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Abstract—Positioning is envisioned as an essential enabler
of future fifth generation (5G) mobile networks due to the
massive number of use cases that would benefit from knowing
users’ positions. In this work, we propose a particle filter-based
reinforcement learning (PFRL) approach for the robust wireless
indoor positioning system. Our algorithm integrates information
of indoor zone prediction, inertial measurement units, wireless
radio-based ranging, and floor plan into an particle filter. The
zone prediction method is designed with an ensemble learn-
ing algorithm by integrating individual discriminative learning
methods and Hidden Markov Models. Further, we integrate
the particle filter approach with a reinforcement learning-based
resampling method to provide robustness against localization
failure problems such as the kidnapping robot problem. The
PFRL approach is validated on a two-tier architecture, in which
distributed machine learning tasks are hosted at client and edge
layer. Experiment results show that our system outperforms
traditional terminal-based approaches in both stability and
accuracy.

Keywords: Indoor Positioning, Particle Filter, Reinforcement
Learning, Internet of Things, Ensemble Learning Methods,
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I. INTRODUCTION

5G networks are expected to provide wide bandwidth,
which can be used to enable highly accurate positioning. In
contrast to existing radio networks, where positioning has been
provided only as an add-on feature, positioning will play a
key role in future 5G systems. The location-awareness will
enable not only a vast amount of location-based services and
applications such as intelligent transportation systems (ITS)
and autonomous vehicles, but also support valuable location-
aware communication enhancements such as proactive radio
resource management, proactive handover optimization, etc.
Thus, reliable localization methods become the underlying
requirement to enable location aware-services. Many wireless
indoor positioning approaches have been proposed by explor-
ing radio signals such as fingerprinting, radio-based ranging,
etc. Radio-based indoor positioning has the intrinsic problem
of signal unreliability due to the multi-path propagation and
non-line-of-sight (NLOS) signal conditions in indoor environ-
ments. One solution is to apply data-driven methods such as
machine learning algorithms on received signal data, where a
training dataset including measurements with known locations
is used to train a model that estimates the location of a
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data sample. Wi-Fi received signal strength indicator (RSSI)
is a common metric in both range-based and fingerprinting-
based approaches. The earth magnetic field, which presents
distortions over space due to the presence of ferromagnetic
materials, is also used to improve localization accuracy [1].

Range-based approaches convert the received radio signals
into range values, which indicate the distance between the
target mobile device and radio transceiver. After ranging,
multilateration methods can be adopted to derive the ab-
solute position of the target. However, ranging accuracy is
detrimentally affected by multi-path effects particularly in
Non-Line of Sight (NLOS) conditions. To deal with the
negative influence of multi-path effects, NLOS conditions
need to be identified, then some methods can be adopted
to mitigate its negative effects. Fingerprinting-based systems
usually consist of an off-line phase (training phase) and on-
line phase (localization phase). The off-line phase is aimed
to build the fingerprint database. The fingerprint database is
built by collecting several types of radio signals in the area of
interest (i.e., target indoor environments). The on-line phase
is aimed to perform the localization process, in which a new
fingerprint measurement at a random location is compared
with the fingerprint database. In the on-line phase, any single
learning algorithm can be used. However, ensemble learning
methods usually allow better predictive performance compared
to single models [23]. Fingerprinting-based system builds
the classification model based on fingerprint data collected
previously. Therefore, fingerprinting-based systems can be
called discriminative learning methods.

In addition to wireless radio signal instability, there are two
other common problems in wireless indoor positioning: the
global localization problem and the kidnapped-robot problem.
The global localization problem happens when the localization
system initializes, where the initial position of the target is
unknown. The kidnapped-robot problem occurs when a well-
located target in operation moves to some arbitrary locations,
while the target itself is not aware of this. Therefore, the
kidnapped-robot problem normally happens during the regular
system operations. Most of the state-of-the-art indoor posi-
tioning approaches cannot guarantee avoidance of failure[37].
Therefore, the ability to prevent the system from catastrophic
localization failures is essential for truly autonomous and
reliable localization systems.



Reinforcement learning is a type of machine learning
technique that enables an agent to learn in an interactive
environment by trial and error using feedback from its own
actions and experiences [36]. The key idea of reinforcement
learning is to determine a mapping between actions and
states to maximize a numerical reward signal. The learner
agent interacts with the environment and receives rewards or
penalties for the performed actions. Therefore, reinforcement
learning uses rewards and punishments as signals for positive
and negative behaviors such that the agent behavior can be
optimized continuously.

In this work, we present a particle filter-based reinforcement
learning (PFRL) approach for the reliable wireless indoor
positioning. The PFRL system includes a particle filter com-
ponent for accurate indoor positioning and a reinforcement
learning-based resampling method to guarantee system ro-
bustness against localization failures. Thus, PFRL achieves
high localization accuracy and high reliability against lo-
calization failures. The particle filter method fuses indoor
zone prediction, range radio information, inertial measurement
units (IMUs), and floor plan information. The zone prediction
method is designed with an ensemble learning algorithm by
combining different individual predictors in a Hidden Markov
Model (HMM). The zone prediction method provides zone-
level localization, which supports to choose the proper ranging
models that are specific for each zone. If the mobile client (i.e.,
object to be located) and a ranging Anchor Node (AN) are at
the same zone, the system adopts LOS ranging models with
respect to this AN. Furthermore, ranges to ANs located at
different zones than the mobile client are calculated by NLOS
ranging models. Further, we propose an efficient reinforcement
learning-based resampling method to assure the placement of
samples (i.e., particles) over areas where the desired distribu-
tion is large (i.e., areas with high probability of containing the
ground truth position). This scheme reduces convergence time
and provides autonomy and robustness to the system. Figure
1 shows the architecture of our proposed system, which is a
two-tier architecture supporting distributed machine learning
operations. The main contributions of this work are as follows.
• We design a particle filter-based reinforcement learning

(PFRL) algorithm for reliable wireless indoor positioning.
The particle filter fuses the predicted zone, radio-based
ranges, IMUs, and coarse-grained floor plan information
to achieve accurate and stable real-time indoor tracking
performance. In the particle filter, we provide an rein-
forcement learning-based resampling method to guaran-
tee system robustness against localization failures.

• We propose a distributed machine learning-based network
architecture for indoor positioning, where lightweight
ML algorithms (indoor zone prediction) are running on
the mobile devices with limit resources and heavy ML
calculations (proposed PFRL algorithm) are offloaded
to nearby edge servers to support complex and heavy
calculations.

• We perform a set of experiments in complex office and

Figure 1: Distributed Machine Learning System Architecture
for Reliable Wireless Indoor Positioning.

classroom-like environments along five different moving
paths to validate the accuracy, reliability, and scala-
bility of our system. We compare PFRL with client-
based system where all computations are running on
end devices. With an average localization error of 0.97
meters and failure recovery time latency of 1.5 seconds,
our proposed localization method overcomes traditional
solutions in terms of reliability, stability, and accuracy.
We also discuss the experimental evidence of the fast
convergence of our PFRL approach compared to standard
PF-based approaches.

The rest of this work is organized as follows. Section II
presents related work. Section III describes the localization
system. Implementation details are presented in Section IV.
Section V describes the localization performance evaluation
of our approach. Section VI concludes the paper.

II. RELATED WORK

The current development of embedded inertial measure-
ments units (IMUs) in off-the-shelf mobile devices (e.g.,
smartphones), has increased research interest in Pedestrian
Dead Reckoning (PDR) systems. IMUs can be exploited to
provide pedestrian movement detection such as step recogni-
tion, heading direction, stride length estimation [32]. There-
fore, by using IMUs, PDR systems can infer the current
location based on the previously defined location. For instance
in [16], the stride length is calculated based on accelerometer
readings, whereas the heading direction is computed from
gyroscope readings. PDR methods measure position changes
rather than absolute positions. Thus, PDR methods are prone to
accumulate sensor errors over time, which means PDR-based
system must apply additional information fusion to revise the
localization error periodically.

