rv + 2Rs

B4,2 := S4Q2 1 2 4 2Rv + 4Rs

B4,4 := S4Q4 1 1 4 4 4Rv + 4Rs

B6,3 := S6Q3 1 3 6 3Rv + 6Rs

B8,0 := S8 1 1 0 8 8Rs

B8,4 := S8Q4 1 1 4 8 4Rv + 8Rs

Z := Y1Y
2

2 Y
2

3 Y
2

4 Y
2

5 Y6Y7 1 1 −8 −16 2− 8Rv − 16Rs

X :=
√
Y1Y 2

2 Y
3

3 Y
4

4 Y
4

5 Y
2

6 Y
2

7 1 1 −8 −12 2− 8Rv − 12Rs

Table 24. 3d N = 2 Spin(14) theory with (Nv, Ns, Ns′) = (4, 1, 0).

10 Summary

In this paper, we investigated the various s-confinement phases in the 3d N = 2 Spin(N)

gauge theories with vector matters and spinor matters. We found that the 3d s-confinement

is connected to the (quantum-deformed) moduli space of the corresponding 4d N = 1

Spin(N) gauge theories via the twisted-monopole superpotential [6, 7]. Naively, one might

consider that almost all the classical Coulomb branches are quantum-mechanically lifted

since the matter fields are massive and the non-perturbative superpotential (such as (2.3))

lifts those flat directions. However, we pointed out that the Spin(N) theory with vectors

and spinors can have the additional Coulomb branches. Along these new branches, some

components of the spinor representations can remain massless and they can make these

flat directions stable and supersymmetric.

We gave a systematic study of the Coulomb branch and the s-confinement phases for

the 3d N = 2 Spin(N) gauge theories. Although the analysis of the Coulomb branch was

systematic, the resulting Coulomb branch structure was drastically changed, depending on

the rank of the gauge group. For example, the Spin(10) theory with three spinors and

one conjugate spinor was very special, where we need to introduce the “dressed” Coulomb

branch operator. This was because there are two unbroken U(1) subgroups along the

Coulomb branch and the mixed Chern-Simons term is introduced. As another example, the

Spin(12) theory with two vectors and two spinors exhibited the three-dimensional Coulomb

branch while, in most other cases, the Coulomb branch was one- or two-dimensional.

Since we are interested in the s-confinement phases, the number of the spinor mat-

ters is highly restricted especially in the case of large Spin(N) gauge groups where the

dimensions of the spinors are huge. When there are more spinor matters, we could define

the additional Coulomb branches which survive quantum corrections. Remember the two

examples, Spin(13) and Spin(14), where we claimed that the additional Coulomb branch
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will be necessary when there are more than one spinor. It is important to check the validity

of this analysis, for instance, by computing the superconformal indices [28, 29]. This is a

hard and challenging problem since the rank of the gauge group is large and the calculation

would be quite heavy.

In this paper, we focused on the s-confinement phases of the 3d Spin(N) gauge theory

and proposed various confining phases. It is important to test our proposal, for instance,

by computing the superconformal indices [28, 29]. The dual descriptions are given by the

non-gauge theories presented here. It is also very important to study different phases by

introducing more vector and spinor matters. For example, the Seiberg dualities of the 4d

Spin(N) theories were studied in [16, 17, 20–22, 30, 31]. One can, in principle, derive the

corresponding 3d dualities from the 4d ones by following the argument in [9, 32]. We will

soon come back to this problem elsewhere.
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