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Originality-Significance Statement 

Our study investigated temporal and spatial variability in arbuscular mycorrhizal fungi (AMF) α- and 

β-diversity at the plot scale (10 m x 10 m), linking these to shifts in the composition of their symbiotic 

plant partners within a vegetation period. This is amongst the first studies to characterize such short-

term variations in both diversity measures at this small scale. 

Summary 

Soils provide a heterogeneous environment varying in space and time; consequently, the biodiversity 

of soil microorganisms also differs spatially and temporally. For soil microbes tightly associated with 

plant roots, such as arbuscular mycorrhiza fungi (AMF), the diversity of plant partners and seasonal 

variability in trophic exchanges between the symbionts introduce additional heterogeneity. To clarify 

the impact of such heterogeneity, we investigated spatio-temporal variation in AMF diversity on a 

plot-scale (10 × 10 m) in a grassland managed at low intensity in southwest Germany. AMF diversity 

was determined using 18S rDNA pyrosequencing analysis of 360 soil samples taken at six time points 

within a year. We observed high AMF alpha- and beta-diversity across the plot and at all investigated 

time points. Relationships were detected between spatio-temporal variation in AMF OTU richness and 

plant species richness, root biomass, minimal changes in soil texture, and pH. The plot was 

characterized by high AMF turnover rates with a positive spatio-temporal relationship for AMF beta-

diversity. However, environmental variables explained only ~20% of the variation in AMF 

communities. This indicates that the observed spatio-temporal richness and community variability of 

AMF was largely independent of the abiotic environment, but related to plant properties and the co-

occurring microbiome.  
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Introduction 

Understanding spatial and temporal patterns in species diversity is one of the fundamental goals of 

biodiversity research (Gaston and Spicer, 2013). Soil microbial communities exhibit spatial patterns at 

scales from sub-millimeter to hundreds of meters, determined by heterogeneous environmental 

conditions at respective scale-dependencies (Grundmann et al., 2001; Ettema and Wardle, 2002; 

Nunan et al., 2003; Bahram et al., 2015). Simultaneously, dynamic variations in abiotic soil conditions 

lead to fluctuating soil microbial abundances and functions over time, documented in agricultural 

(Kandeler and Böhm, 1996; Kandeler et al., 1999), tundra (Björk et al., 2008), and forest ecosystems 

(Görres et al., 1998; Nacke et al., 2016). Moreover, plant growth and development or changes in 

vegetation within a year are able to shift soil microbial communities (Chaparro et al., 2014; Nacke et 

al., 2016). This is especially relevant for obligate biotrophic plant mutualists such as arbuscular 

mycorrhizal fungi (AMF; Smith and Read, 2010). 

Recent studies have aimed to identify general patterns of and major influences on AMF community 

composition. Some findings have included, for instance, high impacts of land-use intensity (Bouffaud 

et al., 2017), soil properties (Kivlin et al., 2011; Lekberg et al., 2012), plant community composition 

(van der Heijden et al., 1998; König et al., 2010; Neuenkamp et al., 2018), and/or host plant identity 

(Sanders, 2003). Since AMF are obligate root mutualists, most studies have focused on fungus-plant-

relationships. Conflicting results have been observed, however, regarding the interactions between 

plant community composition and AMF communities, ranging from enhanced (Wu et al., 2007, 

Hiiesalu et al., 2014) to reduced plant diversity in the presence of AMF (Antoninka et al., 2011) to no 

relationship between plant and AMF diversity (Öpik et al., 2008). These contradictory findings may be 

related in part to study scales (Hempel, 2018), since different environmental forces work at different 

scales (Chase, 2014); this also applies to AMF (Vályi et al., 2016). 

According to ecological theory, niche-related (environmental/deterministic; MacArthur and Wilson, 

1967) and neutral (stochastic; Hubbell, 2001) processes in particular shape community composition 

and habitat colonization. But these processes appear to have different strengths at various scales: 

niche-related effects are more common at larger (e.g. regional or global) scales, while neutral 
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processes operate mainly at small spatial scales (Chase, 2014). Many studies have been conducted at 

broad geographical scales (Öpik et al., 2006; Hazard et al., 2013; Davison et al., 2015; Bouffaud et al., 

2016; Bouffaud et al., 2017) but to date little is known about richness and occurrence patterns of AMF 

at or within plot scales (≤ 50 m × 50 m) in grassland ecosystems (Lekberg et al., 2012; Horn et al., 

2014). One advantage of such small-scale study designs is the focus on environmental conditions and 

variations in plant communities within a specific habitat, thereby excluding overriding effects of large-

scale heterogeneity at the landscape level (Berner et al., 2011; Regan et al., 2017). Thus, fundamental 

influences on AMF communities can be studied at such plot or subplot scales, ranging from centimeter 

to meter. Repeating such sampling scales at one plot adds information on temporal autocorrelations 

(Tobler, 1970), providing an opportunity to investigate spatial hot spots and temporal hot moments 

simultaneously. 

To understand temporal influences and to identify hot moments (Kuzyakov and Blagodatskaya, 2015) 

in changing AMF communities (Dumbrell et al., 2011), a study would need to cover the entire 

vegetation period by sampling soils at several time points. To date, few of the studies focused on 

temporal variation have sampled AMF communities more than twice during the growing season 

(Bainard et al., 2014; Liu et al., 2014). Repeated sampling is necessary, however, to account for 

seasonal variations in plant cover, which is likely coupled with changes in soil moisture, temperature, 

and nutrient fluxes (e.g. phosphate and nitrate), and thus reflected in dynamic soil microbial 

communities (Bardgett et al., 2005). Even though a direct connection between AMF diversity, its 

abundance, and changes in plant diversity is not always apparent: Dumbrell et al. (2011) showed that 

during spring and summer, when plant growth is strong, environmental conditions and AMF 

distribution patterns are not constant. However, even fewer studies have investigated both spatial and 

temporal variations in AMF communities (Davison et al., 2012; Koorem et al., 2014; Barnes et al., 

2016), and these studies have mainly been done on forest sites. Davison et al. (2012) found seasonal 

differences in AMF richness as well as distance decay in community similarity at three 10 m × 10 m 

forest plots sampled four times within one year, while Koorem et al. (2014) confirmed the seasonal 

variability in AMF by fatty acid analyses at small spatial scales (1.05 m × 1.05 m) sampled twice 

during one summer. Combining spatial and temporal sampling also makes it possible to quantify the 
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beta-diversity of AMF communities, which describes how species composition changes over spatial 

scales and over time. However, analyses of beta-diversity have only rarely included microorganisms 

(e.g. Gossner et al., 2016). 

