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• LULC transformation analysis (1986-
2017) showed that grassland and
bush-shrub-land losing fast to Prosopis.

• Prosopis invasion increased at annual
rates of 31,127 ha while grassland and
bush-shrub-woodland declined with
19,312 ha and 10,543 ha, respectively.

• Local communities perceive that climate
change, frequent droughts and invasive
species as the major drivers of LULC
changes.

• The ESVs loss between the two periods
is estimated at US$ 602 million (ranged
112 to 1,092 million) within 31 years.
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Land use/land cover (LULC) dynamics and the resulting changes in ecosystems, as well as the services they pro-
vide, are a consequence of human activities and environmental drivers, such as invasive alien plant species. This
study assessed the changes in LULC and ecosystem service values (ESVs) in the Afar National Regional State,
Ethiopia, which experiences a rapid invasion by the alien tree Prosopis juliflora (Swartz DC). Landsat satellite
data of 1986, 2000 and 2017 were used in Random Forest algorithm to assess LULC changes in the last
31 years, to calculate net changes for different LULC types and the associated changes in ESVs. Kappa accuracies
of 88% and higherwere obtained for the three LULC classifications. Post-classification change analyses for the pe-
riod between 1986 and 2017 revealed a positive net change for Prosopis invaded areas, cropland, salt flats, settle-
ments and waterbodies. The rate of Prosopis invasion was estimated at 31,127 ha per year. Negative net changes
were found for grassland, bareland, bush-shrub-woodland, and natural forests. According to the local community
representatives, the four most important drivers of LULC dynamics were climate change, frequent droughts, in-
vasive species and weak traditional law. Based on two different ESVs estimations, the ecosystem changes caused
by LULC changes resulted in an average loss of ESVs in the study area of about US$ 602million (range US$ 112 to
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1091 million) over the last 31 years. With an increase in area by 965,000 ha, Prosopis-invaded land was the
highest net change during the study period, followed by grassland (−599,000 ha), bareland (−329,000 ha)
and bush-shrub-woodland (−327,000 ha). Our study provides evidence that LULC changes in the Afar Region
have led to a significant loss in ESVs, with serious consequences for the livelihoods of the rural people.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Land use/land cover (LULC) changes are aspects of global environ-
mental change and affect ecosystem processes and services. For exam-
ple, an increasing demand for agricultural, industrial or urban areas
compromises the ability of natural forests, waterbodies and grasslands
to support mankind (Nelson et al., 2009; Goldman-Benner et al.,
2012). In recent decades, a large amount of change in LULC has been ob-
served, caused by different socio-economic and biophysical drivers,
such as population growth, agricultural expansion and intensification,
accessibility to infrastructure andmarkets, water availability or climate.
An additional driver of global change is invasive alien plant species
(IAPS), which causes significant impacts on biodiversity and ecosystem
services (ES) (Vilà et al., 2011; Vilà and Hulme, 2017), or promote eco-
system disservices (EDS) (Shackleton et al., 2016; Vaz et al., 2017), and
thus alter the benefits people derive from nature (Pejchar andMooney,
2009). However, little is known about the effect of IAPS on LULCdynam-
ics and its consequences of ecosystems services at larger spatial scales
(Le Maitre et al., 2014).

Species-rich ecosystems are able to simultaneously providemultiple
ES (Lefcheck et al., 2015). If LULC changes negatively affect biodiversity
and the provisioning of these ES, or promote EDS, they also reduce the
overall value of the land. According to TEEB (2010), “recognizing value
in ecosystems, landscapes, species and other aspects of biodiversity is
a feature of all human societies and communities, and sometimes suffi-
cient to ensure conservation and sustainable use”. Over the last 20 years,
many ecosystem service values (ESVs) studies have been carried out at
global, national or subnational levels (Schmidt et al., 2016), some of
which integrating spatially explicit approaches (Kremer et al., 2016;
Liu et al., 2009). At the global level, the value of ES in 2011 was esti-
mated at US$ 125 trillion per year (assuming changes in LULC) to US$
145 trillion per year (without assuming LULC changes), and the de-
crease in ESVs between 1997 and 2011 as a result of land use changes
was at US$ 4.3 to 20.2 trillion per year (Costanza et al., 2014). Losses
in ESVs at national and subnational levels were also reported to be
high (e.g. Crespin and Simonetti, 2016; Sutton et al., 2016). Quantifica-
tion of ESVs based on theES database (Vander Ploeg et al., 2010) is com-
monly undertaken by integrating LULC data of biomes present in a
region of interest (Costanza et al., 2014; Van der Ploeg et al., 2010). Al-
though these biomes are not exactly similar in their characteristics and
functions with the LULC types used in different studies, average values
per unit area derived from valuation studies for a particular biome can
be used as proxies for estimating the ESVs of the corresponding LULC
types (Tolessa et al., 2017).

Braat and Groot (2012) suggested that decisions regarding the fu-
ture use of an ecosystem should consider the full costs and benefits
for thewelfare of the current and future generations. ES are the prod-
ucts of complex interconnected social–ecological systems (Grêt-
Regamey et al., 2015), indicating that evaluating ES supply and
values requires a deep understanding of the social–ecological sys-
tems and the dynamics of the relationship between human activities
and the ecosystems they rely on (Grêt-Regamey et al., 2015; Maes
et al., 2012; Shackleton et al., 2016; Vaz et al., 2017). Hence, under-
standing ES and their values as well as their spatial dynamics will
contribute towards considering ES for policy goals and measuring
welfare of society both at national and subnational levels (Niquisse
et al., 2017).
In sub-Saharan Africa, some studies have been conducted on map-
ping and valuation of ES in the context of LULC changes (Arowolo
et al., 2018; Hulme et al., 2013; Leh et al., 2013; Kindu et al., 2016;
Tolessa et al., 2017; Silvestri et al., 2013). Almost all studies indicate
that this region is under severe pressure of degradation, with significant
consequences for rural livelihoods (Scholes et al., 2018). For example,
Sutton et al. (2016) estimated for Ethiopia a loss of 17.7% in ESVs due
to land degradation, which is also reflected in studies conducted in dif-
ferent parts of Ethiopia (Gashaw et al., 2018; Kindu et al., 2016; Tolessa
et al., 2017). Drivers of land degradation in sub-Saharan Africa include
the expansion of crop production, unsustainable grazing and forestry
practices, and climate change (Scholes et al., 2018). The impact of inva-
sive species on losses in ESVs in sub-Saharan Africa may be particularly
relevant in this region, as low-income countries appear to be particu-
larly vulnerable to biological invasions in relative terms (potential eco-
nomic impact as a proportion of gross domestic product; Paini et al.,
2016).