In indoor environments, radio signals are usually exploited
to provide positioning services. In [25] for instance, the au-
thors use radio propagation time information, whereas in [25]
Wi-Fi RSSI is used. Radio signal-based indoor localization
methods are classified as range-free and range-based methods.
Range is the propagation distance from the target device to



Anchor Nodes (AN). The method to compute the propaga-
tion distances is called ranging. Ranging is the initial stage
in range-based localization methods. After ranging, several
localization techniques can be used to estimate the absolute
position of the targets, such as multilateration [24]. However,
range-based methods are not accurate in indoor environments
because of the presence of obstacles (e.g., furniture) and room
partitions [13]. Therefore, range-free methods are usually
used as an alternative to range-based methods. Fingerprinting
[2] is a widely used range-free localization method. It is
because of its robustness to multi-path propagation. However,
to build up a radio map is very time consuming. Typically,
building a radio map database for fingerprint requires much
more effort than range-based methods for localization. In
order to improve the accuracy of fingerprint-based localization,
authors of [14] proposed to fuse step counter measurement
with location estimation to reduce the calibration efforts. In
[15], authors proposed a graph-based, low-complexity sensor
fusion approach for ubiquitous pedestrian indoor positioning
using mobile devices. However, the system is not robust again
positioning failures.

Hidden Markov Models (HMM) can also be used for
indoor positioning. In [39] authors used radio propagation
models and HMM to reduce the efforts during the calibration
process. The probable positions are inferred by using discrete
probability distributions. Afterwards, the position is computed
from the set of most probable estimated positions. In [27], the
authors propose to fuse wireless signal measurements with
IMU readings. Then, the position is determined by computing
based on the most probable wireless signals measurement and
the pedestrian motion pattern at that position. Although au-
thors claim high accuracy, the transition probability definition
method remains unclear. Additionally, the applicability of the
approach relies on the fidelity of the PDR method.

Reinforcement learning (RL) has achieved great success
recently in different application domains. In [33], authors
utilized a deep reinforcement learning algorithm to learn action
policies for managing an optimal dose of medicines like
heparin for individuals. They used a sample data set of dosage
trials and their outcomes from a bunch of electronic medical
records. In [44], a convolutional neural network (CNN) model
was integrated with a reinforcement learning module to indi-
cate which part of an image should be searched to detect a car
from the image. Resource management is another application
that can benefit from using RL. In [28], authors applied RL to
solve the problem of job scheduling with multiple resource
demands. Recently, researchers in computer networks also
started to investigate how RL can help them to improve mobile
and wireless network performance. In [43], authors made
a comprehensive survey of the crossovers between DL and
wireless networking.

Particle filters are normally known as Sequential Monte
Carlo methods [8], which were originally designed to solve
statistic problems. Particle filters are able to approximate
any probability density function, which can be regarded as
a sequential analogue of Markov chain Monte Carlo (MCMC)

methods. Although particle filter is a statistic approach, it
has been successfully applied in many applications, such as
Monte Carlo localization of mobile robots [12], simultaneous
localization and mapping (SLAM) [30], etc. However, the
benefits of exploring particle filters into the reinforcement
learning domain seems to be missing so far. To the best of
our knowledge, this work is the first attempt to apply particle
filter in reinforcement learning to achieve accurate and reliable
wireless indoor positioning.

Despite the localization approaches presented in our previ-
ous work [3], [4], [5], [6] achieve high accuracy, the localiza-
tion and tracking algorithms of these approaches have some
drawbacks. Thus, in this work, we focus on improving the
algorithm design to overcome these drawbacks. Moreover, the
described localization algorithms are completely different in
each work. In the following, we present the main differences
and improvements of this work compared to our previous
work. In [4] we propose an ensemble learning method to
localize the target in a zone level accuracy (e.g., room level),
whereas in our current work we provide continuous real-
time tracking in a sub-zone level accuracy (e.g., sub-room
level). Thus, we design and implement a particle filter-based
approach to fuse zone detection likelihoods, IMUs, ranging
and floor plan information. In [3] we propose an enhanced
particle filter with double resampling method to provide indoor
tracking. Although the localization approach achieves high
accuracy, the localization method relies only on the Wi-
Fi ranging method. This could lead to some localization
failures such as kidnapping robot problem. In our current
work, the localization algorithms do not only rely on Wi-
Fi ranging methods but also on machine learning techniques
and information about transitions between rooms. Hence, we
have modified the particle filter design to provide accurate and
more stable indoor tracking performance. In [5], we present
a tracking particle filter-based method able to recover the
system from localization failures. However, the particle filter
and failure recovery methods rely only on Wi-Fi ranging
techniques. In [6], we discuss the performance of single
well-known machine learning algorithms along Wi-Fi ranging
techniques to provide static indoor localization. In this work
we incorporate a novel ensemble learning method along zone
transition information, IMUs, Wi-Fi ranging and floor plan
information to provide continuous tracking. Moreover, in this
work we present a novel reinforcement learning-based method
to guarantee system reliability against localization failures
while keep high tracking accuracy.

III. SYSTEM OVERVIEW

This section presents the design details of the proposed par-
ticle filter-based reinforcement learning approach for wireless
indoor positioning. Figure 1 summarizes the architecture of
our proposed approach, which includes two layers: a Client
layer and an Edge layer. The Client layer includes mobile
clients to be located, such as smartphones, Raspberry Pi
devices, or Arduino devices, etc. The Edge layer includes edge
servers, which are responsible for hosting complex positioning



algorithms. Due to limited amount of resources available,
mobile clients host components that are able to process
low computation overheads, which include: a HMM-based
ensemble predictor for indoor zone prediction, an enhanced
ranging model, a PDR-based move detection method and a
floor plan component that defines a discrete system state, the
map likelihood (i.e., allowed areas to move), and the transition
model (i.e., physical distribution of zones). Edge servers host
the proposed PFRL algorithm, which considers the outputs of
mobile clients as inputs to estimate the real-time positions of
mobile devices. PFRL includes two parts: a particle filter-based
ensemble predictor to provide high positioning accuracy and
a reinforcement learning approach, which builds on top of the
particle filter to guarantee system robustness against failures.
Details of each component and the interconnections between
client and edge layers are described in the next subsections.

A. Mobile Client - Ensemble HMM-Conditional Performance
Learning (E-HCP) for Indoor Zone Prediction

The key idea of E-HCP is to combine conceptually different
individual machine learning models in an HMM. Thus, we
combine several individual machine learning algorithms to im-
prove prediction performance compared to individual models.
It is worth to notice that the E-HCP method can be applied in
any prediction problem that involves HMM. We define a zone
as any subarea inside the area of interest. Therefore, hereafter,
we refer to a room as a zone. Considering the concept of
Markov localization [11], the E-HCP method can be described
by estimating the state of the system with controllable state
transitions. Therefore, for the localization problem, we define
zones as states of E-HCP. Therefore, the E-HCP method is
specified by the following components:
• A set of states Z = {z1, ..., zn}, where n is the number of

zones, zl is the identifier value of the zone l. Therefore,
the hidden state zl at time t can be represented by the
discrete random variable zlt ∈ Z.

• A transition probability matrix T ,

T =


t1,1 t1,2 ... t1,n
t2,1 t2,2 ... t2,n

...
...

. . .
...

tn,1 tn,2 ... tn,n

 ,

where tk,l ∈ T is the likelihood of moving from zone zk
to zone zl. Thus, T is a square matrix of order n.

• A set of observations C,

C = {(c1, ..., cm)1, ...(c1, ..., cm)nm}, (1)

where ck ∈ Z is the prediction outcome of the k-th
constituent individual machine learning algorithm. Thus,
C is a set of nPm permutations with repetition allowed,
where n is the number of zones and m is the number
of individual machine learning algorithms that constitute
the E-HCP method. We defined (c1, ..., cm)l ∈ C as ql.
The observation ql at time t can be represented by the
random variable qlt ∈ C.

• A matrix B of observation probabilities. B is named the
emission probability matrix.

B =


b1,1 b1,2 ... b1,nm

b2,1 b2,2 ... b2,nm
...

...
. . .

...
bn,1 bn,2 ... bn,nm

 ,

where bk,l is the likelihood of observing ql ∈ C at zone
zk.

• An initial probability distribution over zones π =
π1, ..., πn, where πi is the probability of being located
in zone i.