Within the research platform ―German Biodiversity Exploratories‖ (Fischer et al., 2010) the project 

SCALEMIC Experiment established a spatio-temporal sampling design in a low land-use intensity 

grassland at the plot scale (10 m × 10 m) and assigned six sampling dates from spring to autumn in 

one vegetation season. Through an interdisciplinary approach, it was previously clarified that plant 

growth changes plot-scale spatial heterogeneity of soil microorganisms during the vegetation period, 

and elucidated which driving forces behind this observed microbial heterogeneity (Regan et al., 2014). 

We linked existing measures of seasonal and spatial changes in plant diversity, abiotic soil properties, 

and general microbial community composition (Regan et al., 2014; Regan et al., 2015; Klaus et al., 

2016; Regan et al., 2017) to AMF diversity and community patterns. Using high-throughput 

sequencing technology, this study aimed to answer the following questions: (a) how much variability 

in AMF alpha- and beta-diversity exists on a spatial scale of 10 m × 10 m and a temporal scale of one 

season?; (b) are spatial and temporal AMF patterns coupled?; and (c) which environmental drivers are 

responsible for the observed patterns? We expected a strong relationship between the AMF 

community and its changing environment, primarily vegetation and phosphate availability. 

Results 

Taxonomical distribution of AMF 

We recovered 1,088,162 AMF SSU rDNA gene reads from all 360 soil samples. After a quality 

filtering step that included removal of 22,042 potential chimera and non-AMF reads, we had a total of 

562,320 AMF reads representing 1,562 reads per sample, and which were clustered into 155 abundant 

operational taxonomical units (OTUs). As described in detail in the ―experimental procedures‖ 

section, the removal of rare OTUs (OTUs represented by ≤ 3 reads) had no significant effect on AMF 

beta-diversity. Thus, the AMF matrix including only abundant OTUs was used for further analyses. 
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The 155 abundant AMF OTUs were assigned to seven genera: Acaulospora (2 OTUs), Ambispora (2), 

Archaeospora (3), Claroideoglomus (20), Diversispora (9), Glomus (117), and Paraglomus (2). 

Taxonomical distribution based on the number of observed AMF OTUs differed slightly between 

sampling dates. The genus Glomus was most abundant throughout the entire growing season, ranging 

from 69% in April to 77% in November (Figure 1, Table S1) with the highest diversity (a total of 106 

OTUs) detected in October. Besides Glomus, other AMF genera displayed temporal peaks; e.g., 

Claroideoglomus in June (16.4%) and Diversispora in April (8%). 

Spatio-temporal variation in AMF richness 

The OTU richness of total AMF was spatially modeled and checked for autocorrelation. Kriged maps 

were generated for all sampling dates except October, at which date the empirical variogram model 

was a pure nugget, indicating no spatial autocorrelation at the measured scale (Figures 2a-e). The 

observed patterns occurred and were distributed throughout the entire AMF community over the entire 

sampling season. In April and May (Figures 2a and b), AMF diversity was homogeneous with low 

OTU richness across the plot. An increase in AMF OTU richness was detected in June (yellow areas 

in Figure 2c). Moreover, first patches developed in June, and became more pronounced in August and 

November (Figures 2d and e). In general, total AMF OTU richness decreased at the end of the 

growing season (increase of dark green in the kriged maps), but discrete hot spots and cold spots with 

high or low AMF OTU richness appeared. 

For the two most abundant AMF genera, Glomus and Claroideoglomus, OTU richness was also 

spatially modeled and could be visualized through kriged maps (Figures S1 and S2). Spatial 

distribution of Glomus could be modelled in May, June, August and November, while the spatial 

distribution of Claroideoglomus could only be modelled in August and November. As was the case for 

all AMF OTUs, Glomus OTU richness was low to medium in May and June (Figures S1a, b), tending 

toward spatial patches of low or high richness. Heterogeneity of distribution became more pronounced 

in August with two spots of high OTU richness (Figure S1c). However, a shift in OTU richness 

occurred in November (Figure S1d) with areas of low and high OTU richness of Glomus. 

Claroideoglomus OTUs exhibited similar spatial patterns in August with areas of low and intermediate 
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richness (Figure S2a) and in November generally lower richness but more heterogeneous distribution 

across the plot (Figure S2b). 

The effect of sampling date on AMF richness, assessed by linear mixed effect models (LMEM) 

models, was plotted for all OTUs and additionally for the OTUs of the two most abundant genera, 

Glomus and Claroideoglomus (Figure S3). Sampling date significantly influenced richness of both 

total AMF and Glomus OTUs (p < 0.0001), but not Claroideoglomus OTUs. OTU richness 

significantly increased in all AMF OTUs from April to June, dropping in August. Total AMF OTU 

richness peaked in October and dropped significantly in November. The richness of Glomus OTUs 

was similar with significantly lower richness in April and a peak in October. The OTU richness of 

Claroideoglomus did not change over the sampling season. 

Environmental impacts on AMF richness 

Linear mixed effect models, taking into account the impact of all available environmental factors (n = 

34) on total AMF OTU richness, revealed significant effects of soil- and plant-related parameters in 21 

cases, as well as 23 significant effects of environmental variables on Glomus OTU richness. 