The SouthAmerican tree, Prosopis juliflora (SwartzDC.), hereafter re-
ferred to as Prosopis, is one of the world's worst invasive species (Lowe
et al., 2000). Prosopiswas introduced to different parts of theworldwith
the aim of providing benefits to rural people, such as the production of
fuelwood, charcoal and construction material, as well as to stabilize soil
in degraded ecosystems (Shackleton et al., 2014). However, Prosopishas
become invasive in many places and is increasingly known for its nega-
tive ecological and socio-economic impacts (Keller et al., 2010;
Shackleton et al., 2015a; Shiferaw et al., 2004). With regard to the
Prosopis invasion and LULC changes, some studies have been carried
out in Ethiopia at Kebele (the lowest administrative unit in Ethiopia;
Ayanu et al., 2014) and District/Woreda level (Engda, 2009;
Haregeweyn et al., 2013). However, LULC change analysis and estima-
tion of ESVs in the context of Prosopis invasion has not been assessed
in any parts of the invaded area so far.

This study aimed at assessing and analyzing LULC changes in the Afar
National Regional State (ANRS), Ethiopia, and at quantifying the contri-
bution of Prosopis invasion to changes in LULC and its consequences on
ESVs. Landsat satellite data of three points in time, 1986, 2000 and 2017
were used to quantify changes in LULC over the last 31 years. Moreover,
associated drivers of the LULC dynamics were identified in focus group
discussions with local stakeholders. The specific objectives were to:
i) assess LULC dynamics, calculate its gains, losses and net changes in
area of the different LULC types, and quantify Prosopis invasion rates
over the last 31 years, ii) identify the local stakeholders' perceptions of
the drivers of LULC change, and iii) estimate the ESV changes caused
by LULC dynamics in the study area in order to assist policy makers in
designing evidence-based solutions.

2. Materials and methods

2.1. Study area and Prosopis invasion

The study area consisted of the southern part of the ANRS of Ethiopia
and comprised 6.67 million ha (Fig. 1). The northern part of the region
was excluded as it is mainly occupied by active volcanic materials and
sandy and/or rocky areas and has hardly been invaded by Prosopis so
far. The ANRS has a long term mean annual rainfall of about 560 mm
per year (average for the period 1965–2002: Shiferaw et al., 2004).
The region is the hottest part of Ethiopia with a mean annual
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Fig. 1. Location of study area, background showing elevation ranging from - 94 m b.s.l. to 2235 m a.s.l.
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temperature of 31 °C. The mean maximum temperature reaches up to
41 °C in June, and the mean minimum temperature ranges from 21 to
22 °C between November and December (Shiferaw et al., 2019a). The
study area is located in the Awash Basin. The biome can be described
as semi-arid dryland. Its vegetation cover consists of patches of
scattered dry shrubs, acacia woodland (comprising different Vachellia
species), bushland, grassland and wooded grassland (Engda, 2009).
The study area has different soil types (from sand to heavy clays and
stony soils), rocky outcrops, and a wide range of altitudes (ranging
from 94 m below sea level to 2235 m a.s.l.).

Pastoralism is the dominant source of livelihood for the Afar peo-
ple, but agro-pastoralism is being promoted by the government. In
addition, governmental and private investments have promoted
large-scale agricultural production in the Middle Awash Valley,
mainly for cotton and sugar cane production. While the large areas
of rain-fed grassland and shrubland in the region provide fodder
for livestock, firewood and various natural products, including me-
dicinal plants, the Afar people strongly depend on the floodplains
of Awash River for grazing, particularly during the dry seasons, as
well as for small-scale agriculture (Argaw, 2015). Parts of the arable
land have been abandoned as a result of soil salinity, which has re-
sulted from a combination of inappropriate irrigation practices and
high evapotranspiration, and as a result of Prosopis invasion
(Argaw, 2015).

Prosopis was first introduced in the Afar region in the late 1970s
and early 1980s mainly for the purpose of water and soil conservation
(Ayanu et al., 2014; Kebede and Coppock, 2015). Additional planta-
tions were made between the 1980s and 1990s as shade and wind
protection trees in villages and the rawmaterial was used for firewood
and fencing and building material (Ayanu et al., 2014). First problems
arose soon thereafter, when the tree started invading croplands, grass-
lands, riverbanks and roadsides. Prosopis has been shown to reduce
biodiversity, grazing potential and water supply, thereby causing sig-
nificant impacts on the provision of key ecosystem services for
(agro-) pastoralists (Shackleton et al., 2014). As a result, Prosopis has
become a source of conflict among pastoralist groups in Ethiopia due
to the resulting dwindling grazing land (Kebede and Coppock, 2015;
Shiferaw et al., 2019a).



Table 1
Land use/land cover types identified for analysis in the Afar National Regional State.

LULC type Descriptions

Bareland Areas without any vegetation either due to erosion or
mismanagement (especially overgrazing); land cover
permanently sand or rocks including volcanic black rocks or
roads.

Cropland Areas of land prepared for crop production. This category
includes areas currently covered by crops, areas prepared for
cultivation and fallow plots.

Grassland Areas covered with natural grass and small shrubs, or
dominated by grass, it includes areas used for communal
grazing as well as a bare land that is seasonally grass-covered.

Natural forest Mainly dominated by native Vachellia spp. N5 m of height and
found in riverside/riverine forest ecosystems.

Prosopis Areas invaded by Prosopis at different cover gradients
(abundance), monoculture or mixed stands together with
other vegetation but dominated by Prosopis.

Salt flats Areas mostly in and around shallow lakes & ponds, used for
salt production.

