Predator traits determine food-web architecture across ecosystems

Brose, Ulrich; Archambault, Phillippe; Barnes, Andrew D.; Bersier, Louis-Felix; Boy, Thomas; Canning-Clode, João; Conti, Erminia; Dias, Marta; Digel, Christoph; Dissanayake, Awantha; Flores, Augusto A. V.; Fussmann, Katarina; Gauzens, Benoit; Gray, Clare; Häussler, Johanna; Hirt, Myriam R.; Jacob, Ute; Jochum, Malte; Kéfi, Sonia; McLaughlin, Orla; ... (2019). Predator traits determine food-web architecture across ecosystems. Nature ecology & evolution, 3(6), pp. 919-927. Nature Publishing Group 10.1038/s41559-019-0899-x

[img] Text
2019_NatEcolEvol.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (2MB)

Predator–prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator–prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator–prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) > Plant Ecology
08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS)

UniBE Contributor:

Jochum, Malte

Subjects:

500 Science > 580 Plants (Botany)

ISSN:

2397-334X

Publisher:

Nature Publishing Group

Language:

English

Submitter:

Peter Alfred von Ballmoos-Haas

Date Deposited:

24 Jul 2019 08:18

Last Modified:

05 Dec 2022 15:29

Publisher DOI:

10.1038/s41559-019-0899-x

PubMed ID:

31110252

BORIS DOI:

10.7892/boris.131348

URI:

https://boris.unibe.ch/id/eprint/131348

Actions (login required)

Edit item Edit item
Provide Feedback