Claroideoglomus OTU richness was significantly affected by soil carbon content, but this explained 

only 3% of its variance. To detect those environmental variables most closely associated with the 

observed temporal effect on total AMF and Glomus OTU richness, we combined environmental 

variables and sampling date as fixed effects in LMEMs. This combination indicated that the measured 

environmental variables explained less unique variance in total AMF and Glomus OTU richness than 

did sampling date. The final LMEM (Table 1) for total AMF OTU richness pointed to plant species 

richness, percent silt content and sampling date as the three main drivers at the investigated site, 

which, taken together, explained 36% of the variance. Silt content had a positive effect, while plant 

species richness was slightly negatively associated with total AMF OTU richness. Temporal variation 

was reflected by the significant effects of sampling time and indicated by the different intercepts of the 

single months (Table 1). Glomus richness was driven by plant species richness, root biomass, percent 

silt content, pH, and sampling date, which together explained 38% of the variance in Glomus. Here, 

we found a slightly negative impact of plant species richness, while root biomass, silt content and pH 
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positively affected the OTU richness of Glomus. For both total AMF and Glomus OTU richness, 

sampling date explained large proportions of the variance; 27% and 28%, respectively. As plant 

species richness was only assessed at three sampling dates, we additionally fitted models without this 

variable for total AMF and Glomus OTU richness to determine the best predictor variables across the 

whole season. When all six sampling dates were analyzed, total AMF OTU richness was not 

influenced by plant variables; instead there was a slight negative association with soil NH4
+
 content. 

Glomus OTU richness was best predicted by legume and root biomass, NH4
+
, silt content, pH, the 

fungal to bacterial ratio, and sampling date over the entire season (see Table 1). 

Spatio-temporal variation in AMF community composition 

AMF beta-diversity (βSOR) was lower within time points and within subplots than between these 

groups (ANOSIM p-value = 0.001). When the data set was stratified by sampling date, silt content, 

pH, microbial biomass, soil C content, and K2SO4-extractable organic N significantly explained 

variation in βSOR. However, these variables together explained less than 10% of the variation in βSOR. 

No relationship between AMF βSOR and any plant variable could be detected. Additionally, a spatial 

gradient explaining 4% of the variability was observed (Tables S2 and S3). 

The AMF βSOR of the subplots between one time point and the one immediately following varied 

slightly (Figure S4). However, there was no stronger correlation between subplots near each other in 

comparison to those subplots further distant (Figure S5; for data on Glomus and Claroideoglomus see 

Figures S6 and S7, respectively). No significant correlations between the temporal development of 

βSOR and environmental variables were observed. Turnover (βSIM), meaning OTU replacement between 

time points, and nestedness (βSNE), meaning OTU gain and loss from one time point to the next, are 

summarized in Figure 3 (for data on Glomus and Claroideoglomus see Figure S8). The turnover in 

AMF community composition appeared to be constant between 0.3 and 0.4 during the sampling 

season. The highest AMF βSIM was detected between June and August, which is likely linked to the 

fact that this difference represented a duration of two months. βSNE peaked later in the season, 

particularly between August and October but also between October and November. However, kriged 
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maps revealed hot spots of turnover from April to May as well as from October to November (Figure 

S9). 

Analysis of spatial AMF βSOR demonstrated some continuity within subplots early in the growing 

season (see supplemental material for more details; Figure S10 and Figure S11). The relationship 

between temporal βSOR (the average βSOR over time) and spatial βSOR (the average AMF βSOR with the 

neighboring subplots) of each subplot displayed a positive trend (Figure 4), indicating that subplots 

with AMF communities that differed strongly from neighboring subplots also changed more over time. 

The positive relationship was significantly stronger than the relationship observed in null-models of 

βSOR, which were based on random community permutations that maintained each sample‘s richness 

and the overall or sampling date point-specific probability of OTU occurrence (Figure S12). 

Concurrently, no significant relationships between OTU richness or changes in alpha-diversity with 

spatial or temporal βSOR were observed. The same pattern was observed for the βSOR of Glomus OTUs, 

while Claroideoglomus βSOR did not differ significantly from the null-models (Figure S12). No 

explanatory power was gained by adding environmental variables to the linear model explaining 

temporal βSOR with spatial βSOR. Among the environmental variables, the mean grass biomass best 

explained spatial βSOR of all OTUs (p-value 0.01, adjusted R
2
= 0.43). 

Discussion 

General characterization of AMF  

AMF form a multispecies mutualism with over 80% of terrestrial plants, i.e. with more than one 

fungus per host plant (Smith and Read, 2010). With a total of 155 abundant AMF OTUs on a 10 m × 

10 m plot over a vegetation period that extended from April to November, our study found relatively 

high AMF richness compared to recent studies (Dumbrell et al., 2010; Davison et al., 2012; Horn et 

al., 2014). 

All four orders of the phylum Glomeromycota and seven genera were represented in the observed 

OTUs. Dominant at all time points was the AMF genus Glomus. This dominance is in agreement with 

previously published studies in grasslands, forests, and agricultural ecosystems (Daniell et al., 2001; 

Gai et al., 2009; Öpik et al., 2009). Although AMF OTU richness was high, genera such as 
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Rhizophagus or Funneliformis, which have often been observed in a comparable German grassland of 

low land-use intensity (Horn et al., 2014), were not detected in our dataset. 

Spatio-temporal variation in AMF alpha-diversity 

Our current study determined whether AMF richness exhibits spatio-temporal variation at a small 

spatial scale in a grassland soil, and which environmental variables shape differences in AMF alpha-

diversity. Studies in which other results of the SCALEMIC Experiment have been published observed 

an increase in biomass of grasses and forbs until June and additionally a gain in biomass of legumes in 

October as well as significant shifts in mineral nitrogen content of soils over time (Regan et al., 2014). 

Moreover, temporal shifts in plant biomass and nutrient availability were detected (Klaus et al., 2016). 

Results of our spatial analyses illustrate clearly how AMF OTU richness varied across the sampled 

plot and also over the season. The appearance of hot or cold spots of AMF richness showed a dynamic 

process that developed during the vegetation period. The detected spatial autocorrelation of AMF 

OTUs with ranges below 10 m across our plot for five of six time points is in accordance with 

previous studies, e.g., by Bahram et al. (2015), who reported autocorrelation ranges around 9 m. 

Richness of AMF OTUs therefore shows distance-decay relationships at the investigated plot scale. 

Interestingly, although more than 100 OTUs were detected on the entire 10 m × 10 m plot at each 

sampling date, many of these AMF appeared in patches of 20-30 OTUs per sampling point. This 

discrepancy between total observed OTU richness across the plot and OTU richness per individual 

sampling point may be related to carrying capacity (Allen, 1989). We define carrying capacity as the 

maximum number of AMF OTUs the studied SCALEMIC grassland plot can sustainably support. 