Settlements Urban, build-up areas, temporary or permanent settlements.
Bush, shrub and
woodland

Different types of pure or mixed trees such as palm trees,
Vachellia woodland with grass as undergrowth. Canopy
coverage is N10%. Shrublands and bush tickets consisting of
mixed native shrubs of b3–5 m height and wooded bush
thickets consisting of native species.

Waterbodies Permanent lakes, and freshwater (rivers and streams). It also
includes wetlands which dry up during the dry season,
intermittent ponds and water points, perennial marshy areas,
and man-made dams for hydroelectric and irrigation
purposes.
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2.2. Methods

2.2.1. Remote sensing data and prepocessing
Satellite data were preprocessed using the Google Earth Engine

(GEE) cloud computing environment.Weworkedwith the Landsat Eco-
system Disturbance Adaptive Processing System (LEDAPS) surface re-
flectance products (Lu et al., 2002) of Landsat 5 TM, Landsat 7 ETM+
and Landsat 8 OLI, provided by USGS. All products are already geomet-
rically co-registered, ortho-rectified, and atmospherically corrected. Im-
ages were provided together with a cloud mask and a quality
assessment (QA) bands. We generated three different image collections
having 30 m spatial resolution and consisting of the blue, green, red,
near-infrared, as well as the two shortwave-infrared bands. The collec-
tions consist of pixels captured in the months of January and February,
the dry season in Afar. In order to obtain cloud-free dry season compos-
ites of surface reflectance that captured the study areas' phenology con-
sistently, we had to include two to three years of imagery to represent
each point in time. Thus, for 1986, we selected imagery acquired be-
tween 1985 and 1987 giving preference to pixels captured in 1986;
for 2000, we used data acquired between 1999 and 2001; and for
2017 we used data acquired from January/February 2016, 2017 and
2018, with the majority of pixels taken from 2017 imagery. Then, we
used the LEDAPS QA band to remove clouded pixels, resulting in a
stack of cloud-free pixel values for each pixel location, which we then
reduced to a dry season composite by choosing the median pixel value
for each pixel and spectral band. The use of the median pixel value en-
sured that outlier values (e.g., due to cloud shadows or clouds that
were not previously removed by the QA band) were excluded. This
was done for each optical Landsat band.

The reasons for our choice of season and years were (1) the dry sea-
son is being the optimum time to spectrally differentiate the evergreen
Prosopis from other leaf-shedding indigenous vegetation, (2) the avail-
ability of cloud-free, good quality satellite images, and (3) capturing
a) the early years of Prosopis presence (in 1986 Prosopiswas just at plan-
tation sites but started to invade areas outside the original plantations as
it was introduced in the late 1970s and early 1980s (Kebede and
Coppock, 2015), b) an intermediate point in time (2000), and c) the re-
cent situation found in 2017.

2.2.2. Field data collection
For the classification of each dry season composite, reference data

were collected for training and validation of each LULC type in the
study area (Table 1). Reference data for 1986 were collected from aerial
photographs captured in 1986. Careful attentionwas paid to collect only
reference data using pure pixels of 30 × 30m for each LULC type. Refer-
ence samples for 2000 were derived from the LULCmaps of the Woody
Biomass Project (Woody Biomass, 2000), and the Ethiopian Mapping
Agency (EMA, 2003). Reference data for 2017 were collected directly
from the field between September 2016 to January/February 2017 and
2018 using a handheld GPS (Garmin GPSMAP 60CSx). A total of 1847,
1998 and 2131 samples were collected for 1986, 2000 and 2017,
respectively.

2.3. LULC classification, validation and dynamics

Field sampleswere partitioned andused for calibration (70%) aswell
as validation (30%) (Olecka, 2003; Oleksy, 2017). The LULC classifica-
tions for the three points in time were carried out using the field refer-
ence data set for calibration of a Random Forest (RF) classifier in R open
source software (R Core Team, 2017). RF is one of the most known and
versatilemachine learningmethods capable of performing both classifi-
cation and regression tasks (CART: Breiman, 2001; Shiferaw et al.,
2019b). It is widely used for environmental mapping and modeling ap-
plications (Cutler et al., 2007; Rodriguez-Galiano et al., 2012). Further-
more, 10-fold cross-validation was applied to assess model
performance (Fushiki, 2009). Accuracy measures such as balanced
accuracies, Kappa coefficients, sensitivity and specificity measures,
user's and producer's accuracies were calculated using testing data set
and error matrix was generated (Cleugh et al., 2012; Congalton, 1991).

After classification, LULC changes were calculated for three different
time periods, i.e. 1986–2000, 2000–2017, and 1986–2017, using cross-
tabulation (Eckert et al., 2017; Kindu et al., 2016; Zewdie and
Csaplovics, 2015) and calculating percent changes for each LULC type
over time (Gashaw et al., 2018; Kindu et al., 2016; Temesgen et al.,
2018). Furthermore, class-specific gains, losses, and stable areas, as
well as total change area and net changes of the total area analyzed
were calculated (Alo and Pontius, 2008; Zewdie and Csaplovics, 2015).
Finally, annual change rates were calculated for each LULC type follow-
ing Puyravaud (2003) and Tilahun et al. (2014), i.e. the rate of change
for a specific class was calculated by dividing the class-specific changes
between two time intervals by the number of years between these two
observed points in time.

2.4. Participatory assessment of perceived drivers of LULC change

To identify perceived main drivers of LULC changes over the last
three decades, particularly those that might have influenced LULC
changes prior to or during the years 1986, 2000 and 2017, focus group
discussions (FGDs) were conducted with representatives of local com-
munities from invaded and non-invaded areas in and around Awash
Fentale, Amibara and Gewane districts. These three districts are located
in the highly invaded areas of Zone 3, about 50 to 200 km away from
each other (Fig. 1). In total, three different FGDs were conducted with
six to ten persons each. The FGDs consisted of elderly, middle aged
and youngmembers of local communities, with a balanced composition
in terms of gender. Most of the participants were pastoralists, agro-
pastoralists, and agricultural extension officers (which are intermedi-
aries between research and farmers). Each meeting lasted approxi-
mately 6 h. After an introduction to the purpose of the meeting, the
group was invited to suggest possible drivers of LULC change. Those
drivers perceived by the local communitymembers as most influencing
were then identified using the multi-criteria evaluation (MCE) tech-
nique in an analytic hierarchy process (AHP) method (Velasquez and
Hester, 2013) applying pairwise comparison matrix (Saaty, 1994;
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Saaty andVargas, 2013). TheMCE technique is used to explore how sen-
sitively a driver varied while comparing it with another one on the
Likert scale from 1 to 5 (1 = least important, 5 = most important).
The next step was the testing of the sensitivity and consistency ratio
in a pairwise comparison matrix (Saaty, 1994; Saaty and Vargas,
2013). Finally, weighting and sorting out the most important drivers
were identified as the whole of the weighting criteria affects the out-
come of the aggregation with respect to deviations in the preferences
(Proctor and Drechsler, 2003). Hence, stable weighting was assigned
for each potential driving factor so as to compare and identify those per-
ceived as the most important ones (Saaty, 1994).