In any model with hidden variables such as E-HCP, a
decoding task is to determine the sequences of variables that is
the underlying source of a observation sequence. The decoding
task can be described as the process to solve the following
equation:

p(zlt | qlt) =
p(qlt | zlt) · p(zlt)

p(qlt)
(2)

where P (zlt | qlt) is the probability being located at zone
zlt given the observation qlt at time t. Therefore, considering
a sequence of observations q00 , ..., qlt , and an HMM model
λ = {π, T,B}, Equation 2 can be computed by applying the
Viterbi algorithm [10].

In the following two subsections we explain how to de-
termine the emission probability matrix B and the transition
probability matrix T .

1) Emission Probabilities: The emission probability is the
likelihood of observing ql ∈ C at zone zk ∈ Z. Therefore, the
probability bk,l (entry of matrix B) of having a particular set
of observations ql at zone zk can be defined as:

bk,l = p(ql | zk),∀ql ∈ C ∧ zk ∈ Z, (3)

p(ql | zk) can be computed assuming conditional inde-
pendence among the prediction outcomes ci ∈ ql given
zk. Our assumption is that the probability of obtaining the
outcome ci becomes independent if the value of zk is known.
Moreover, the individual constituent learning algorithms of E-
HCP are independent and conceptually different of each other.
Therefore, it is reasonable to assume that their outcomes are
conditionally independent given zk. Thus, bk,l can be written
as follows:

bk,l =

m∏
i=1

p(cl | zk)i, (4)

where P (cl | zk)i is the probability of predicting cl at
zone zk by the i-th constituent individual learning algorithm
of E-HCP. Therefore, P (cl | zk)i represents the prediction
performance of the i-th individual machine learning algorithm
given the knowledge of the ground-truth class label (i.e., zone).
P (cl | zk)i can be obtained from the confusion matrix of the
i-th individual machine learning algorithm part of the E-HCP
method.



2) Transition Probabilities: Connection among zones in the
coarse-grained floor plan defines the transition probabilities.
Thus, the transition probability is the likelihood of moving
from one zone to another. Therefore, the transition probability
matrix can be expressed as follows:

tk,l = p(zl | zk), (5)

where tk,l ∈ T represents the transition probability between
zone zk to zone zl. T is a square matrix and

∑n
l=1 tk,l = 1.

B. Mobile Client - PDR-based Motion Vector Estimation

PDR methods estimate the displacement of the mobile
client device by detecting changes in a previously estimated
position. PDR methods must be adjusted accordingly to con-
sider different movement characteristics of the mobile client
such as velocity, acceleration, etc. In this work, the PDR
methods estimate pedestrian’s displacement. It is estimated by
using three device embedded sensors: the accelerometer, the
geomagnetic field sensor, and the gyroscope. At time t, the
displacement of the pedestrian is defined by the motion vector
Mt = [`t, θt], where θt is the heading orientation, and `t is
the displacement length. Thus, Mt is passed to the Particle
Filter component at instant t when a displacement (e.g., step)
of the pedestrian is detected. Additional details about the PDR
method can be found in our previous work [3].

C. Mobile Client - Ranging Estimation Process

Ranges can be derived by using signal parameters such as
RSSI. In theory, RSSI monotonically decreases with increas-
ing propagation distance [24]. However, in complex indoor
environments, WiFi signals suffer from random variations. To
reduce ranging errors introduced by NLOS and multi-path
propagation, we propose a propagation model by combining
Log Distance Path Loss (LDPL) [35] and a Nonlinear Regres-
sion Model (NLR) [24] [6]. Our propagation model can be
written as follows:

r =

{
10(

Pw(r0)−Pw(r)
10·γ ) if Tx and Rx are at the same zone

α · e(β·Pw(r)) if Tx and Rx are at different zones
(6)

where Tx and Rx are the transmitter and receiver devices
respectively. Variable Pw(r0) refers to the power loss in a
free space, Pw(r) is the received signal power in a propagation
distance r. Variable γ is the path loss efficient [35], and both
α and β are environmental variables [24].

D. Edge Server - Particle Filter with Data Fusion and Ma-
chine Learning Methods

Indoor positioning can be assumed as a filtering problem,
in which the system state (e.g., target position) can be inferred
from a set of noisy environmental observations. Thus, particle
filtering is able to solve estimation problems recursively as
observations become available. The objective is to determine
the posterior distributions of the system’s states given some
noisy observations. The posterior probability is expressed as
a set of weighted samples (also called particles). Thus, the

Data: Mt, Ot
Result: Mobile client position

1 Calculate the initial zone probability distribution:
p(zl0 | ql0) = E-HCP();

2 Distribute particles based on p(zl0 | ql0);
3 Initialize particle’s weights: W i

0 = 1/Np, i = 1, 2, ..., Np;
4 while Localizing do
5 Update the particles: Xi

t = G ·Xi
t−1 + η;

6 Calculate the ranging likelihood: P (d̂j,t | Xi
t) =

1
σj
√
2π

exp
−

[d̂j,t−
√

(xi−xj)2+(yi−yj)2]2

2σ2
j ;

7 Calculate the zone probability distribution:
p(zlt | qlt) = E-HCP();

8 Calculate the zone likelihood:

P (zlt | Xi
t) =

P (Xit |ẑlt )·P (ẑlt )

P (Xit)
;

9 Compute unnormalized weights:
ŵit = P (Xi

t | ẑlt) ·
∏M
j=1 P (d̂j,t | Xi

t);

10 Normalize weights: wit =
ŵit∑N
n=1 ŵ

i
n

;
11 Resample the particles;
12 Calculate the degree of depletion;
13 Run RL method for robust tracking resampling;
14 Compute the estimated position:Xt =

∑N
i=1 w

i
t · xit;

15 end

posterior probability distribution is computed based on some
observation Ot at time t [3]. A time t, the particle system state
vector Xt can be written as:

Xt = [xt, yt, zlt , `t, θt], (7)

where (xt, yt) defines the 2-dimensional position of the target
object, zlt ∈ Z is the zone where the target is located.

At time t, the set of particles can be expressed as:

Pt = [Xi
t ,W

i
t ], i = 1, ..., Np, (8)

where Np is the number of particles, Xi
t is the state vector,

and W i
t is the associated weight of the i-th particle at time

t. The posterior probability given a sequence of observations
p(Xt | O1:t) can be defined as:

p(Xt | O1:t) ≈
Np∑
i=1

witδ(Xt −Xi
t), (9)

where Xi
t is the i-th particle, and wit is the associated weight at

time t. The associated weights wit can be computed as follows:

wit ∝ wit−1 ∗ p(Ot | Xi
t), (10)

where p(Ot | Xi
t) is the likelihood function calculated from

the observation vector Ot at time t. The RSSI in indoor
environments tends to be unstable due to multi-path effects.
To alleviate these problems, we propose to fuse multiple
information in an enhanced particle filter such as wireless
radio-based ranging, inertial measurement units, floor plan



information, and indoor zone prediction results. Algorithm 15
indicates the procedures of the proposed particle filter.

1) Prediction Model: Since each location belongs to a
zone, the current zone zlt depends on the current Cartesian
coordinates (xt, yt). Coordinates xt and yt are elements of
the system state vector Xt. Therefore, it is possible to define
a function getZone(Xt) to derive the current zone zlt from the
system state vector Xt. Thus, zlt can be obtained as follows:

zlt = getZone(Xt) (11)

Therefore, the particle filter prediction function can be
written as:

Xt = G ·Xt−1 + η, (12)

where

G =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , η =


`t · cos(θt)
`t · sin(θt)

zlt
`t
θt



As reported in previous studies [20], [22] , heading orientation
θt and stride length `t are interfered by zero-mean Gaussian
random noises ε

′
and ε

′′
, respectively. Variables θt and `t are

estimated by PDR methods. The variable zlt identifies the zone
where the particle is located at time t.

State vector Xi
t of each particle is updated from the particles

at the previous time interval Xi
t−1 based on Equation (12).

Thus, the new set of particles Pt is generated from Pt−1.
Particles are not allowed to move through restricted areas,
(e.g., movement through walls is not allowed).