Accordingly, the local AMF carrying capacity appears to have been patchy but potentially dynamic 

over time. The observed temporal dynamic could be connected to changes in resource availability. 

This could be related to asynchronous growth of plants across the site (Yachi and Loreau, 1999). For 

instance, a changing supply of photo-assimilates could be accompanied by dense AMF population 

sizes at one sampling point (hot spot), but reduced AMF richness at another point (cold spot) on the 

plot within or across sample time points. This is in line with findings of the linear mixed effect 

models, which found a connection between AMF richness and changing environmental variables such 
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as plant species richness, root biomass, pH and NH4
+
. To our knowledge, this has not been shown 

previously and underscores the need for more temporal investigations. 

Restricted impact of environmental variables on AMF richness 

Linear mixed effect model analyses revealed a significant effect of soil texture on the total richness of 

both AMF and the genus Glomus across the plot. The heterogeneous distribution of silt in our soil 

modified important habitat conditions. Hot spots of high silt content are characterized by larger 

volumes of medium sized pore space and improved aeration in the surrounding micro-environment 

(Horn et al., 2010), resulting in favorable habitat conditions for AMF, which lead to increased AMF 

OTU richness. Although the dependence of AMF on soil texture in grassland soils was shown in a 

large scale study (Oehl et al., 2017), no studies have yet demonstrated that this effect occurs with 

small textural changes (changes in silt content < 10%) at the plot scale. Soil texture significantly 

affected temporal variations in AMF OTU richness even though it was spatially and temporally stable. 

We suggest that this is because soil texture influences a number of habitat conditions such as nutrient 

availability, pore space distribution and thereby also the hydrological budget and oxygen supply (Horn 

et al., 2010), which themselves vary over time. That soil texture was a better measure than single 

effects, e.g., soil water content, indicates its value as a measurement that captures a range of temporal 

variations in texture-dependent habitat conditions. This result emphasizes the importance of 

microhabitat conditions for AMF. 

In addition to soil texture, plant species richness was a significant driver of OTU richness for both 

total AMF and Glomus in the months of May, June and October. Interestingly, a reduction in plant 

species richness led to an increase in total AMF and Glomus OTU richness. Argüello et al. (2016) 

described a positive feedback mechanism for AMF-plant mutualism, leading to stronger cooperation 

between AMF and plants under the condition of high AMF diversity per plant. In addition, newly 

emerging plant species over the season may have had different root architectures such as less root 

biomass, leading to a reduction in AMF OTU richness, as higher root biomass significantly increased 

the OTU richness of the genus Glomus. It has also been suggested that both AMF and plants actively 

control their associated symbiotic partners (van der Heijden et al., 2015), in which case changes that 
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resulted in a more cooperative plant community could influence AMF OTU richness. Similarly, the 

newly emerging plant species may have had more acidic root exudates, which would have reduced the 

OTU richness of Glomus, as Glomus OTU richness decreased with decreasing soil pH. A similar 

effect of pH on AMF OTU richness in grassland ecosystems was also observed by Heyburn et al. 

(2017). Even when they were evaluated over all six sampling dates throughout the season, the effects 

of soil texture, pH, and sampling date remained significant. Over the longer time, the impact of plants 

on total AMF OTU richness was not significant; instead, a negative effect of NH4
+
 was detected. The 

same was true for OTU richness of Glomus. As NH4
+
 reduces soil pH, this was likely a combined 

effect of the two soil properties. In addition, an increase in legume biomass led to an increase in 

Glomus OTU richness, which may have been due to increased coverage of the mycorrhizal plant 

partners such as Trifolium pratense (L.) (van der Heijden et al., 1998) and Vicia sepium (L.) (Closa 

and Goicoechea, 2011) over time. The negative relationship between the fungal:bacterial ratio of 

phospholipid fatty acids and Glomus richness was related to an overall increase in saprotrophic fungi 

at the site (Regan et al., 2014), which was accompanied by a reduction in Glomus richness, indicating 

both competition for resources (Hodge et al., 2001) and interactions due to fungal community 

composition (Tiunov and Scheu, 2005) at the study site. However, not all AMF genera reacted in the 

same way. Claroideoglomus was affected neither by soil texture nor by any of the above mentioned 

environmental properties; instead, a small but significant effect of soil carbon content on this genus 

was detected. 

Even though environmental soil properties explained a portion of the variance in AMF alpha-diversity, 

sampling date was the most important driver of total AMF and Glomus OTU richness. Previous 

studies have reported an increase in AMF OTU richness during the growing season with a decrease in 

autumn, which could be explained by changing weather conditions within a sampling year (i.e. 

temperature and precipitation; Kabir et al., 1998; Staddon et al., 2003). In our study, there were 

significantly fewer AMF OTUs in November than in June or October. This phenomenon may have 

been related to cold temperatures and less precipitation at this sampling date (see supplemental Fig. 

A1 of Regan et al. (2014)). Also, the observed decline in AMF OTU richness in August may have 

been associated with a suppression of plant growth and reduced carbon supply from plant to fungus 
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after the mowing event (Gehring and Whitham, 2002). This mowing event and the subsequent 

regrowth of plants could have led to the high number of AMF OTUs detected in October. It was 

shown recently that more AMF propagules are present in mown than in unmown soils (Binet et al., 

2013), benefiting new AMF infections after mowing. In addition, this is likely connected to increasing 

root exudation following aboveground plant biomass removal (Waters and Borowicz, 1994). More 

diverse exudates are likely to recruit a greater AMF diversity (Hugoni et al., 2018). Consequently, 

mowing leads to emerging micro-niches, which favor a higher variability in AMF. Thereby, AMF can 

be considered as stress tolerant since they can cope with partition and destruction of their hyphae 

(Buscot, 2015). Since up to only 10% of the explained variance was directly attributable to measured 

environmental effects (see Table 1), our results could indicate that neutral processes, stochasticity, or 

randomness due to natural variability may play a role in the formation of unpredictable AMF 

patchiness in addition to the contribution from deterministic processes. This applied to both total AMF 

OTUs and OTUs of the genera Glomus and Claroideoglomus. 