2.5. Ecosystem service values

Themost commonmethods to calculate ESVs are based either on the
simulated market approach (Chaudhary et al., 2015), the surrogate
(proxy) market approach (Bai et al., 2013), or on the benefit transfer ap-
proach (Costanza et al., 1997; Niquisse et al., 2017). In this study, the
benefit transfer approach was used to estimate values of ES of different
LULC types and their changes (Costanza et al., 1997, 2014; Niquisse
et al., 2017). The benefit transfer approach refers to the process of
using existing values and other information from the original study site
to estimate ESVs of other similar locations in the absence of site-
specific valuation information (Bagstad et al., 2013;Niquisse et al., 2017).

We calculated the ESVs of the LULC types in ANRS taking two different
approaches. First, we based our calculation of the ESV coefficients on re-
gional estimates of ESVs using data provided by Kindu et al. (2016),
who conducted a study on LULC and ESVs in Ethiopia using conservative
estimates of ESV coefficients, which were based on values from studies
conducted in areas similar to the geographical setting of our study area,
which includes themain three ES: supply, regulation/monitoring andpro-
vision (Kindu et al., 2016) (Appendix 1a). To contrast this approach with
one based on global estimates of ESV coefficients, we also calculated the
ESVs of the LULC types in ANRS using the updated global coefficients pro-
vided by Costanza et al. (2014). Land use types such as bareland and set-
tlement did not have a coefficient in some studies (Costanza et al., 1997;
Kindu et al., 2016; Tolessa et al., 2017). Nevertheless, urban/settlement
and salt flats were reported by Costanza et al. (2014) (Appendix 1a).

As no estimates of ESVs for Prosopis invaded areaswere available, we
estimated them based on information provided by a socio-economic
study conducted in Afar region by Bekele et al. (2018a; unpubl.
results) and interviews with key informants, which we define here as
local people who have profound information about the study area and
who already lived in the area some30 years ago. For the regional assess-
ment of the ESVs, we estimated the ESV coefficient for Prosopis-invaded
areas by considering the estimated economic benefits of Prosopis for
local stakeholders (Appendix 1b). For the approach based on global es-
timates of ESV coefficients, the ESV coefficient for Prosopis–invaded land
was estimated from the average of two estimates of raw (wood) mate-
rials, i.e. that for tropical forests provided by Costanza et al. (2014) and
that for woodland/shrubland provided by Temesgen et al. (2018) (Ap-
pendix 1b). The ESVs for all LULC types were calculated for each period
using the following Equation (Costanza et al., 1997, 2014):

ESV ¼
X

½ðAk VCkð Þ�

where ESV= estimated ecosystem service value, Ak= the area (ha) of
LULC type k, and VCk= the value coefficient (US$ ha−1 yr−1) for LULC
type k.

3. Results

3.1. LULC types, dynamics and rate of changes

With kappa accuracies between 88% (1986) and 92% (2017), RF clas-
sifier produced overall good to very good accuracies for the three
classification points in time and the defined LULC types (Appendix 2;
Viera and Garrett, 2005). Class-specific user's accuracies were at least
80%, with the exceptions of the class settlement in 1986 (79%) and
2000 (76%), the class waterbodies in 2000 (79%), the class Prosopis in
2000 (72%) and 2017 (79%). Producer's accuracies achieved also at
least 80% for all LULC types, except for the class Prosopis in 2000 (75%).

The LULC change analysis for the period 1986–2017 revealed that
cropland, Prosopis, salt flats, settlements and waterbodies have in-
creasedwhile bareland, grassland, natural forest and bush-shrub-wood-
land have decreased (Table 2; Fig. 2). While in 1986, the study area was
dominated by bush-shrub-woodland, grassland and bareland, which
made up about 99% of the study area, the share of these three classes de-
creased in 2017 to about 81%, with 14.5% of the study area newly cov-
ered by Prosopis. In absolute terms, Prosopis has invaded an area of
about 965,407 ha over the last 31 years. It is the LULC type with the
highest amount of change in the study area and reflects a mean annual
invasion rate of 31,127 ha/year.

Our results suggest that the invasion did not increase linearly but
was much faster after 2000 (1986–2000: 10,570 ha per year; and
2000–2017: 48,070 ha per year), which is also reflected when looking
at the changes in percent area (Table 3). Considering changes in percent
area within the last 31 years, we found that bareland and bush-shrub-
woodland decreased by 5%, grassland by 9% (598,672 ha), and natural
forest by 0.01% (994 ha), while Prosopis increased by 14.5%, which is
about a 4000 times larger area than in 1986. Further, cropland, salt
flats, settlements and waterbodies experienced positive net changes of
0.28%, 1.64%, 1.66%, and 0.58%, respectively (Table 3).

Between 1986 and 2000, Prosopis replaced mainly grassland and
bush-shrub-woodland, while during the second time period
(2000–2017) Prosopis also replaced bareland (Fig. 3). Overall, Prosopis
gained some 208, 000 ha from bareland, 380,000 ha from bush-shrub-
woodland, and 340,000 ha from grassland (Appendix 3).

