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Abstract

Human rhinovirus infection (HRVI) plays an important role in asthma exacerbations and is

thought to be involved in asthma development during early childhood. We hypothesized that

HRVI causes differential DNA methylation and subsequently differential mRNA expression

in epithelial cells of children with asthma. Primary nasal epithelial cells from children with

(n = 10) and without (n = 10) asthma were cultivated up to passage two and infected with

Rhinovirus-16 (RV-16). HRVI-induced genome-wide differences of DNA methylation in

asthmatics (vs. controls) and resulting mRNA expression were analyzed by the Human-

Methylation450 BeadChip Kit (Illumina) and RNA sequencing. These results were further

verified by pyrosequencing and quantitative PCR, respectively. 471 CpGs belonging to 268

genes were identified to have HRVI-induced asthma-specifically modified DNA methylation

and mRNA expression. A minimum-change criteria was applied to restrict assessment of

genes with changes in DNA methylation and mRNA expression of at least 3% and least 0.1

reads/kb per million mapped reads, respectively. Using this approach we identified 16

CpGs, including HLA-B-associated transcript 3 (BAT3) and Neuraminidase 1 (NEU1),

involved in host immune response against HRVI. HRVI in nasal epithelial cells leads to spe-

cific modifications of DNA methylation with altered mRNA expression in children with

asthma. The HRVI-induced alterations in DNA methylation occurred in genes involved in the

host immune response against viral infections and asthma pathogenesis. The findings of
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our pilot study may partially explain how HRVI contribute to the persistence and progression

of asthma, and aid to identify possible new therapeutic targets. The promising findings of

this pilot study would benefit from replication in a larger cohort.

Introduction

Asthma is the most common chronic disease affecting children, with an increasing prevalence

particularly in westernized countries since the latter half of the 20th century [1–3]. The patho-

physiological changes underlying asthma development are complex, comprising airway

inflammation combined with excessive airway smooth muscle growth, alterations in patterns

of vascularization and innervation, as well as changes of the epithelial-mesenchymal trophic

unit [4]. Known risk factors for asthma development include a family history of atopic disease,

passive smoke exposure, and allergic sensitization to food and/or inhaled allergens.

The theory of early viral infections in the development of asthma has been well established.

While Respiratory Syncytial Virus was initially considered to be the most important viral path-

ogen risk-factor in asthma development, Human Rhinovirus (HRV) has recently been recog-

nized as a major etiologic factor in wheezing illnesses with a significant link to asthma

development during childhood [5, 6].

HRV is a picornavirus, a single-stranded RNA virus belonging to the enterovirus genus,

which consists of more than 160 forms, classified into A, B and C [7]. HRV-A and -C have

been linked to lower respiratory tract infections (LRTIs) with increased morbidity in affected

children. Individuals with atopic asthma suffer from more frequent symptomatic respiratory

tract infections (RTI) and have more severe and longer-lasting respiratory symptoms following

a HRV infection (HRVI) [8].

Evidence of HRVI involvement in the origin of asthma first emerged from a Finnish study

whereby 60% of infants in this cohort who presented with a HRVI and wheezing in the first 2

years of life, went on to develop asthma by age 5 [9]. Similarly, in children with a positive fam-

ily history of atopy, HRV-induced wheezing during the first 3 years of life was associated with

a nearly 10-fold increased risk for developing asthma by age 6 [5]. Other studies have demon-

strated that HRV-induced wheezing episodes are positively associated with asthma risk [6, 10,

11]. In addition, HRV has been postulated to trigger acute wheezing episodes and asthma exac-

erbations. HRV is frequently isolated in the upper airways of children and adolescents during

asthma exacerbations [12]. Moreover, children with asthma have higher antibody titers spe-

cific to HRV-A, and to a lesser extent HRV-B, compared to non-asthmatic controls [13].

Taken together, HRV is believed to play a pivotal role in asthma development and deterio-

ration. However, the association of HRVI with asthma does not allude to a causal relationship.

It remains unknown whether asthma development and/or deterioration is a direct conse-

quence of viral infection in early life, or simply to host predisposition to disease development,

or a combination of both.

We hypothesize that HRVIs lead to epigenetic modifications of immunoregulatory genes in

the airway epithelium. Epigenetic modifications refer to genetic alterations that affect gene

expression without affecting the genomic mechanisms which register, mark, or perpetuate

gene activity states. DNA methylation is one of the main epigenetic mechanisms occurs and

involves the addition of a methyl group to the 50 position of a cytosine followed by guanine

(CpG dinucleotide) [14].