Pronounced spatio-temporal relationships in AMF beta-diversity 

In addition to alpha-diversity, this study sought to understand whether or not beta-diversity in AMF 

exhibited similar spatio-temporal patterns. With respect to OTU richness, AMF beta-diversity 

expressed as Sørenson index indicated spatio-temporal relationships. Theoretically, local AMF 

communities should be of a common and predictable composition since the species pool at the plot 

scale is limited; thus, beta-diversity in both spatial and temporal senses should be low according to 

Powell and Bennett (2016). However, in our study AMF beta-diversity appeared high, with a 

particularly high turnover rate from one observed time point to the next. Although the turnover rates 

were high (consistently ≈ 40% of the AMF community changed from one time point to the subsequent 

one), a certain spatio-temporal stability of AMF communities was observed. Our results suggest that 

AMF community composition at the first three time points (April-June) was determined by prior 

communities. It is possible that DNA measures either detected defective and dead cells (Carini et al., 

2016), or dormant AMF stages, such as spores from the previous year, which impacted the observed 

AMF community at the beginning of the vegetation period. This effect was lost during the summer, 
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which suggests that either legacy effects due to the cyclic character of seasons in temperate regions 

(Bahram et al., 2015) or the appearance of priority effects (Viana et al., 2016) shaped AMF 

community composition, as has been shown for soil bacteria (Francioli et al., 2016; Francioli et al., 

2018). The plant-AMF interaction may have been set back to zero during winter, resulting in a random 

start of plant growth and fungal infections during spring. These priority effects could have resulted in 

high heterogeneity within subplots, which decreases over the season. Coupled with this is the fact that 

competition amongst AMF emerges only over time (Maherali & Klironomos, 2012). Alternatively, 

AMF detected from spores in our analyses transformed from spores while colonizing growing plant 

roots during the second half of the vegetation period. In the second half of the year these AMF may 

have dropped below the molecular detection limit. Also, the mowing event before sampling in August 

shuffled AMF community composition, since mowing is known to multiply AMF propagule numbers 

(Binet et al., 2013). However, we could not identify a direct link between either the plant community 

taken together or between single plant species and the AMF community. This missing link between 

these two communities (Hart et al., 2001) supports the ―independence hypothesis‖ which suggests that 

neither plants nor AMF express any co-variation at all in this mutualism (Zobel and Öpik, 2014). 

Recent studies mention dispersal limitation of AMF (Davison et al., 2015) as one reason for patchiness 

in community composition at small scales. This results in ―unpredictable assembly‖ (Powell and 

Bennett, 2016) of AMF, which corresponds well with our findings that approximately 80% of 

variation in ßSOR could not be explained by environmental variables. This could indicate that stochastic 

rather than niche related processes shape AMF ßSOR. However, one general pattern could be identified: 

over time, AMF community composition differed less within than between subplots. More similar 

environmental conditions found within a subplot appeared to result in significantly lower beta-

diversity over time. This indicates that even small environmental differences between two subplots 

affected AMF community composition. Indeed, it has previously been shown that pH, C, N, P, and 

soil water content shape AMF grassland communities (Horn et al., 2014). In our study, around 20% of 

the observed variation in AMF beta-diversity could be explained by measured environmental factors. 

Nevertheless, it is possible that the low variance explained by environmental variables in our study 

indicates the influence of important but unmeasured variables, and not stochastic processes as such. To 
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confirm that neutral processes shape spatio-temporal AMF beta-diversity, future studies should 

consider microscale effects such as root exudates and pore space to identify currently unidentifiable 

drivers. 

Conclusions 

Our study of AMF alpha- and beta-diversity found spatio-temporal distribution patterns at the 

observed plot scale of 10 m × 10 m. We were able to illustrate well both the dynamism of AMF OTU 

richness, and community development across one vegetation season. Thereby, we demonstrated, albeit 

indirectly, that stochastic recruitment processes largely shaped our observed patterns of AMF OTU 

richness and community composition. If seasonal variations in carrying capacity are considered, then 

shifts in plant growth, diversity, and dominance are likely to favor AMF species already engaged in 

the symbioses. However, our results revealed high AMF turnover over time, suggesting ongoing 

recruitment of AMF from formerly dormant propagules. We acknowledge that the detection of niche-

based processes could have been limited by the choice of our measured environmental parameters, 

which were either unable to detect them or wrongly selected for this purpose. Nonetheless, both the 

scale and spatio-temporal approach of the SCALEMIC Experiment have expanded our understanding 

of biotic and abiotic interactions at scales that had heretofore not been examined in such detail. Further 

research, ideally on more than one site, is needed for a deeper and more comprehensive understanding 

of the spatio-temporal assembly of soil microbes at small scales by assessing and linking functions of 

bacteria and fungi with plant traits. Likewise, and within the frame of an emerging discussion as to 

whether AM fungal communities are more structured by the abiotic or biotic environment (Hempel, 

2018), future studies should incorporate balanced consideration of environmental variables. 

Experimental procedures 

Study site and soil sampling 

The studied grassland plot (48°27‘31.37‘‘N, 9°27‘36.26‘‘E) is one of 300 experimental plots in the 

large and long-term interdisciplinary research project “Biodiversity Exploratories”, which aims to 

understand relationships between land-use, multi-trophic biodiversity and ecosystem functioning 
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across Germany (Fischer et al., 2010). The grassland plot is located in the Schwäbische Alb in 

southwest Germany. The plot has never received mineral fertilizers and has never been plowed. 

Characterized by a rather nutrient-poor substrate, this plot‘s soil type is a Rendzic Leptosol (FAO 

classification). The plot is dominated by Plantago lanceolata L., Festuca rubra L and Helictotrichon 

pubescens (Huds.) Pilg. and belongs to the phytosociological class of Festuco-Brometea (Oberdorfer, 

2001; Klaus et al., 2016). Furthermore, the grassland is usually mown once per year, and grazed 

briefly by sheep for 1-2 weeks in late summer or early autumn. In 2011, the year of investigation, 

mowing took place on July 30
th
 and sheep herds grazed on this site in May for five days, in September 

for seven days and in October for one day. 