3.2. Participatory assessment of perceived drivers of LULC change

The ten potential drivers of LULC changementioned during the FGDs
included indirect drivers, such as increasing human population and
weak traditional law, as well as direct drivers, such as agricultural ex-
pansion, climate change and invasive species. The four potential drivers
of LULC changes that were identified as themost influencing ones in the
study area (importance N10%) were (1) climate change, (2) frequent
droughts, (3) invasive species, and (4) weak traditional law (Fig. 4; for
statistics on all driving factors mentioned by the interviewees, see Ap-
pendix 4). When asked why the local community members perceive
‘climate change’ and ‘frequent droughts’ as separate drivers of LULC
change, they argued that climate change not only consisted of more fre-
quent droughts but also other natural incidences such as change in tem-
perature, heavy rainfall and flooding events. Regarding the perceived
driver “weak traditional low”, communitymembers noted that in previ-
ous days local communities respected the customary law set by their
forefathers and experienced throughout their life. However, with the re-
duction of resources due to land degradation and invasive species, the
communal system of the pastoral areas allows use of their areas by peo-
ple who come from anywhere within the region, rendering their com-
munal land open-access.

3.3. Ecosystem service values

Based on regional estimates of ESV coefficients, the total ESVs in the
study area dropped from 3110 million in 1986 to 2998 million in 2017.
Based on global estimates of ESV coefficients, the total ESVs decreased
from US$ 12,008 million to 10,916 million (Table 4). In both assess-
ments, two natural LULC types lost large amounts of ESVs, namely grass-
land (US$ 175 to 2494million) and bush-shrub-woodland (approx. US$
323 million). On the other hand, Prosopis-invaded land (US$ 71 to 129
million) and waterbodies (US$ 311 to 481 million) increased in ESVs.



Table 2
Land use/land cover proportions for each type in hectares and percent share of the total area for 1986, 2000, 2017, and annual change rate during the study period.

LULC type 1986 2000 2017 Annual change rate

ha % share ha % share ha % share (ha/year)

Bareland 2,023,898 30.7 1,882,955 28.6 1,694,915 25.4 −10,612
Bush-Shrub-Woodland 2,361,824 35.8 2,148,352 32.6 2,034,996 30.5 −10,543
Cropland 42,143 0.7 240,085 3.6 60,333 0.9 587
Grassland 2,195,201 32.1 2,060,777 31.3 1,596,529 23.9 −19,312
Natural forest 14,850 0.3 13,748 0.2 13,856 0.2 −32
Prosopis 241 0.01 148,218 2.3 965,166 14.5 31,127
Salt flats 13,830 0.2 17,053 0.3 138,174 2.1 4011
Settlement 1935 0.1 30,500 0.5 111,280 1.7 3527
Waterbodies 13,725 0.2 45,291 0.7 52,151 0.8 1240
Total 6,667,647 100 6,667,647 100.00 6,667,647 100
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Themajor losses of ESVs due to Prosopis invasionwere from a change of
bush-shrub-woodland and grasslands to Prosopis-dominated land. The
losses of ESVs due to a change from grassland to Prosopis (340,000 ha;
Fig. 3; Appendix 3) were estimated at US$ 74 to 1371 million based
on regional and global estimates of a change in the ESV coefficient
(ESV coefficient for grassland minus ESV coefficient for Prosopis), and
the losses of ESVs due to change from bush-shrub-woodland to Prosopis
(379,000 ha; Fig. 3) at US$ 323 to 346 million.

In ANRS, losses in ESVs primarily occurred in the areas along themajor
rivers, including thefloodplains, and road corridors,where Prosopis is par-
ticularly invasive (Fig. 5). In contrast, areas closer to the highland escarp-
ments, e.g. towards the Amhara National Regional State in thewest, show
relative stability in both LULC and ESVs. Areas which changed from
bareland to waterbodies gained significantly in ESVs.

4. Discussions

Our assessment of LULC changes in the ANRS revealed a significant
degradation of ES over the last 31 years and a high associated loss of
Fig. 2. Land use/cover classification results for 1986, 2000 and 2017
ESVs. The most important change in land cover has occurred due to
Prosopis invasion. Prosopis appears to have either directly replaced
grassland and bush-shrub-woodland or has invaded bareland. Bareland
may have historically exhibited low levels of vegetation or may have
been degraded already before Prosopis started to invade. Hence, our re-
sults provide evidence that IAPS can be a key driver of LULC change and
associated losses of ESVs at the regional scale.
4.1. LULC types, dynamics and rate of changes

The LULC change analysis revealed that LULC types particularly im-
portant for the ecosystem as well as peoples' livelihoods in the ANRS,
namely grasslands, bush-shrub-woodland and to a lesser extent natural
forests, have substantially decreased in the last 31 years. This reflects a
general trend found in studies conducted in similar biomes in different
parts of the world, e.g. in Australia (Cleugh et al., 2012), China (Li et al.,
2007), Mozambique (Niquisse et al., 2017), as well as in different parts
of Ethiopia (Gashaw et al., 2018; Hurni et al., 2005; Kindu et al., 2016;
in the central and southern part of Afar National Regional State.



Table 3
The changes (1986–2017) of LULC types in hectares and percent shares.

LULC type 1986–2000 2000–2017 1986–2017

ha % ha % ha %

Bareland −140,943 −2.1 −188,040 −2.9 −328,982 −4.9
Bush-Shrub-Woodland −213,471 −3.2 −113,356 −1.7 −326,827 −5.0
Cropland 197,943 3.0 −179,752 −2.7 18,192 0.3
Grassland −56,824 −0.9 −464,248 −7.1 −598,672 −8.9
Natural forest −1101 −0.02 −2953 −0.05 −994 −0.01
Prosopis 147,978 2.2 817,189 12.3 965,166 14.5
Salt flat 3224 0.05 43,519 0.7 124,344 1.6
Settlement 28,565 0.4 80,780 1.2 109,346 1.7
Waterbodies 31,567 0.5 6860 0.1 38,427 0.6
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Tolessa et al., 2017; Tsegaye et al., 2010), but also at the global level
(Costanza et al., 1997, 2014).