2) Observation Model for Data Fusion: Particles are prop-
agated based on Equation (12). Afterwards, the associated
weight wit of the propagated particles must be calculated.
At time t, the associated weight p(Ot | Xi

t) is calculated
based on the likelihood of the observations conditioned on
current particle state Xi

t . The observation vector Ot contains
the ranging information to different ANs and the predicted
zone information. Thus, at time t, the observation vector can
be expressed as Ot = [dt, qlt ], where dt contains ranges
to different ANs and qlt ∈ C contains the predicted zone
information. Ranges are computed by the Ranging Estimation
process presented in section III-C. The zone prediction infor-
mation is provided by the E-HCP method presented in section
III-A.

Since the ranging method (i.e., the method to estimate
ranges) and the E-HCP method for zone prediction are
completely different, we can assume that p(qlt | Xi

t) and
p(dt | Xi

t) are independent of each other. Therefore, the
probability p(Ot | Xi

t) can be expressed as follows:

p(Ot | Xi
t) = p(dt | Xi

t) · p(qlt | Xi
t) (13)

We refer to p(dt | Xi
t) as the ranging likelihood, and p(qlt |

Xi
t) as the zone likelihood. Therefore, the associated weight

wit = p(Ot | Xi
t) of each particle is given by the ranging

and zone prediction information. The particles at the absolute
position (xt, yt) with low probability to observe djt in their
position will be assigned a small ranging likelihood. Particles
positioned in zones with low probability of observing qlt will
be assigned small zone likelihood values.

3) Ranging likelihood: The ranging likelihood p(dt | Xi
t)

is given by the ranging information. Since ANs operate inde-
pendently, it is possible to assume that the ranges to different
ANs are conditionally independent of each other. Thus, the
ranging likelihood can be written as follows:

p(dt | Xi
t) =

Na∏
j=1

p(d̂j,t | Xi
t), (14)

where Na is the number of ANs, d̂j,t is the estimated distance
to the j-th AN at time t. Hereafter, p(d̂j,t | Xi

t) will be referred
as the individual ranging likelihood. Ranging errors can be
modeled as Gaussian distributed values [41], [24]. Thus, the
individual ranging likelihood can be further written as:

p(d̂j,t | Xi
t) =

1

σj
√
2π

exp
−

[d̂j,t−
√

(xi−xj)2+(yi−yj)2]2

2σ2
j , (15)

where (xj , yj) are the coordinates of the j-th ranging AN.
4) Zone Likelihood: Zone likelihood refers to the zone

prediction information. Therefore, zone likelihood is the prob-
ability of observing qlt in the current particle state Xi

t . The
value of the variable qlt is computed by the E-HCP method.
Thus, p(qlt | Xi

t) can be written as:

p(qlt | Xi
t) =

p(Xi
t | qlt) · p(qlt)
p(Xi

t)
, (16)

where qlt is the zone related set of observations at time t.
Since the p(Xi

t) and p(qlt) are constant, p(qlt | Xi
t) depends

only on p(Xi
t | qlt). Therefore, p(qlt | Xi

t) ∝ p(Xi
t | qlt).

p(Xi
t | qlt) can be written as follows:

p(Xi
t | qlt) =

p(qlt | Xi
t) · p(Xi

t)

p(qlt)
(17)

From function getZone defined in Equation 11, zilt can be
obtained from Xi

t . Therefore, considering the respective zone
zilt of Xi

t , Equation 17 can be written as follows:

p(zilt | qlt) =
p(qlt | zilt) · p(z

i
lt
)

p(qlt)
(18)

Since C is the set of observations related to the zone
prediction (see Equation 1) and qlt is a vector that contains
zone related observations, we can consider qlt as an element
of C (qlt ∈ C). Thus, p(zilt | qlt) can be solved by the E-HCP
method described in section III-A.



EDGE LAYER

Resampling 
(Systematic method) 

Reinforcement Learning
for Particle Distribution 

(Q-learning) 
System State

Detection 

Resampling for Robust Indoor Tracking

state
(e)

Q(s,e) 
state-action

particle distribution

E-HCP (zone prediction method) 

zone predictionzone prediction

Figure 2: Reinforcement Learning Method for Robust Indoor
Tracking Resampling.

E. Edge Server - Reinforcement Learning for Robust Indoor
Tracking Resampling

In particle filter localization approaches, the localization
process performs poorly if the proposal particle distribution
(i.e., distribution used to generated samples) places too few
samples in areas where the desired posterior distribution is
large. Such behaviour leads to increase convergence time of
the particle filter. Moreover, an unsuitable proposal distribution
could trigger localization failures such as the kidnapping robot
problem. To mitigate these problems, we propose to use
adaptive proposal distributions in addition to the resampling
method. The proposal particle distributions are built based on
a reinforcement learning method which relies on the E-HCP
outcomes and the current state of the system. Figure 2 depicts
the architecture of the proposed reinforcement learning method
for robust indoor tracking. The proposal particle distribution
assures the placement of samples over the areas where the
desired distribution is large. The tracking algorithm learns by
itself which proposal distribution suits better at each state
of the system. This scheme reduces convergence time and
provides autonomy and robustness to the system.

1) Resampling Method: Resampling is a fundamental pro-
cess for particle filters. Without resampling, particle filters will
produce a degenerate set of propagated particles (i.e., most of
the particles with negligible weight). The resampling process
modifies the weighted approximate density p to an unweighted
density p̂ by eliminating particles with low importance weights
(i.e., small associated weight) by multiplying particles having
high importance weights (i.e., high associated weight). The
new density p̂ is called the proposal particle distribution.
Therefore, p(Xt | q1:t) =

∑Ns
i=0 w

i
tδ(Xt − Xi

t) is replaced
by p(X̂t | q1:t) =

∑Ns
i=0

ni
Ns
δ(X̂t − X̂i

t), where ni is the
number of copies of particle Xi

t in the new set of particles
P̂t. There are many methods to generate P̂t [7]. We perform
the resampling process by using the systematic method. The
systematic resampling method aims to prevent the degeneracy
of the propagated particles by modifying the set Pt to P̂t.

Start Localizing Failure

Figure 3: PFRL transition model learner agent.

Particles from Pt with higher weights are more likely to be
included in the new set of particles P̂t. Thus, in the next
iteration, more particles will be propagated in zones with
large probability masses [21]. Before resampling, the weights
W k
t are normalized, i.e.,

∑Np
k=1W

k
t = 1. Then, a set of Np

numbers unt is generated from an uniform distribution. This
set of numbers is used to select Np particles from Pt. Thus,
the particle xnt is selected in the n-th iteration if the following
condition is satisfied:

Sm−1t < unt ≤ Smt ,m = 1, ..., Np, (19)

where

Smt =

m∑
k=1

W k
t , (20)

The interval (0, 1] is divided into Np disjoint sub-intervals
(0, 1/Np] ∪ ... ∪ (1 − 1/Np, 1]. Then, u1t is generated as a
random number from the uniform distribution on (0, 1/Np].
The remaining unt numbers are obtained from u1t as follows:

u1t ∼ U(0, 1/Np],

unt = u1t +
n− 1

Np
, n = 2, 3, ..., Np,

(21)

After generating the set of unt numbers, the new set of particles
P̂t is generated by selecting Np particles from Pt based on the
condition presented in Equation 19. Although the systematic
resampling method can achieve high performance, this method
alone does not guarantee the system to avoid and recover from
localization failures.

2) Reinforcement Learning Method for Particle Distribu-
tion: Considering a reinforcement learning context, our track-
ing algorithm is modeled as the learner agent (LA). The LA
provides localization and at the same time learns the optimal
behaviour to prevent and recover the system from localization
failures. The Q-learning [42] approach is adopted as a rein-
forcement learning method. Q-learning provides agents with
the ability to learn how to proceed optimally by experiencing
the consequences of actions [42]. In Q-learning, the LA
evaluates the consequences of an action at a particular state.
This evaluation is performed in terms of an immediate penalty
or reward. Thus, by trying all actions in all states repeatedly,
LA learns the optimal behaviour at each state. Figure 3 shows
the states and transition model of our proposed reinforcement
learning model. Since the purpose of the LA is to provide
autonomy and robustness to the system, we defined three
states: Starting state, which is achieved when the system is
started, Localizing state, which is achieved when the system
is providing localization service, and Failing state, which is
achieved when some localization failure is detected. Elements
of the set of actions are as follows.