Rhinovirus infections in children with asthma
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In this study, we aimed to characterize the impact of HRVI on epigenetic modifications,

specifically DNA methylation, in genome-wide methylation arrays of the primary human nasal

epithelial cells (representative of the airway epithelium) of children with doctor-diagnosed

asthma as participants of the ALLIANCE cohort and healthy children without asthma (con-

trols). We hypothesized that HRVI induces a differential pattern of DNA methylation (RV-

infection induced differential DNA methylation, RIDM) and mRNA expression (RV-infection

induced differential mRNA expression, RIRE) in nasal epithelial cells of children with and with-

out asthma. Asthma-specific modifications could play an important role in the host-pathogen-

interaction in viral infections and in the development and progression of asthma.

Materials and methods

Study population

From January 2014 to February 2015, in Lübeck, Germany, 10 children with doctor-diagnosed

asthma and 10 healthy children without asthma were recruited into the study.

The study design and analysis strategy is displayed in Fig 1. The study was approved by the

Ethics Committee of the University of Lübeck (Vote 12–215, December 18th, 2012) and

informed written consent was obtained from the parents or legal guardians of all children par-

ticipating in this study. This study is registered at clinicaltrials.gov (NCT02496468). All sub-

jects had to be aged 6 to 18 years, be born from a full-term pregnancy (�37 weeks), and have

Fig 1. Study design and data analysis strategy.

https://doi.org/10.1371/journal.pone.0205275.g001
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an active/passive understanding of German. For children with asthma recruitment into the

ALLIANCE cohort included additionally meeting the following inclusion criteria: an asthma

diagnosis based on the 2014 Global Initiative for Asthma (GINA) guidelines [15] which rec-

ommended a history of characteristic symptom patterns (i.e. wheezing, shortness of breath,

chest tightness, and cough) and document evidence of airflow limitation, bronchodilator

reversibility testing, or a positive bronchial provocation. As a baseline assessment, all eligible

subjects underwent a physical examination, completed lung function (forced expiratory vol-

ume in 1 second [FEV1] and forced vital capacity [FVC]) and fractional exhaled nitric oxide

(FeNO) (marker of airway inflammation) assessments, provided history of doctor-diagnosed

allergic rhinitis and allergic dermatitis, completed questionnaires, and provided a blood sam-

ple for routine clinical analysis. Allergic sensitization at baseline was recorded, defined as at

least one specific IgE against inhaled or ingested allergens above a level of> 0.7 kU/L (Euro-

LINE, EuroImmun, Lübeck, Germany). Steroid use at baseline was recorded, defined as no use

of inhaled corticosteroids (ICS) for 4 weeks prior to the clinic visit. Individuals with fever

(>38.5˚C) or signs of upper respiratory tract infections (URTIs) or LRTIs in the 2 weeks prior

to the clinic visit were excluded from the study.

Primary nasal epithelial cell culture

Nasal brushings were performed on each subject using a 3 mm IDB-G brush (Top Caredent,

Zürich, Switzerland). Primary human nasal epithelial cells were then cultivated on 6 well plates

(Sarstedt, Nümbrecht, Germany) pre-coated with collagen (1:50 PureCol, Advances Bio

Matrix, Carlsbad, USA) and supplemented with BEGM (Lonza, Basel, Switzerland).

HRVI was performed in vitro, by exposing 3x105 nasal epithelial cells (passage 2) from each

subject to an infection with Rhinovirus-16 (RV-16) (virus stock: 9x109 RV-16/mL in 10 mM

EDTA, 1 mM Tris, HeLa origin, sucrose gradient purified) in 1 mL BEGM, at a multiplicity of

infection (MOI) of 10. The nasal epithelial cells were incubated for 1 hour at room tempera-

ture, agitated every 5 minutes. 1 mL of BEGM was then added to the culture. This experiment

was duplicated as a MOCK-infection (virus-free) experiment with 3x105 nasal epithelial cells

exposed to buffer only without RV-16 (10 mM EDTA, 1 mM Tris). Epithelial cells were har-

vested 48 hours post infection using trypsin-EDTA (PAA, L11-003) and stored in 350 μl

RLT-Buffer (Qiagen, Hilden, Germany) at -70˚C prior to DNA and RNA extraction.

Successful HRVI was confirmed by the positive detection of interleukin-6 (IL6) and 8 (IL8)

expression in human nasal epithelial cell culture supernatants, using a bead ELISA Bio-Plex

Pro™ Human Chemokine 40-plex Assay (BioRad, Hercules, USA) with a Bio-Plex MAGPIX

Multiplex Reader (BioRad, Hercules, USA), as per manufacturer’s specifications.