The Awash Basin is one of the river basins in Eastern Africawhich sup-
ports significant numbers of pastoralists (Abule et al., 2005). However al-
most 600,000 ha (or 25%) of the grassland areas have been lost over the
last 31 years (Fig. 3), largely due to invasion by Prosopis or a change to
bareland. While indigenous species-dominated rangelands in Eastern
Africa canoccupymultiple stable states dependingonfire frequency, rain-
fall, or grazing pressure (Anderies et al., 2002), invasion by Prosopis in
grassland areas in the ANRS is hardly reversible, because established
Prosopis trees are resistant to fire and can access groundwater (Dzikiti
et al., 2013) also in areas with low or very low rainfall (Pasiecznik et al.,
2001). Our results also suggest that grasslands were directly changed to
Prosopis, without passing through an intermediate stage of degraded
bareland. However, we acknowledge that the time interval between our
LULC classifications was relatively long and that a short period of
Fig. 3. Land use/cover types in ha: both stable and dynamic classes over the last 31 years be
woodland, Crop = cropland, Gras = grassland, Nfor = natural forest, Pros = Prosopis, Salt =
degradation, e.g. fromperennial to annual grasslands,may have preceded
Prosopis invasion in some cases. However, Prosopis has also started invad-
ing the Allideghi Wildlife Reserve, one of the last extensive grassland
areas in ANRS, leading to a significant decrease in grass cover (Kebede
and Coppock, 2015). Findings by Schachtschneider and February (2013)
corroborate that Prosopis can also directly interferewith the survival of in-
digenous trees and shrubs.

The other major change in land cover is a shift from grassland to
bareland and bush-shrub-woodland. As mentioned above, a shift be-
tween grass-dominated and shrub-dominated states is a natural pro-
cess in African grasslands which is triggered, among others, by
precipitation, fire and herbivory (Anderies et al., 2002). A shift of grass-
land to bareland, however, is likely to be a combination of overexploita-
tion and climate change. Between 1960 and 2010, the population in
Ethiopia has increased by 268% (Pricope et al., 2013), and this has trans-
lated into higher livestock stocking rates. In recent years, trends in
tween 1986–2000, 2000–2017, and 1986–2017. Bare = bareland, Bush = bush-shrub-
salt flats, Sett = settlement, Wat = waterbodies.



Fig. 4. Relative importance (%) of drivers of land use/cover changes in the Afar Region, Ethiopia.
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livestock numbers have become more variable, but grazers have de-
creased and browsers increased (Yosef et al., 2013). Due to climate
change, spring and summer rains in parts of Ethiopia have declined by
15–20% since the mid-1970s, and the observed warming across the en-
tire country has further contributed to the increasing dryness (Funk
et al., 2012). Hence, as perceived by the local communities, climate
change is likely to negatively affect productivity of grasslands in the
ANRS and, due to more frequent drought events, to reduce resilience
of grasslands to grazing pressure. Yet, while grazing pressure was only
ranked as a minor driver of LULC change by local stakeholders, the per-
sistence of healthy grasslands in protected areas, such as Awash Na-
tional Park, suggests that the main driver of change from grasslands to
bareland over the last decades has been overgrazing by livestock
(Abule et al., 2005). The increase of bareland is likely to have further
facilitated Prosopis invasion, as Polley et al. (2003) showed that absence
of competition with grass doubled emergence and almost tripled the
survival of emergent seedlings of the congeneric species Prosopis
glandulosa Torr.

The shift of some land classified as bareland in 2000 to grasslands in
2017 can probably be explained by the fact that the year 2000 was a
drought year with low levels of rainfall (Haregeweyn et al., 2013;
Viste et al., 2013). Hence, some grassland with very low vegetation
cover, particularly those dominated by annual grasses, may have been
misclassified as bareland in 2000.
Table 4
Regional, global and average estimates of ecosystem service values (ESVs) inmillion US$ for eac
the Afar National Regional State, Ethiopia. Coefficients of ESVs were from Appendix 1a and * =

LULC type ESVs in 1986 ESVs in 2017

Regional estimate Global estimates Regional estimate

Bareland – – –
Bush-shrub-woodland 2331.1 2331.1 2008.5
Cropland 9.5 234.6 13.6
Grassland 643.2 9145.2 467.8
Natural forest 14.7 79.9 13.7
Prosopis* 0.02 0.03 71.4
Salt flats – 32.3 –
Settlement – 12.9 –
Waterbodies 111.2 171.7 422.6
Total 3109.7 12,007.9 2997.7
Several ‘anthropogenic’ classes, such as cropland, settlements, salt
flats and artificialwaterbodies have also increased at the expense of nat-
ural vegetation cover. The increase in salt flats and waterbodies are as-
sociated with an increasing investment in the region in salt excavation
and irrigated agriculture (Shiferaw, personal observation). As reported
by Tsegaye et al. (2010), cropland area increased substantially during
the 1990s and 2000s, but then decreased again thereafter. Similar
trends of LULC changes towards more anthropogenic land use catego-
ries were found in other studies conducted in Eastern Africa, with crop-
land and settlements increasing at the expense of forests, shrubland,
and grasslands (Eckert et al., 2017; Tolessa et al., 2017; Zewdie and
Csaplovics, 2015). While the largest area under crop production
(240,000 ha in the year 2000; Table 2) was far lower than the areas cov-
ered by grassland or bush-shrub-woodland, the impact of cropland on
rural livelihoods in the ANRS is significant, because cropland is almost
always located in the floodplains of Awash River and of its tributaries,
i.e. in areas which were traditionally used by pastoralists as drought-
season grazing areas. Crop production and the invasion of Prosopis are
the main reasons why large areas of drought-season grazing land in
the middle and lower Awash River Basin have been lost, which, in
turn, has triggered ethnic conflicts in the downstream due to shortage
of drought-season grazing land (Haji and Mohammed, 2013).

Our data indicate a dramatically increasing rate of spread of Prosopis
in the ANRS, a phenomenon also reported from invasions of hybrid-
h LULC type in 1986 and 2017; and the changes in ESVs in US$ between 1986 and 2017 in
ESV based on own calculations as explained in Appendix 1b.