The SCALEMIC Experiment (Regan et al., 2014) encompasses a 10 m × 10 m plot divided into 30 

subplots, each 2 m × 1.67 m (see Figure S12). Within each subplot six pairs of sampling locations 

(each 20 cm × 20 cm) were randomly assigned, with one pair sampled at each of six dates over one 

growing season. This provided a randomized complete block design for temporal data analysis with 

sampling date as ‗treatment‘ factor, subplots as complete blocks, and pair of sampling locations as 

randomization unit. Sample pairs were separated by 50 cm to provide appropriate lag distances for 

geostatistical analyses. Sampling dates were chosen along a seasonal gradient with the following 

characterization: 1) beginning of vegetation (April 5
th
), 2) stage of main plant growth (May 17

th
), 3) 

peak of plant biomass (June 27
th
), 4) two weeks after mowing (August 16

th
), 5) nine weeks after 

mowing (October 5
th
) and 6) after the first frost (November 21

st
). Accordingly, a total of 360 soil 

samples were collected (60 per date × 6 dates) in the year 2011. 

Soil samples were collected with core augers (diameter 58 mm). The upper 10 cm layer was taken at 

each sampling point (see Figure S11) after vegetation was removed and the top one cm, consisting of 

litter, was discarded from the sample. Subsequently, the soil was immediately stored at 4 °C and 

sieved (<5 mm) within 24 h after sampling to remove stones, roots and macrofauna. An aliquot for 

molecular analyses was stored at -20 °C before processing in the laboratory. A detailed description of 

the sampling design and procedure can also be found in Regan et al. (2014). 

DNA extraction and pyrosequencing of AMF amplicons 
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DNA was extracted from two replicates of each homogenized soil subsample (300 mg each) according 

to the manufacturer's protocol using the FastDNA® SPIN Kit for Soil (MP Biomedicals, Solon, OH, 

USA) as described in Stempfhuber et al. (2016). Independent measurements of DNA concentration 

from both sample replicates were made on a NanoDrop® ND-1000 spectrophotometer (Thermo 

Scientific, Wilmington, DE, USA). The replicates were subsequently pooled and re-measured, 

confirming the final DNA concentration of each sample, which was diluted to a PCR template 

concentration of 5 ng DNA ml
-1

 with ultra-pure water. A semi-nested PCR protocol was used to 

amplify the ~630 bp-long small subunit (SSU) region of the AMF 18S rDNA via pyrosequencing 

analysis (454 GS FLX, Roche). In the first PCR run (PCR I) a Glomeromycota-specific region was 

amplified with the primer set GLOMERWT0/ GLOMER1536 (Wubet et al., 2006), followed by the 

semi-nested second PCR reaction with the forward general fungal primer NS31 (Simon et al., 1992) 

including the A adaptor and a 10 bp multiplex identifier (1 of 60 different MIDs), and the B adaptor 

including the reverse modified AMF primer AM1a and AM1b (Morris et al., 2013). The first PCR was 

carried out at a 25 µl reaction volume with 0.5 µl of diluted DNA template (5-20 ng µl
-1

), 12.5 µl 

GoTaq Green Mastermix 2× (Promega, Mannheim, Germany), 1 µl of each primer (25 µM) on an 

Eppendorf Mastercycler DNA Engine Thermal Cycler PCR (Eppendorf, Hamburg, Germany) with the 

following PCR conditions: 98 °C for 30 s, 5 cycles of 94 °C for 30 s, 60 °C (-1 °C/cycle, 4 cycles) for 

30 s, 72 °C for 1 min, and 25 cycles of 94 °C for 30 s, 55 °C for 30 s, 72 °C for 1 min, and for 

extension 72 °C for 5 min. For the semi-nested PCR, two separate amplifications were performed 

using 1 µl of the diluted amplified product of PCR I (1:10), 25 µl GoTaq Green Mastermix 2x, and 

1 µl of each primer (25 µM); these 50 µl-reactions were run under the following conditions: 98 °C for 

30 s, followed by 30 cycles of 94 °C for 30 s, 63 °C for 30 s, 72 °C for 1 min, and 72 °C for 5 min. 

Each sample in both PCR amplification steps was amplified in triplicate and accompanied by a 

negative control. The semi-nested PCR amplified products were pooled per sample, taking into 

account the amplicon concentration (checked by a 1.5% agarose gel). Pooled samples (30 µl each) 

were purified with the QIAquick Gel Extraction Kit (Qiagen GmbH, Hilden, Germany) following the 

manufacturer‘s recommended protocol. The purified products were quantified by fluorometry using 

Quant-iT
TM

 PicoGreen ® dsDNA Assay Kit (Life Technologies GmbH, Darmstadt, Germany) as 
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suggested by Roche Diagnostics GmbH (Mannheim, Germany) for amplicon library preparation. 

Equimolar concentrations of 60 MID tagged amplicons were loaded into individual lanes on a GS-

FLX LUMITRAC 600 plate (Titanium Series) separated with a four-lane gasket and sequenced at the 

Department of Soil Ecology, UFZ – Helmholtz-Centre for Environmental Research (Halle/Saale, 

Germany). 

Bioinformatic analysis of sequence data 

Sequence read quality filtering and splitting of the dataset into individual samples was performed 

using mainly MOTHUR (Schloss et al., 2009). Sequences were trimmed using the ―keepfirst‖ 

comment in order to discard sequences with less than 300 bp and chopping at least 50 bp from 

potential noisy sequence ends. Simultaneously, all sequences with average quality scores of below 20 

as well as MID- and primer sequences were removed. Sequences were then downsampled to the 

smallest read number per sample (1,562 sequences per sample) and potential chimeric sequences were 

identified and removed by UCHIME (Edgar et al., 2011) as implemented in MOTHUR. These quality-

filtered sequences were clustered into OTUs based on the algorithm implemented in CD-HIT-EST 

(Huang et al., 2010) with a sequence similarity threshold of 97%. The representative sequence for each 

resulting OTU was compared to a GAST (Global Alignment for Sequence Taxonomy)-based 

taxonomic assignment of an NCBI based fungal reference data set (Huse et al., 2008) at the 97% 

similarity level. All non-Glomeromycota OTUs were removed from the dataset (~11% of sequences). 