Genome wide analysis of DNA methylation and mRNA expression

DNA and RNA were isolated from HRVI and MOCK-infected primary nasal epithelial cells

from children with and without asthma, using the AllPrep DNA/RNA/Protein Mini Kit (Qia-

gen, Hilden, Germany). DNA concentration was measured using the FLUOstar Omega-Sys-

tem (BMG-Labtech, Ortenberg, Germany). The RNA concentration and quality was

quantified with the Agilent RNA6000 Nano Chip Kit (Agilent, Santa Clara, USA).

DNA methylation was quantified using a HumanMethylation450 BeadChip Kit and mRNA

expression was quantified using RNA sequencing measurements. These assays were carried

out at the Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, fol-

lowing the manufacturer’s protocols.

Genome-wide analysis of loci specific DNA methylation was performed using 500 ng bisul-

fite-converted genomic DNA (EZ DNA methylation Kit, Zymo Research, D5001) using a

Rhinovirus infections in children with asthma
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HumanMethylation450 BeadChip Kit (Illumina, San Diego, USA). The chip visualisation was

performed with the HiScanSQ System (Illumina, San Diego, USA). β-values were calculated as

the fraction signal from the methylated beads over the sum of methylated and unmethylated

bead signals. β-values were Illumina normalized (Partek Genomic Suite 6.6, Partek, Chester-

field, USA). The CpG to gene mapping was conducted following Illumina specifications.

For RNA sequencing, 1000 ng of total RNA (RNA integrity number (RIN) >8) were

applied using a HiSeq PE Cluster Kit v4, cBot (Illumina, San Diego, USA), and a HiSeq SBS

Kit v4 (Illumina, San Diego, USA) and the HiSeq2500 System (Illumina, San Diego, USA).

The RNA sequencing reads were further processed with Partek Flow (Software Partek Flow

4.0, Partek, Chesterfield, USA). The average of total reads (Read Length = 120 bp) in a sample

was 28.7x106 reads with an average quality score of 36.2. Reads with a quality score < 20 were

removed. Reads were aligned to the human genome using the GSNAP algorithm (version 3)

and aligned 95.1% of the reads in average in a cell culture sample. Before the alignment of the

reads adapter sequences were removed.

RNA expression analysis was performed after reads per kilobase per million mapped reads

(RPKM) normalisation.

Pyrosequencing

The findings of DNA methylation quantification, namely CpG cg24890294, were verified

using pyrosequencing. Bisulfite conversion of genomic DNA was achieved with the EpiTect

Bisulfit Kit (input 200 ng genomic DNA, Qiagen, Hilden, Germany). Primers for amplification

(F: AGATGAATGTAAAAGAGTTTAAGGAGTAT, R: CCCAACCCCCTTACTATATTCCTA-bio)

and sequencing (S: AGTATATTGTTGTTTTTGTTAGT) were designed using PyroMark Assay

Design 2.0 software (Qiagen, Hilden, Germany). Amplification of the sequencing template

region for pyrosequencing was performed using a PyroMark PCR Kit 200 (Qiagen, Hilden,

Germany) under recommended PCR conditions and on 100 ng of bisulfite-converted DNA

per sample. Sequencing of the specific template was performed using a Q24 Pyromark System

(Qiagen, Hilden, Germany) with PyroMark Gold Reagents 5 x 24 Kit (Qiagen, Hilden, Ger-

many). The verification of further CpGs was not performed due to limited DNA samples.

Quantitative PCR

The results of RNA sequencing (as described above) were verified by quantitative PCR (qPCR).

Four genes were selected for quantification: IL6, IL8, HLA-B-associated transcript 3 (BAT3)
and neuraminidase 1 (NEU1). Expression of IL6, IL8, BAT3 and NEU1 was quantified by com-

plementary DNA (cDNA) analysis using the 7900HT Fast Real-Time PCR System (Thermo-

Fisher Scientific, Waltham, USA) with Taqman Universal PCR Master Mix (Life Technologies

Carlsbad, USA), and PrimeTimeMini qPCR Assays (IDT, BAT3Hs.PT.58.22627504, IL6Hs.

PT.58.39866843.g, IL8Hs.PT.58.38869678.g, NEU1Hs.PT.58.19158252.5, and the reference

genes REEP5Hs.PT.58.39651019, RPS18Hs.PT.58.14390640, Coralville, USA). The conversion

of 300 ng RNA into cDNA was performed using a SuperScriptVILO cDNA Synthesis Kit (Invi-

trogen, Carlsbad, USA) and a thermocycler (Peqlab, peqstar 2x Thermocycler, Erlangen,

Germany).