Changes in ESVs between 1986 & 2017

Global estimates Regional estimate Global estimates Average estimates

– – – –
2008.5 −322.6 −322.6 −322.6
335.9 4.1 101.3 52.7

6651.1 −175.4 −2494.1 −1334.7
74.6 −1.0 −5.3 −3.2

129.4 71.4 129.3 100.4
323.2 – 290.8 145.4
741.2 – 728.4 364.2
652.5 311.4 480.8 396.1

10,916.4 −112.0 −1091.4 −601.7



Fig. 5. Spatial distribution depicting loss, gain and stable ESVs in Afar National Regional State.
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dominated Prosopis trees in South Africa (Shackleton et al., 2017; van
Wilgen et al., 2012). This suggests that the rate of LULC changes in the
ANRS will substantially increase over the next decades if Prosopis inva-
sion is left uncontrolled and grassland not managed sustainably.

4.2. Participatory assessment of perceived drivers of LULC change

As perceptions of the environmental, economic and social factors
driving environmental change play an important role in environmental
decision-making (Meijer et al., 2015), it is important to understand the
local stakeholders' perception of the factors affecting LULC change in
Afar region, which in turn may inform to what extent they believe
they can reduce the threats to the things they value. Themost important
drivers of LULC change perceived by the local community representa-
tives in the FGDs were climate change, frequent droughts, invasive spe-
cies, andweak traditional law. Climate changewas also identified as the
major cause for LULC changes, in other studies as it is a global phenom-
enon that causes but is also affected by LULC changes (Hansen et al.,
2001; Pielke et al., 2002). Moreover, while climate change and invasive
species are often treated as independent drivers, climate change is likely
to exacerbate biological invasions (Pyke et al., 2008; Hulme, 2017). For
example, climate change is likely to make it easier for some invasive
species to establish and survive, and may accelerate the spread of suc-
cessfully established invasive species by disrupting native communities
and ecosystems (Eiswerth et al., 2005;Hulme, 2017) or by increasing at-
mospheric CO2 concentrations, which may promote Prosopis recruit-
ment in grasslands (Jackson et al., 2002; Polley et al., 2003). Hence,
management of invasive species could also increase the resilience of
ecosystems to climate change.

The second important driver of LULC change identified by FDGs was
frequent droughts in the study area. Similarly, Tsegaye et al. (2010)
identified drought as the first major driver of LULC change in northern
part of the ANRS. While droughts have always occurred in the ANRS,
they now occur at shorter intervals than in recent years (El Kenawy
et al., 2016; Viste et al., 2013). Pastoralists from the ANRS mentioned
that in former times grasslands and the number of livestock used to re-
cover quickly after drought events, but that this has changed due to the
combination of climate change and Prosopis invasion (Haji and
Mohammed, 2013). Not surprisingly, the stakeholders are fully aware
of the role of Prosopis in affecting LULC changes in the study area, and
their emphasis on its impacts on bush-shrub-woodland and grassland
during the FGDs is in line with our findings based on LULC changes in
the ANRS (Shiferaw et al., unpubl. data).

Local communities claimed that traditional (customary) laws have
become weak and that this has contributed to the observed LULC
changes in the area. For example, rotational programs for seasonal graz-
ing areas had been planned andmaintained for the specified communi-
ties for extended periods. However, in recent times, communities but
also people coming from other parts of Afar region or other regions
use areas banned for grazing at any time, thereby undermining the effi-
cacy of grassland's natural restoration capacities (Tessema et al., 2016).

In the northern parts of the ANRS, which are relatively free from
Prosopis invasion, local communities ranked land degradation as the
fourth most important factor to cause LULC change, besides drought,
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rainfall variability and firewood/timber (Tsegaye et al., 2010). In our
study, however, which focused on the southern and the central parts
of the ANRS, land degradation was ranked comparably low. This may
be because the local stakeholders believe that land degradation by itself
is not a primary cause for LULC change but a side effect of others, higher
ranked direct drivers such as climate change, frequent droughts, and
Prosopis invasion.

The other drivers of LULC change identifiedwere an increase in large
scale agricultural investments in the study area, namely in sugar planta-
tions and a large-scale cotton farms also lead to LULC changes. Popula-
tion pressure, overgrazing and expansion of salt excavation and
agricultural irrigation projects were additional factors mentioned as
contributors to LULC change, although to a lesser extent. The low rank-
ing of population pressure as a potential driver of LULC change sounds
somehow surprising, given that Ethiopia is oneof theWorld'smost pop-
ulous countries and has a high population growth rate of 2.4% (CSA,
2016). However, local people in the ANRS may consider population
pressure as a minor driver of LULC change because they weigh indirect
drivers lower than direct drivers of LULC change.

4.3. Ecosystem service values

Our findings suggest that the study area, which extends over an area
of 6.67 million ha, has lost a substantial amount of ESVs over the last
31 years, no matter which estimates of ESV coefficients (regional or
global values) were used. As expected, the conservative regional ap-
proach, which only considered values from tropical areas of LULC
types similar to the geographical setting of the study area (Ethiopian
highlands: Kindu et al., 2016) generated considerably lower estimates
of ESVs lost than that based on global average estimates of LULC types
(Costanza et al., 2014). As the estimate of the ESVs for the Prosopis
class is based on information from the original study site (Bekele et al.,
2018a, 2018b; see Appendix 1b), the regional estimate can be consid-
ered as a more coherent one, since all ESV estimates are based on stud-
ies from the study area itself or areas from the same biome (Olson et al.,
2001) but not necessarily from the same topographic settings. Kindu
et al. (2016) estimated that in a 10,000 ha area in the Ethiopian high-
lands, ESVs had dropped over the last 40 years by US$ 19.3 million (or
48.3 US$ ha−1 y−1) when using their own coefficients of ESVs. In our
study, regional estimates of ESV coefficients resulted in a loss of US$
112 million (or 17.35 US$ ha−1 y−1). The lower estimates of ESV for
ANRS compared to those reported by Kindu et al. (2016) for Ethiopian
highlands are reasonable as highlands have better agro-climatic condi-
tions for increased delivery of fresh water, food, fodder and other eco-
systems services. Hence, the lower ESVs in ANRS could be explained
by two reasons: a higher area of bareland with no ESVs as well as a
lower overall productivity of the semi-arid areas in the region.