Representative sequences (most abundant sequence per OTU) of the Glomeromycota OTUs were 

further taxonomically assigned by using the MaarjAM virtual taxa reference database (web-based 

database for studies of the diversity of arbuscular mycorrhizal fungi, version 0.8.1 beta; Öpik et al., 

2010). 

The raw SSU DNA sequences were deposited in the National Center for Biotechnology Information 

(NCBI) Sequence Read Archive (SRA) under study accession number SRP137677. In addition to all 

measured values, the analyzed and processed data used in this study can be found in the BExIS 

database (https://www.bexis.uni-jena.de/). 

Environmental properties 
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The interdisciplinary approach of the SCALEMIC Experiment permits data from previous works on 

various environmental properties of the site to be used in the present study. We collected information 

on plant diversity (richness, Shannon index) on three sampling dates (May, June, and October) and 

plant biomass (aboveground biomass of grasses, herbs and legumes; root and litter biomass; Regan et 

al. (2014), Regan et al. (2015), Klaus et al. (2016)). We also measured soil texture, bulk density, water 

content, mineral nitrogen (Nmin = NH4
+
 + NO3

-
), total carbon and nitrogen, extractable organic carbon 

and extractable nitrogen (EOC, EN), bioavailable phosphate (PO4
3-

), pH, bacterial and fungal biomass 

(phospholipid fatty acid (PLFA) content; Regan et al. (2014)); as well as bacterial and archaeal 

abundances (qPCR on 16S rRNA; Regan et al. (2017)). These variables were used in statistical 

analyses to determine their explanatory power with respect to AMF OTU richness and community 

composition (see detailed list of environmental properties in Table S4). 

Statistical analyses 

Statistical analyses were performed using the software R (version 3.4.0; R Development Core Team, 

2017) unless stated otherwise. First, to test whether rare AMF taxa (OTUs represented by ≤ 3 

sequence reads per sample) affected estimates of beta-diversity, we performed Procrustes correlation 

analysis based on Bray Curtis dissimilarity using the protest function (Peres-Neto and Jackson, 2001) 

of the ―vegan‖ R-package (Oksanen et al., 2018). This approach provides information about 

congruence between two non-metric multidimensional scaling (NMDS) ordinations; in our case AMF 

data matrices comprising all OTUs and only abundant OTUs (OTUs represented by > 3 sequence 

reads per sample) with 999 permutations. Results indicated nearly identical ordinations in the presence 

or absence of rare AM fungal OTUs on AMF beta-diversity (Procrustes correlation coefficient = 

0.9915, p=0.001). Hence, all subsequent analyses were performed using the relative abundance AMF 

community matrix excluding singletons, doubletons and tripletons. 

To assess the spatial distribution of the richness of all AMF OTUs, and of the OTUs belonging to the 

genera Glomus and Claroideoglomus, semivariogram analyses were performed using the R package 

―gstat‖ (Pebesma, 2004). Data were checked for normality of distribution and were log or square root 

transformed if necessary according to McBratney and Webster (1986). As environmental data did not 

This article is protected by copyright. All rights reserved

A
cc

ep
te

d 
A

rti
cl

e



 
 

show general distribution trends across the study site in preliminary analyses, isotropy was assumed 

for semivariogram analysis. Subsequently, empirical semivariograms for the three AMF groups at 

each sampling date were computed separately. In cases where empirical semivariograms indicated 

spatial autocorrelation, semivariogram models were fitted using the ―fit.variogram‖ function. Bin sizes 

were restricted to minimum 35 points per bin; spherical, exponential and linear models were fitted 

using the default method of the ―fit.variogram‖ function. The model with the lowest sum of squared 

error (SSErr) was selected. To estimate the amount of variance that was spatially correlated, the 

percent spatial structure was calculated by subtracting the nugget effect from the sill, and dividing the 

remaining, or partial sill, variance by the sill variance. Kriged maps for semivariogram models were 

generated with ArcGIS (ESRI, 2010, Environmental Research Institute, Redlands, CA, USA). 

The effects of sampling date and environmental variables on the OTU richness of all AMF and of the 

genera Glomus and Claroideoglomus were assessed using LME models accounting for the spatial 

sampling design. First, different model structures were tested with SAS 9.4 (SAS Institute Inc., Cary, 

USA) using subplot number as random block effect, and models were evaluated and chosen based on 

Akaike‘s information criterion (AIC) (see Table S5). The addition of spatial autocorrelation structures 

as well as addition of a random effect for pairs of sampling locations did not substantially improve 

model fit, and this was also the case for an addition of temporal autocorrelation structure. As the 

model was to be used repeatedly for selection of important covariates, we chose a model that included 

a subplot effect and residual error as random effects. The resulting model structure was as follows:  

                                      

where yijk is the value of the response variable for the i-th sampling date on the j-th subplot at the k-th 

sampling location, bj is the random effect for the j-th subplot, β1-n are the slopes of the regression on 

the predictor variables (= fixed effects) xijk(1-n), and eijk is the independently normally distributed error 

term with constant variance. This model structure was subsequently used for all LMEMs, which were 

computed in R using the package ―nlme‖ (Pinheiro et al., 2017). We separately assessed the effects of 

sampling date and environmental variables in univariate models for each independent variable for total 

AMF OTUs, Glomus, and Claroideoglomus. To detect those environmental variables which were most 

strongly related to the observed temporal effects, additional LMEMs were computed on the 
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combination of individual environmental variables together with sampling date. The best predictors 

among plants as well as abiotic and biotic soil properties were then included in the final LMEMs. 

These contained all significant drivers, and were set up separately for total AMF OTUs, Glomus, and 

Claroideoglomus. Models with best predictor variables were selected based on lowest AIC (based on 

full maximum likelihood) using the ―stepAIC‖ function with forward and backward selection, and 

checked for homoscedasticity and normal distribution of residuals. Spearman correlations of 

environmental variables in the final models revealed no considerable multicollinearity. Explained 

unique variance of dependent variables by independent variables and random effects was assessed 

following the approach of Nakagawa and Schielzeth (2013) using the function ―sem.model.fits‖ of the 

―piecewiseSEM‖ package (Lefcheck, 2016). Separate models were calculated for models that 

contained plant diversity data because these were only available at three sampling dates. 