• Action e1 defines a uniform particle distribution across
the whole target area. This action can be performed in
the Starting and Failing states.

• Action e2 defines a particle distribution across the pre-
dicted zone. Zone information is computed by the E-HCP
method. This action can be performed in the Starting and
Failing states.

• Action e3 defines a particle distribution based on the
predicted zone probability distribution. Zone probability
distribution is computed by the E-HCP method. This
action can be performed in the Starting and Failing states.

• Action e4 defines a particle distribution of the g% worst
evaluated particles (i.e., particles with the lowest weight)
across the predicted zone. This action can be performed
in the Localizing and Failing states.

• Action e5 defines a particle distribution of the g% worst
evaluated particles based on the predicted zone proba-
bility distribution. This action can be performed in the
Localizing and Failing states.

The Q-learning algorithm performs the learning process based
on the Bellman equation as follows:

Q(s, e)← (1−α) ·Q(s, e)+α · [R(s, e)+γ ·max(Q(s′, e′))],
(22)

where Q(s, e) determines the quality of a state-action combi-
nation. Thus, when action e is performed in state s, Q(s, e)
is updated based on Equation 22. The learning rate is defined
by α, which determines how valuable recent information is
for the learning process. Thus, if α = 0, the LA exploits only
previous learned knowledge, while α = 1 makes the LA to
consider only the most recent information. The parameter γ
defines the discount rate, which determines what percentage of
a future reward must be considered in the training process. The
variable max(Q(s′, e′)) is the maximum achievable Q(s′, e′)
value, which is possible to obtain in the next state s′ by
performing e′. The function R(s, e) computes the reward of
performing action e at state s. Further details about the Q-
learning algorithm can be found in [42], [29].

We define R(s, e) as a function to compute the degree of
depletion in the particle filter method. The degree of depletion
describes the rate of particles having a negligible weight.
Some particles can be located away from the ground truth
location. Therefore, these particles are evaluated with nearly
negligible weights. The density of particles should be high in
high-probability zones, and low in low-probability zones. The
effective number of samples (Neff) is an indicator of the degree
of depletion [26]. Therefore, Neff measures how efficiently the
particle distribution is representing the ground truth location.
Since the degree of depletion indicates the quality of particle
distributions, and the effective number of samples Neff is an
indicator of the degree of depletion, we define R(s, e) = Neff.
Thus, the value of Neff for Np number of particles can be
calculated as follows:

R(s, e) = Neff =
1∑Np

i=1(w
i)2

(23)

Compute degree
of depletion (Neff)

Systematic
resampling

zone=E-HCP()

Neff<Th 
AND 

No particles 
 in zone 

State=Failing

State=Localizing

Yes

No

Figure 4: PFRL system state detection method flowchart.

where wi is the particle’s associated weight.
3) System State Detection Method : Q-learning is a method

that evaluates which action to perform based on the state of
system. Therefore, detecting the current system state is an
essential requirement. The system moves from the Starting
state to the Localizing state when the starting position is
established (i.e., when particles converge to the initial starting
position). Thus, the LA must perform the optimal action for
fast and accurate convergence. The Starting state is clearly
identifiable. When a localization failure is detected, the LA
must perform the optimal action for a quick and accurate
recovery.

To detect the current System state, we propose a novel
and effective method, which is based on the zone prediction
information provided by the E-HCP method, the current par-
ticle distribution and the current degree of depletion in the
particle filter method. Therefore, after performing the system-
atic resampling process, the system state detection method is
executed. Thus, if any particle is placed in the predicted zone,
and the effective number of samples is lower than a predefined
threshold Th, the algorithm assumes a localization failure.
Figure 4 shows the flowchart of the System state detection
method.

F. Data flow between Mobile Client and Edge Server

Mobile clients collect raw data using on-board sensors,
such as accelerometer, gyroscope, magnetometer, Wi-Fi sig-
nals, etc. Such data are processed on mobile devices using
lightweight machine learning algorithms, such as HMM-based
zone prediction (Section III.A). Afterwards, mobile clients
could derive the zone information with probabilities, motion
vectors, and ranges to relevant beacons. These information are
then transmitted to the edge server using the WebSocket for
further processing. At the edge server, heavy machine learning
approaches, including ensemble learning (Section III.D) and
reinforcement learning (Section III.E), will be applied on the
received information to estimate the accurate indoor positions.
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Figure 5: Scenario 1: Transition information among zones are used to define the transition model for E-HCP method.
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Figure 6: Scenario 2: Transition information among zones are used to define the transition model for E-HCP method.

As shown in Figure 1, communication between the client
and the edge layer is implemented by using the WebSocket
technology. WebSocket is a computer communication proto-
col, which allows two or more connected devices to communi-
cate with one another in both directions through a single TCP
connection. It is supported by many platforms. WebSocket
technology uses the HTTP upgrade header to change from
the HTTP to the WebSocket protocol [9]. Thus, Tornado [38]
was used to provide web server and WebSocket server in the
cloud layer.

IV. IMPLEMENTATION

We implemented the proposed system on edge servers and
smartphones. It comprises three main components: a mobile
target (MT), a set of Wi-Fi Anchor Nodes (ANs), and an edge
server. ANs are off-the-shelf Wi-Fi access points, which are
placed at certain locations to guarantee the maximum coverage
for the indoor areas. We used a Motorola Nexus 6 smartphone
with 3 GB RAM and Quad-core 2.7 GHz CPU as experimental
device. A HP EliteBook with 8 GB RAM and 2.30 GHz Intel

Core i5-5300U processor is used as edge server.
Communication between the edge layer and the client layer

(i.e., MT) is implemented by using WebSocket technology [9].
WebSocket is a communication protocol to allow connected
devices to communicate in both directions by using a single
TCP connection. The positioning algorithm (i.e. Particle filter)
and the reinforcement learning-based method (i.e., Q-learning)
are implemented at the edge server by using Python 2.7.

In addition, the coarse-grained information about the area of
interest (i.e., indoor floor plan) is of great importance to guar-
antee system performance. The system requires information
related to physical connections among zones, i.e., connectivity
among zones. We define 14 zones for scenario 1 and 7 zones
for scenario 2 in our areas of interest (details of the scenarios
can be found in Section V). Each zone is a wall separated
subarea (e.g., corridor, rooms). The transition model is defined
based on the zone distribution. Figures 5 and 6 show the
physical layout of the indoor environment, zone distribution
and the transition model built on top of the indoor layout. The
probability transition matrix T is set based on the assumption
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that the probability of staying in the same zone is higher than
transferring to another one.

To ensure independence between the individual learning
methods in E-HCP, we set up three conceptually different
machine learning algorithms (KStar, Multilayer Perceptron
(MLP) and J48). Weka for Android library [18] was used
to implement the individual machine learning algorithms at
the Client layer. To build the zone fingerprinting database, we
collected 11200 fingerprint instances, approximately 800 in
each zone. The structure of a fingerprint instance consists of
Wi-Fi RSS and MF readings. We ask a person to walk ran-
domly through each zone holding the phone in her hand. Zone
fingerprint database entries were collected equally distributed
over the whole area in each zone. The data collection rate is
only constrained by the computational capabilities of the Wi-Fi
sensor of the MT. Thus, in our experiments every fingerprint-
ing entry was collected at a rate of 3 entries/second. Since our
approach does not need to predefine any survey point, the time
needed to build the fingerprinting database is proportional to
the number of collected instances multiplied by the instance
collection rate. Machine learning algorithms have internal
parameters that are optimized during the training process. Nev-
ertheless, some algorithms have internal parameters that are
not optimized during the training process. These parameters
are named hyperparameters, which have a significant impact
on the machine learning algorithms’ performance. Therefore,
we use a nested cross validation approach to choose the
optimized hyperparameter values [31]. To reduce the negative
impact of environmental changes and different hardware, we
use differential Wi-Fi RSS instead of absolute raw values [40].