In the assessment based on regional estimates of ESV coefficients,
the reduction of bush-shrub-woodland contributed most to the loss of
ESVs, followed by the reduction of grasslands. In contrast, in the assess-
ment based on global estimates of ESV coefficients the loss of grasslands
contributed seven times more to the overall loss of ESVs in the ANRS
than bush-shrub-woodland. This can be explained by the recent raise
in awareness of the potential of healthy grasslands in providing not
only provisioning but also significant amounts of supporting and regu-
lating ES (Veldman et al., 2015a, 2015b). Kindu et al.'s (2016) conserva-
tive estimate of the ESV coefficient for grassland was derived from the
first global study on ESV coefficients published by Costanza et al.
(1997). From thefirst to the secondworldwide assessment of the values
of ES (Costanza et al., 1997, 2014), the average ESVs per ha for grass-
land/rangeland increased 13-fold, while forests only increased 2-fold.
With regard to this recent increase in the valuation of grasslands, the as-
sessment based on global estimates of ESV coefficients may therefore
reflect the real loss of ESVs in the ANRS more accurately.

An additional factor that may further increase the negative effects of
Prosopis invasion on the overall ESVs of the invaded range is its impact
on water availability and accessibility. Prosopis is a deep-rooted tree,
which draws water from the soil and deep underwater (Dzikiti et al.,
2013), thereby affecting availability of water for permanent bunch-
grasses and other keystone species of healthy, old-growth grasslands
(Veldman et al., 2015a, 2015b). This is particularly problematic in the
ANRS where the evergreen Prosopis consumes water in a water-
limited ecosystem throughout the year. On the other hand, Prosopis cre-
ates physical barriers by invading riversides with its dense and thicket
shrubs, thereby preventing accessibility of the rivers to domestic and
wild animals, and increases densities of vectors of human diseases
(Muller et al., 2017). These EDS due to Prosopis invasion provide addi-
tional evidence that the results obtained in our study can be considered
as an example where a single invasive alien plant species can seriously
affect the ESVs of a whole region. In an attempt to estimate the benefits
and costs of invasive Prosopis species and hybrids in the Northern Cape,
South Africa, Wise et al. (2012) concluded that it is beneficial to control
Prosopis in floodplain habitats, similar to those along Awash river in
ANRS, largely because it avoids groundwater losses. They estimated
that the benefits of controlling Prosopis in the floodplains amount,
over a 30 year period, to US$ 56–137 million in a slow spread-rate and
to US$ 122–376 million in a rapid spread-rate scenario (Wise et al.,
2012).

Moreover, when an agricultural land is invaded by Prosopis, it affects
the livelihoods of the user communities in terms of increasing clearing
cost and time for land preparation, which increase cost of production
and inflated market price for agricultural produces in the study area
and outside. Similarly, where rangelands/grasslands are replaced by
Prosopis, the livelihoods of pastoralists are affected in multiple ways:
(1) invasion affects availability of indigenous forage and pasture by re-
ducing available native forage as well as water resources (Shackleton
et al., 2015b), (2) livestock are forced to travel long distances in search
for food and water, and only those animals that are able to travel long
distances can survive especially during drought season as it happened
in the lowlands of the country in 2015; and travelling long distance
out of their territories creates conflict among user groups of different
tribes, (3) livestock number and diversity are affected as grasslands
are diminished or are changed to Prosopis invaded areas, and com-
monly, grazers are replaced by browsers as well as nutrition values
and quality of pastures of diversified feed types are replaced into
mono-crop of Prosopis pods, which in turn affect the health and produc-
tivity of livestock in terms of bothmeat andmilk productions (Shiferaw,
personal communication with key informants); and (4) wild animals
hide themselves in the invaded areas and attack domestic animals.

It is likely that ESVs fromcroplandwill also further increase in the fu-
ture due to a growing need for food and thus expansion of crop produc-
tion in order to nourish the increasing population (Niquisse et al., 2017).
Several large scale agricultural investments have already been
established in recent years in the ANRS, mainly along the major water
courses. This development will have a substantial impact on future
LULC changes and ESVs. In addition, the expansion of investment pro-
grams in the northern part of the study area on salt flats is expected to
consume large areas of seasonal grasslands, bareland and waterbodies
(Shiferaw, personal observation).

The average annual loss in ESVs in our study area is more than four-
fold of the annual budget plan of the whole ANRS in 2016/17 (BoFED,
2017). This suggests that changes in ESVs should be considered as one
of the indicators of stability of socio-ecological systems, and of human
welfare, and hence their assessment should be considered as a policy in-
strument (Niquisse et al., 2017) in the ANRS as well as elsewhere
exhibiting with the same challenges.

5. Conclusions

Our study provides evidence that invasive species can be a main
driver of LULC change and associated losses of ESVs at the regional
scale. As Prosopis was introduced in the ANRS in the late 1970s and
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early 1980s, the time period assessed in our study covers the whole in-
vasion history of Prosopis in the area.Within this period, Prosopis has in-
vaded approximately 1million ha in the study site. In parallel, the ANRS
has experienced a significant loss of grasslands, bush-shrub-woodland
and riverine natural forest. While parts of the grasslands present in
the 1980s have been mainly invaded by Prosopis, other drivers such as
unsustainable management and climate change, either in isolation or
in combination, are likely to have also contributed to the loss of grass-
lands, with serious consequences for the pastoralists and agro-
pastoralists who directly depend on ES provided by grasslands (Bekele
et al., 2018a, 2018b; Shackleton et al., 2015b).

Mainstreaming ES and its values into policy and decision making is
dependent on the availability of spatially explicit information on the
state and trends of ecosystems and their services (Maes et al., 2012).
As Prosopis is likely to further spread in ANRS if left uncontrolled
(Shiferaw et al., 2019a), our results strongly advocate for a rapid imple-
mentation of the National Prosopis Management Strategy designed for
Ethiopia (MoLF, 2017). Moreover, there is a need for designing restora-
tion and/or rehabilitation programs tomake the area resilient to climate
change, frequent drought as well as invasion species impacts so that
sustainable ES and functions are maintained. Together with the imple-
mentation of sustainable grassland and bush-shrub-woodlandmanage-
ment practices, halting or slowing down the Prosopis invasion will be
fundamental for preserving or even restoring the remaining ESVs in
the ANRS and probably other invaded regions in Eastern Africa.
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