Synergizing global tools to monitor progress towards land degradation neutrality: Trends.Earth and the World Overview of Conservation Approaches and Technologies sustainable land management database

Gonzalez-Roglich, Mariano; Zvoleff, Alex; Noon, Monica; Liniger, Hanspeter; Fleiner, Renate; Harari, Nicole; Garcia, Cesar (2019). Synergizing global tools to monitor progress towards land degradation neutrality: Trends.Earth and the World Overview of Conservation Approaches and Technologies sustainable land management database. Environmental science & policy, 93, pp. 34-42. Elsevier 10.1016/j.envsci.2018.12.019

[img] Text (Synergizing global tools to monitor progress towards land degradation neutrality: Trends.Earth and the World Overview of Conservation Approaches and Technologies sustainable land management database)
Gonzales_roglich_2019.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (1MB)

As part of the Sustainable Development Goals, countries are striving to achieve by 2030 a land degradation neutral world. Land degradation neutrality (LDN) is the state whereby the amount and quality of land resources remains stable or increases within specified temporal and spatial scales. Achieving this will require the uptake of sustainable land management (SLM) practices to increase the sustainable provision of ecosystem goods and services the human population will require. It will also require the development of systematic, robust, and validated methods for tracking progress at project, subnational and national scales. However, to date, no systematic comparison between the SLM practices and the indicators proposed for monitoring LDN has been performed. In this article, we used the United Nations Convention to Combat Desertification primary recommended global sustainable land management database of World Overview of Conservation Approaches and Technologies
(WOCAT), and an innovative tool designed to assess and monitor land condition via changes in land productivity, Trends.Earth, to evaluate the agreement between self-reported sustainable land management technologies and indicators derived from satellite-based earth observations. We found that a combination of two primary productivity indicators derived from annual integrals of normalized difference vegetation indices (NDVI), trajectory and state, were able to identify increases in primary productivity in the locations where the
SLM practices are implemented in comparison to control sites where SLM practices are not known to have occurred. Moreover, different SLM practices showed unique responses in terms of proportional area which experienced increase, decrease, or remained stable terms of primary productivity. We also found that the time since establishment of the SLM technology was critical for identifying improvements in the SLM sites, as only technologies with more than 10 years since implementation show statistically significant improvements. Our results show that satellite-derived land productivity indicators are successful at detecting the impacts of SLM practices on primary productivity, positioning them as essential elements of the monitoring and assessment tools needed to track land condition to assure the achievement of a land degradation neutral world.

Item Type:

Journal Article (Original Article)

Division/Institute:

10 Strategic Research Centers > Centre for Development and Environment (CDE)

UniBE Contributor:

Liniger, Hans Peter, Fleiner, Renate, Harari, Nicole

Subjects:

900 History > 910 Geography & travel

ISSN:

1462-9011

Publisher:

Elsevier

Projects:

[427] World Overview of Conservation Approaches and Technologies Official URL
[803] Cluster: Land Resources

Language:

English

Submitter:

Stephan Schmidt

Date Deposited:

17 Jul 2019 17:40

Last Modified:

02 Mar 2023 23:32

Publisher DOI:

10.1016/j.envsci.2018.12.019

Uncontrolled Keywords:

NDVI, Land condition, Primary productivity, Land productivity, Sustainable development goals, UNCCD

BORIS DOI:

10.7892/boris.130696

URI:

https://boris.unibe.ch/id/eprint/130696

Actions (login required)

Edit item Edit item
Provide Feedback