V. PERFORMANCE EVALUATION

We made intensive experiments two buildings of the In-
stitute of Computer Science at the University of Bern. The
first scenario is an office-like environment with an area of
702m2 (39m x 18m). The second scenario is a classroom-
alike scenario with an area of 524m2 (36.2m x 14.5m). The
MT is held by a person moving along five different trajectories.
Every time when a new fingerprint measurement is available,
the zone detection method is launched. Figures 7 and 8 show
the physical layout of experiment areas, where trajectories
are dotted lines, circle green points are the position checking
points, diamond blue points are the anchor nodes.
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A. Indoor Zone Prediction Results

In this section, we present the indoor zone prediction results
of the E-HCP method. This experiment was performed in sce-
nario 1. We consider prediction accuracy, sensitivity, precision,
and F1 score [19]. Accuracy is defined as the ratio of correctly
predicted observations to the total observations. Sensitivity is
defined as the number of true positives (TP) divided by TP and
the number of false negatives (FN): TP/(TP+FN). Precision is
defined as TP divided by TP and the number of false positives



(FP): TP/(TP+FP). F1 is the harmonic mean of sensitivity and
precision. Therefore, F1 considers both performance measures,
sensitivity, and precision. F1 can be expressed as follows:

F1 = 2 · sensitivity · precision
sensitivity + precision

(24)

We compare the E-HCP method to another ensemble learn-
ing algorithm. Thus, we implemented a soft voting machine
learning algorithm [34], which is referred to as Voting method
hereafter. The Voting method computes the average predicted
probabilities of KStar, J48, and MLP. Figures 9 and 10 present
the model prediction accuracy and F1 score in scenario 1.

Figure 9 depicts the indoor zone prediction accuracy of the
five predictors following four different trajectories in scenario
1. Performance accuracy of the individual machine learning
algorithms (J48, KStar, and MLP) is higher than 81% in the
four trajectories. However, results show a clear improvement
of E-HCP compared to the individual learning and the Voting
algorithms. The accuracy of E-HCP is improved by 9.3%,
9.2%, 4.1%, and 9.2% compared to Voting, J48, KStar, and
the MLP method respectively.

Since both FN and FP predictions lead to increase the local-
ization error, it is necessary to evaluate the prediction perfor-
mance by considering these two metrics together. Therefore,
the reliability of the zone prediction method is determined by
the F1 score. Considering F1, E-HCP outperforms others in
all tested zones but zone 10 (see Figure 10 for scenario 1). It
means that the predictive reliability of E-HCP is higher than
the other tested learning methods.

In indoor environments, measured RSSI values vary accord-
ing to locations. However, these variations are expected to
remain small at nearby positions. For example, at locations
close to zone borders, high similarities will be observed on
Wi-Fi RSSI values. These similarities could lead to misclas-
sification problems. The E-HCP algorithm outperforms KStar,
J48, MLP, and Voting in terms of accuracy and F1 score.
However, we can observe in Figure 10 that the KStar algorithm
shows high prediction performance too. This is because as
an instance-based learner algorithm, KStar uses entropy as a
distance measure to describe the similarities of two instances.
The distance between two instances can be defined as the
complexity of transforming one instance into another. Thus,
this method is very sensitive to slight instance variations.
In contrast to KStar, J48 uses the entropy of information
at the attribute level to build the classification model. This
means that J48 calculates entropy using attribute domain
information to decide which attribute should be considered in
a decision node. Therefore, J48’s classification model is prone
to misclassification in this specific zone prediction problem.
It explains the low performance of J48 compared to the other
tested predictors.

Although, MLP prediction performance is lower than E-
HCP, KStar, and Voting, we observe in Figure 10 that in some
zones MLP achieves higher sensitivity and precision than the
other tested algorithms. This is because MLP is able to extract
patterns and detect trends that are too complex to be noticed
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Figure 11: Impacts of particle numbers on performance of
PFRL and client-based PFRL in scenario 1.

by either humans or other machine learning algorithms.
E-HCP balances out strengths and weaknesses of its con-

stituent algorithms (KStar, J48, MLP). Moreover, E-HCP
includes transition information among zones in the predicting
process. However, when transition information is ambiguous
(i.e., same probability of moving to multiple zones), E-HCP
relies only on the prediction performance of its constituent
algorithms. This explains why in zone 10 we observed that
E-HCP is outperformed by one of its constituent algorithm
considering the F1 score.

Unlike Voting, E-HCP combines zone transition informa-
tion with individual machine learning algorithms to improve
prediction accuracy. Therefore, by considering the transi-
tion probabilities among zones and using ensemble learning
techniques, we achieve high zone prediction performance.
Moreover, experiment results show that the E-HCP method
is able to provide more reliable zone prediction information
than the other tested machine learning algorithms. Therefore,
our ensemble prediction model allows the production of better
prediction performance compared to ensemble voting and
individual models.

B. Indoor Tracking Accuracy

In this section, we discuss the tracking performance of the
PFRL algorithm. Additionally, to show the benefits of our
distributed localization approach using a two-layer architec-
ture, we compare the performance between our two layer-
based PFRL with a client-based version of PFRL, where all
the computations are hosted on mobile devices. Hereafter,
we will refer to the two layer-based PFRL system as PFRL.
The Client-based PFRL will be referred to as the client-based
PFRL (Client-based). To evaluate the system performance,
we consider the metrics of Cumulative Distribution Function
(CDF) of localization errors, mean tracking error, the standard
deviation of localization errors, and average processing time
to get the position.
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Figure 12: PFRL Confidence Intervals.

1) Localization Accuracy vs Number of Particles: Local-
ization accuracy can be theoretically boosted by using more
particles [17]. However, increasing the number of particles
leads to an increased computational complexity of the applica-
tion too. A large number of particles produces computational
inefficiency and high memory request. Figure 11 shows the
CDF of localization errors for PFRL and Client-based with
different particle numbers in scenario 1.

PFRL achieves better performance when using 1000 par-
ticles compared to when using 100 and 500 particles. PFRL
is able to reduce the mean localization error in a 24% by
increasing the number of particles from 100 to 500, whereas
by increasing the number of particles from 500 to 1000, PFRL
reduces the mean localization error in 14%. As shown in
Figure 12a, PFRL also reduces the confidence interval by
increasing the number of particles. The standard deviation
is reduced by 64% and 45% when increasing the number of
particles from 100 to 500 and from 100 to 1000 respectively.
Although PFRL decreases 34.5% the mean localization error
when increasing from 100 to 1000 particles, the mean local-
ization error improvement is only about 14% when particles
are increased from 500 to 1000. Therefore, it is expected that
after a certain number of particles, the mean localization error
is not further improved.

Regarding the client-based PFRL approach, the best perfor-
mance is achieved when 500 particles are used, which is better
than using 100 and 1000 particles (also presented in Table
I). As shown in Figure 12b, client-based PFRL reduces the
confidence interval by increasing the number of particles from
100 to 500. However, the confidence interval is increased when
1000 particles are used. To explain this behaviour, we look
at the negative influence produced by increasing processing
time in real-time systems. The efficiency of real-time systems
depends not only on the precise results but also on the time
to get these results. In real-time localization, high processing
time could lead the system to stay processing a position while
the ground truth position is changing. Therefore, clearly in
real-time localization applications, processing time influences
the accuracy performance of the system. In the client-based
method, we noticed that the average processing time seems to
grow exponentially with the number of particles (see Figure
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Figure 13: Processing time of client-based PFRL solution vs
number of particles

13). Therefore, there is no more performance improvement
when a certain particle number is used, due to the negative
influence of the exponential growth of the processing time.

Figure 13 shows the average processing time for the client-
based PFRL with different particle numbers. As we can see,
when using 1000 particles, the average processing time is 290
ms, which is much bigger than the average processing time of
170 ms when using 500 particles. Therefore, due to the limited
computation resources available on mobile devices, increasing
the number of particles exponentially increase processing time,
which leads to lower localization performance. This explains
why 500 particles lead to a better accuracy than 1000 particles
when using a client-based PFRL solution.