To assess AMF beta-diversity, Sørensen distances (βSOR), as well as their turnover (βSIM) and 

nestedness (βSNE) components, were calculated using a function generalizing the ―beta.sample‖ 

algorithm from the R package ―betapart‖ (Baselga and Orme, 2012); see supplement material for 

further details). In accordance with the nested study design, the means of the distances between all 

combinations of within-subplot repetitions were calculated. Significance of groupings of community 

composition by sampling date and subplot were assessed by analysis of similarities (ANOSIM), as 

implemented in the R package ―vegan‖ (Oksanen et al., 2018). To compare community structures at 

different sampling dates within and between subplots, the complete Sørensen distances between all 

samples were calculated and the median values of all pairwise distances matching each comparison 

were extracted and visualized using the R package ―beanplot‖ (Kampstra, 2008). Significance of 

comparisons was established using the non-parametric Mann-Whitney test. 

To detect which environmental variables were sources of variation in βSOR, permutational multivariate 

analysis of variance based on the Sørensen distance matrix was performed using the function ―adonis‖ 

from the R package ―vegan‖ (Oksanen et al., 2018). First, all z-transformed environmental variables 

were applied in separate univariate models, with stratification by sampling date. In a second model, all 

significant variables were combined in descending order of their significance in the first run, again 
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with stratification by sampling date. Spearman correlations of the significant variables revealed no 

considerable multicollinearity. 

Spearman correlations between the temporal developments of βSOR between consecutive sampling 

dates (delta) at each subplot were calculated and visualized by hierarchical clustering of the inverse 

correlation by Ward‘s criterion using the R packages ―dendextend‖ (Galili, 2015) and ―vegan‖ 

(Oksanen et al., 2018). Correlation between patterns in temporal development of mean turnover to 

environmental parameters at each subplot was assessed using the ―vegan‖ (Oksanen et al., 2018) 

implementation of Mantel‘s test.  

In order to relate spatial and temporal patterns in βSOR, the approach of Mellin et al. (2014) was 

adapted to the present dataset. Briefly, for spatial βSOR, the average of the βSOR values for each 

sampling date of AMF communities between each subplot and its neighbors was calculated. For 

temporal βSOR, the mean delta at each sampling plot was calculated. Linear models between both βSOR 

terms were fitted for 1000 different rarefactions and compared to null-models based on 1000 draws of 

species identities (based on their relative probability of occurrence among samples), while holding 

constant the total number of species in each sample. To detect further variables contributing to the 

spatio-temporal patterns in βSOR, OTU richness at each subplot and environmental variables and their 

changes over time were included in the models. 
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Tables and Figures 

Tables 

Table 1 LMEM results for richness of entire AMF, Glomus, and Claroideoglomus for three and six sampling dates. Given are significant 

environmental variables with their coefficients (data z-transformed for comparison between coefficients), number of samples in the model 

as well as explained variances. Subplot number was used as random effect (intercepts not displayed). n = number of samples. 

 
Sampling Target  Model coefficients of fixed effects n Percentage explained variance 

dates  

 

   Random 

effects 

Fixed effects 

      Environ-

mental 

variables 

Sampling 

time 

3 all AMF OTU = -0.57 * plant species no. + 1.7 * silt content + 23.39 (for sampling 

time May) + 25.47 (for sampling time June) + 30.95 (for sampling 

time October) 

180 48 9 27 

6 all AMF OTU = -0.7 * NH4
+
 + 1.3 * silt content + 22.25 (for sampling time April) + 

22.81 (for sampling time May) + 25.3 (for sampling time June) + 

22.82 (for sampling time August) + 30.5 (for sampling time October) 

+ 22.96 (for sampling time November) 

360 45 6 27 

3 Glomus OTU = -0.41 * plant species no. + 0.5 * root biomass + 1.5 * silt content  

+ 0.75 * pH + 15.78 (for sampling time May) + 16.73 (for sampling 

time June) + 22.9 (for sampling time October) 

180 60 10 28 

6 Glomus OTU = 0.37 * legume biomass + 0.34 * root biomass – 0.65 * NH4
+
  

+ 1.25 * silt content + 0.35 * pH – 12.73 * fungi:bacteria ratio  

+ 15.46 (for sampling time April) + 16.73 (for sampling time May) + 

18.06 (for sampling time June) + 17.41 (for sampling time August) + 

23.82 (for sampling time October) + 17.96 (for sampling time 

November) 

360 54 7 14 

6 Claroideoglomus OTU = 0.57 * Ctotal 360 11 3 —  
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Figure Legends 

Figure 1 Bar graphs representing the temporal distribution of AMF OTUs of Glomeromycota 

genera detected across the entire plot. 

Figure 2 Geostatistical data analysis of AMF OTU richness with all AMF OTUs grouped 

together per sampling date: a) April, b) May, c) June, d) August and e) November. Spatial 

patterns within the data were analyzed and calculated as semivariogram models (lower panels in 

figure) and visualized as kriged maps using these models (corresponding upper panels in figure). 

Dimensions of all maps are 10 m x 10 m. 

Figure 3 Patterns of variability within AMF assemblages across the studied plot from one time 

point to the next. Stacked bars represent overall beta-diversity (βSOR) observed in the partial data 

sets, computed using the R-package betapart (Baselga, 2010); dark grey sections of the bars 

represent the contribution of the turnover of AMF (βSIM), light grey sections account for the 

nestedness of AMF (βSNE); error bars represent variability between SCALEMIC subplots. 

Figure 4 Relationship between spatial and temporal βSOR of total AMF, Glomus or 

Claroideoglomus, respectively. Spatial indices of AMF turnover (x-axis) represent the AMF 

turnover between each subplot and its neighbors averaged over all sampling dates. Temporal 

indices (y-axis) represent the mean delta (turnover from one time point to the subsequent time 

point). Regression lines (black) are based on linear models and 95% confidence intervals (grey 

dotted lines). 
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