2) Failure Avoidance and Recovery Performance: The
global localization and the kidnapped robot problem are used
to evaluate the ability of the system to avoid, detect, and
recover itself from localization failures. Moreover, this eval-
uation measures the ability of self-localizing the target when
the system is started (i.e., global localization problem). To
test the recovery performance of PFRL, we conducted two
experiments in this section. The first experiment tests the self-
localizing ability of the system when it is started. We refer to
this experiment as the Global localization experiment. The sec-
ond experiment tests the system ability to recover itself from
failures when the system is in normal operation (Localizing).
We refer to this as the Kidnapping robot experiment.
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Figure 15: Scenario 1: Global Localization Failure recovery.
Particles convergence time after localization failure

The Global localization experiment was performed in
scenario 1. In this experiment, we simulate localization failures
by setting up the initial position of the set of particles at an
arbitrary position outside the area of interest. Afterwards, the
pedestrian started the system standing at a known position
(these positions are shown in Figure 7). We repeated the
experiment in three different zones. The derived position was
registered in each iteration. Figure 14 shows the normalized
rewards (normalized rewards from Q-table) learned in each
state. It can be seen that the reinforcement learning method
defines e3 as the best action to perform at states Starting
and Failing, and action e5 is defined as the best action to
be executed when the system is at Localizing state. Therefore,
to recover the system from localization failures, particles are
spread based on the zone probability distribution predicted
by the E-HCP method. To avoid localization failures, the
10% worst evaluated particles are spread based on the zone
probability distribution predicted by the E-HCP method.

As it can be seen in Figure 15, the average number of
iterations to recover the system from localization failures is

4. Each iteration is processed when new Wi-Fi information is
available. Since our MT has a Wi-Fi sampling rate up to 3Hz,
the latency to recover the system is approximately 1.5s. This
means that the initial position is determined approximately
1.5s after the system is started. Moreover, if a localization
failure occurs during the tracking process, the system can
be automatically recovered with an acceptable time latency
of 1.5s. Regarding the number of iterations, this current
approach outperforms by 70% to the equally distributed (ED)
localization recovery method presented in [5].

1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

Zone
L

ik
e

lih
o
o

d
 (

%
)

Figure 16: E-HCP Zone probability distribution during the
Global localization experiment in scenario 1.

To present PFRL’s capability to generate fast particle con-
vergence, we show the physical locations of particles during a
localization procedure. First, we present the zone probability
distribution results of E-HCP, which has a consequence on
the particle convergence speed. Figure 16 shows the zone
distribution when the system was started at Pk-1 position
during the Global localization experiment. According to the
normalized rewards table (Figure 14) and the zone probability
distribution (Figure 16), 75% of the particles are distributed
over zone 1, whereas 15% and 10% of the particles are
distributed over zone 2 and 5 respectively. Thus, more particles
are generated in the zones of large likelihood of containing
the ground truth location. Unlike ED-based, PFRL focuses
on the exploration to high-probability zones. Figure 17 shows
the physical distributions of the particles in the Starting state
after a localization failure recovery procedure is triggered.
The ground truth position is located at Pk-1 (see Figure
7). The cyan points represent the particles of the PFRL
method, whereas the red points depict particles of the ED-
based method. As mentioned, in PFRL particles are distributed
based on the normalized rewards table (Figure 14). In the
Starting state, the particles are distributed based on action e3.
Therefore, to recover the system from the global localization
problem, particles are distributed according to the zone prob-
ability distribution given by the zone prediction method E-
HCP. Consequently, particles in PFRL converge faster than
ED-based method, which leads to faster failure recovery in
PFRL.



ground truth
position

(a) Particles distributions after 0.5 s when a local-
ization failure recovery happens

(b) Particle distributions after 1.2 s when a localiza-
tion failure recovery happens

(c) Particles distributions after 1.6 s when a local-
ization failure recovery happens

Figure 17: Particle distributions in PFRL and ED-based approaches. The cyan points represent PFRL particles; the red points
represent ED-based particles; the diamond yellow point represent the ground truth position.

The Kidnapping robot experiment was performed in
scenario 2. The goal of this experiment is to show the failure
recovery capability of our algorithm. In this experiment, we
simulate localization failures by kidnapping all the particles
to a predefined area in the environment. We refer this area
as the K-area (yellow region in the left bottom corner in
Figure 8). After 25 seconds in normal localization operation
along trajectory T-K (trajectory T-K and K-area are depicted
in yellow color in Figure 8), the system is kidnapped to
the K-area. We registered the mean localization errors and
time to recover the system from the localization failure. We
compare the recovery performance of PFRL to ED-based [5]
and PF-based [3]. Figure 18 depicts mean localization error
over time for the three tested localization methods in scenario
2. PFRL recovers around 5 seconds after the failure. ED-
based approach recovers around 11 seconds after the failure.
PF-based (without recovery) solution never recover from the
failure. It is worth to mention that the main difference between
the Global localization and Kidnapping robot experiments is
that in the latter the system must detect the failure to execute
the recovery method. In the Global localization experiment, the
system is aware that it is starting. Thus, the recovery method is
launched immediately after the system starts. Therefore, in the
Kidnapping robot experiment, we test the performance of the
System State Detection Method presented in section III-E3
and the Reinforcement Learning method for robust tracking
resampling presented in section III-E. As it can be seen in
Figure 18, PFRL overcomes by around 50% to the equally
distributed method presented in [5]. Unlike ED-based, PFRL
implements an effective method to detect localization failures.
This method is based on the E-HCP method for zone predic-
tion. Thus, if any particle is placed in the current predicted
zone, the system assumes a failure. Thus, a kidnapping robot
problem is detected immediately when it occurs. Moreover,
PFRL implements an effective reinforcement learning-based
method for recovering the system from failures. Therefore,
after detecting a failure, the system is recovered by sampling
particles based on the normalized rewards (see Figure 14) that
are learned by the reinforcement learning method. This allows
to detect and recover the system in around 5 seconds.
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Figure 18: Scenario 2: Kinapping Robot Problem. Particles
convergence time after a localization failure is detected.
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Figure 19: Scenario 1: Localization error CDF of PFRL (1000
particles), Client-based (500 particles) NLS, k-NN (k=3) and
KF.



Table I: Scenario 1: Localization methods performance

Configuration Mean error S.D 90% Acc.
PFRL (100 Ptc.) 1.45m 0.81m 2.9m
PFRL (500 Ptc.) 1.11m 0.45m 1.5m
PFRL (1000 Ptc.) 0.97m 0.3m 1.3m

Client-based (100 Ptc.) 1.493m 0.907m 3.1m
Client-based (500 Ptc.) 1.267m 0.645m 2.0m
Client-based (1000 Ptc.) 1.515m 0.8188m 2.9m

PF-based (1000 Ptc.) 1.15m 0.61m 2.1m
NLST 3.79m 2.52m 8.0m

k-NN (k=3) 3.32m 1.89m 6.1m
Kalman Filter 3.36m 1.11m 4.1m

3) Best Localization Performance comparison with other
systems: It is difficult to fairly compare our approach
with other state-of-the-art localization approaches (e.g.,
fingerprinting-based, landmark-based, range-based). This
is because indoor localization system performance are
environmental-dependent (i.e., they rely on the presence
of numerous landmarks in the environment), and it is
impossible to duplicate the exact indoor environments in
another indoor areas. Moreover, it is rather hard to implement
all the specific details of an existing solution and repeat
the identical experiment to get the same results that were
collected in another physical indoor environment. Similar
to other localization systems, we compare the performance
of our localization approach with the k-Nearest Neighbors
(k-NN), Nonlinear Least Squares Trilateration (NLST), and
Kalman Filter-based (KF) localization methods. Morevover,
we compare PFRL to another basic particle filter-based
(PF-based) approach which is presented in [3]

Figure 19 shows the CDF of localization errors for the best
performance of PFRL, Client-based, PF-based, k-NN (k=3),
NLST, and KF methods. Table I summarizes the results, which
show that NLST achieves the worst localization performance
with around 8.0m for 90% accuracy. PFRL overcomes NLST
by approximately 83.7% and 74.4% regarding 90% accuracy
and mean error respectively. Moreover, the standard deviation
of PFRL is 88.09% smaller than NLST. k-NN achieves around
6.1m for 90% accuracy with the mean error of 3.32m and
the standard deviation of 1.89m. The KF approach achieves
a 90% accuracy of 4.1m, the mean error is 3.36m and the
standard deviation is 1.11m. Therefore, PFRL overcomes k-
NN by around 78.68%, and KF by around 68.29% considering
90% accuracy. The mean error of the PFRL approach is
71.1% and 70.78% better than for KF, and k-NN respectively.
Experiment results show that PFRL outperforms Client-based,
KF, NLST, and k-NN for accuracy and stability. Although
PF-based achieves high localization performance, PFRL out-
performs PF-based by around 15.7% and 24.6% considering
mean localization error and standard deviation respectively.
This is because PF-based does not have any method to identify
if the AN and the mobile client are located at the same
zone. Thus, the same ranging method is adopted for all the
ANs in PF-based method. Unlike PF-based, PFRL includes a
zone prediction method, which supports to choose the proper
ranging model for each zone. Therefore, PFRL outperforms

Table II: Scenario 2: Localization methods performance

Configuration Mean error S.D 90% Acc.
PFRL (1000 Ptc.) 0.98m 0.49m 1.8m

Client-based (1000 Ptc.) 1.3m 0.65m 2.1m
PF-based (1000 Ptc.) 1.34m 0.7m 2.1m

NLST 4.57m 1.9m 7.0m
k-NN (k=3) 3.83m 1.71m 6.1m

Kalman Filter 3.29m 1.24m 4.9m
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Figure 20: Scenario2: Localization error CDF of PFRL (1000
particles), Client-based (500 particles) NLS, k-NN and KF.

traditional particle filter and fingerprinting-based localization
methods (e.g., k-NN) by combining range-based localization
methods and fingerprinting models.

4) Performance vs Area of Interest: To validate the envi-
ronment independence of PFRL, we chose a second scenario
to deploy the localization system. As mentioned in previous
sections (Section V), scenario 2 is a classroom-alike indoor
scenario at the University of Bern with an area size of
524m2. We set up PFRL with the configuration that achieved
the best performance on experiments executed in scenario 1.
Figure 8 depicts scenario 2 and trajectory 5, which was used
to test the localization approaches. Table II summarizes the
mean tracking error, standard deviation and 90% accuracy.
Figure 20 shows the CDF of localization errors for the best
performance of PFRL, Client-based, PF-based, k-NN (k=3),
NLST and KF methods. PFRL achieves around 0.98m for
mean localization error, which outperforms Client-based, PF-
based, NLST, K-NN and KF by around 24.6%, 24.8%, 78.5%,
74.1% and 70.2% respectively. Although the high localization
performance of PFRL in scenario 2, the mean error, standard
deviation and 90% accuracy were slightly increased compared
to experiments in scenario 1. This reflects that the density
of ANs along the area of interest influence the localization
performance. In scenario 1 we deployed 8 ANs, whereas in
scenario 2 we deployed 7 ANs. As a conclusion, the proposed
PFRL could guarantee best performance in multiple indoor
areas.



VI. CONCLUSIONS

This work proposed a particle filter-based reinforcement
learning (PFRL) approach for the autonomous robust wire-
less indoor positioning system. The system is validated on
a distributed machine learning-based network architecture,
which includes a client layer and an edge layer. The client
layer includes mobile devices that host lightweight ML al-
gorithms (supervised ML algorithms) to recognize zones,
while the edge layer includes edge server that hosts heavy
machine learning operations to run complex particle filter
and reinforcement learning calculations. The PFRL algorithm
includes several components. An efficient ensemble predic-
tor that could achieve high zone prediction performance by
integrating HMM with discriminative learning techniques.
Thanks to the fusion of fingerprinting and zone transition in-
formation, our zone prediction method outperforms traditional
fingerprinting approaches. Additionally, we proposed an effi-
cient probabilistic model to fuse zone detection, radio-based
ranging, IMU, and floor plan information to provide stable
and accurate indoor localization. A reinforcement learning
approach is applied on top of the proposed particle filter to
improve the system robustness against positioning failures.
We evaluated our localization system in two complex real-
world indoor environments. Evaluation results show that our
proposed method can deliver more accurate localization results
and is more robust to localization failures than traditional
indoor localization methods. Thanks to the reinforcement
learning approach, the proposed PFRL solution could make the
localization system converge much faster than other systems
without failure recovery mechanism.

ACKNOWLEDGMENT

This work was partly supported by the Swiss National Sci-
ence Foundation via the Intelligent Mobility Services project
(200021 184690).

REFERENCES

[1] H. Abdelnasser, R. Mohamed, A. Elgohary, M. Alzantot, H. Wang,
S. Sen, R. Choudhury, and M. Youssef, “Semanticslam: Using envi-
ronment landmarks for unsupervised indoor localization.” IEEE Trans-
actions on Mobile Computing, vol. 15, pp. 1770–1782, 2016.

[2] P. Bahl and V. Padmanabhan, “Radar: an in-building rf-based user
location and tracking system.” Joint Conference of the IEEE Computer
and Communications Societies. Proceedings, vol. 19, 2000.

[3] J. Carrera, Z. Li, Z. Zhao, and T. Braun, “A real-time indoor tracking
system in smartphones.” Proceedings of the 19th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM), November 2016.

[4] J. Carrera, Z. Zhao, and T. Braun. (2018) Room recognition
using discriminative ensemble learning with hidden markov models
(submitted). [Online]. Available: http://arxiv.org/abs/1804.09005

[5] J. Carrera, Z. Zhao, T. Braun, Z. Li, and A. Neto, “A real-time robust
indoor tracking system in smartphones,” Elsevier Computer Communi-
cations, vol. 117, pp. 104–115, February 2018.

[6] J. Carrera, Z. Zhao, T. Braun, H. Luo, and F. Zhao. (2018) Discriminative
learning-based smartphone indoor localization (submitted). [Online].
Available: http://arxiv.org/abs/1804.03961

[7] F. G. D. Hol, B. Schon. (2018) On resam-
pling algorithms for particle filters. [Online]. Available:
http://people.isy.liu.se/rt/schon/Publications/HolSG2006.pdf

[8] A. Doucet, S. Godsill, and C. Andrieu, “On sequential monte carlo
sampling methods for bayesian filtering,” Statistics and computing,
vol. 10, no. 3, pp. 197–208, 2000.

[9] I. Fette and A. Melnikov, “The websocket protocol,” Internet Engineer-
ing Task Force (IETF), 2011.

[10] G. Forney, “The viterbi algorithm,” Proceedings of the IEEE, vol. 61,
pp. 268–278, March 1973.

[11] D. Fox, W. Burgard, and S. Thrun, “Markov localization for mobile
robots in dynamic environments,” J. Artif. Int. Res., vol. 11, no. 1, pp.
391–427, Jul. 1999.

[12] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localization:
Efficient position estimation for mobile robots,” AAAI/IAAI, vol. 1999,
no. 343-349, pp. 2–2, 1999.

[13] S. He and G. Chan, “Wi-fi fingerprint-based indoor positioning:recent
advances and comparisons,” IEEE Communications Survey Tutorials,
2016.

[14] S. He, S. G. Chan, L. Yu, and N. Liu, “Calibration-free fusion of step
counter and wireless fingerprints for indoor localization,” Proceedings
of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (UbiComp 2015), 2014.

[15] S. Hilsenbeck, D. Bobkov, G. Schroth, R. Huitl, and E. Steinbach,
“Graph-based data fusion of pedometer and wifi measurements for
mobile indoor positioning,” Proceedings of the 2014 ACM International
Joint Conference on Pervasive and Ubiquitous Computing (UbiComp
2014), 2014.

[16] F. Hong, H. Chu, L. Wang, Y. Feng, and Z. Guo, “Pocket mattering:
Indoor pedestrian tracking with commercial smartphone,” International
Conference on Indoor Positioning and Indoor Navigation, 2012.

[17] F. Hong, Y. Zhang, M. Wei, Y. Feng, and Z. Guo, “Wap: Indoor
localization and tracking using wifi-assited particle filter,” 39th IEEE
Conference on Local Computer Networks, pp. 210–217, 2014.

[18] j. Marsan. (2018) Weka-for-android. [Online]. Available:
https://github.com/rjmarsan/Weka-for-Android

[19] R. Joshi. (2016, Mar.) Accuracy, precision, recall and f1 score: Inter-
pretation of performance measures.

[20] D. Kamisaka, T. Watanabe, S. Muramatsu, A. Kobayashi, and
H. Yokoyama, “Estimating position relation between two pedestrians
using mobile phones,” in Pervasive Computing, J. Kay, P. Lukowicz,
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