Data analysis

Prior to the analysis, the difference between HRVI and MOCK infection (Δ = HRVI-MOCK)

was calculated for all CpG β-values and all RPKM mRNA expression values for each donor.

The resulting difference of DNA methylation (RIDM) and mRNA expression (RIRE) was

assessed. For both datasets, an analysis of variance (ANOVA) (Software Partek Genomic Suite

Rhinovirus infections in children with asthma
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6.6, Partek, Chesterfield, USA) was performed to detect asthma-specific RIDM CpGs as well as

asthma-specific RIRE in children with asthma compared with children without asthma (differ-

ences indicated by a p-value of< 0.05). These findings were further analysed to identify those

genes were both, RIDM and RIRE, showed differences in asthma vs. control. Minimum-

change thresholds were applied to filter the findings (3% for DNA methylation and 0.1 RPKM

for mRNA expression), which were subjected to verification by pyrosequencing (DNA methyl-

ation) and qPCR (mRNA expression. Resulting CpGs were checked for known single nucleo-

tide polymorphisms (SNPs). Linear models were used to analyze the correlation between

modified DNA methylation and corresponding mRNA expression values. The resulting r2 val-

ues described the strength of the correlation (fit quality). For the statistical analysis of qPCR,

pyrosequencing, and bead ELISAs a non-parametric t-test (Mann-Whitney test) was applied.

For the discrimination of allergic sensitization and steroid use Fisher’s exact test was used. The

analysis of viral-modified cellular process pathways was performed using the software tool

GseaPreranked (gene set enrichment analysis, GSEA, Broad Institute, v2.2.3, Boston, USA),

the weighted enrichment statistic setting and the Kegg database (v5.2). Pathways with� 1000

or� 5 affected genes were excluded from the analyses.

Comparison of our results with the Inner City Asthma Consortium

The results obtained in our study were verified against those of the Inner City Asthma Consor-

tium [16]. The β-values of the MOCK-infected nasal epithelial cells from children with and

without asthma in our study were analysed as described above, and the asthma-specific CpG

methylations were compared to those reported in the Inner City Asthma Consortium. The

analysis was focused on single CpGs with the most pronounced DNA methylation changes

reported by Yang et al and their method validation CpG set [16].

Results

Study population

Nasal epithelial cells were collected from 10 children with asthma (5 boys, mean age 11.6

years) and 10 children without asthma (5 boys, mean age 11.6 years), all subjects of the ALLI-

ANCE cohort. As expected, a greater number of children with asthma had allergic sensitization

and reported steroid use, when compared to children without asthma. In contrast, no differ-

ences were found in forced expiratory volume in 1 second (FEV1) % predicted, FEV1/ FVC, or

NO (Table 1).

Model validation

The in vitromodel of simulated HRVI in this study, with the infection of human nasal epithe-

lial cells with RV-16 (RV-16 virus stock: 9x109 RV-16/mL in 10 mM EDTA, 1 mM Tris, HeLa

origin, sucrose gradient purified) demonstrated increased IL-6 and IL-8 protein and mRNA

expression in the HRVI-cell cultures compared with MOCK-infected cell cultures (Fig 2).

RIDM and RIRE are significantly different in asthmatic nasal epithelial

cells

The analysis of genome-wide methylation patterns after HRVI identified 27,517 CpGs, which

showed significant RIDM (p-value <0.05, Fig 3A). The largest RIDM was detected for

cg00063477, EIF1AY (+41%) and cg00061679, DAZ1, DAZ4 (-53%) when asthma was com-

pared with controls. In 10,498 CpGs RIDM was increased, while in 15,155 CpGs, RIDM

showed a decrease (asthma vs. controls). These 27,517 viral-modified CpGs were then
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classified into 11 different functional groups by GseaPreranked analysis, of which 10 had

decreased RIDM and 1 pathway had increased RIDM (Table 2).

At the mRNA level, 1,303 mRNAs were identified to display RIRE in asthma, when com-

pared to controls (Fig 3B). There were 512 genes with increased expression and 791 genes with

decreased expression after HRVI (asthma vs. control).

After matching the result lists of RIDM and RIRE, 471 CpGs remained which were signifi-

cantly different between asthmatics and controls, comprising in total 268 genes. RIDM and

RIRE are displayed in Fig 3C. Following minimum-change-filtering criteria, the number of

possible targets was focused to 16 CpGs (Fig 4, RIDM and RIRE given in S1 and S2 Tables).

The genomic position and function of the affected genes are listed in Table 3. Of these 16

modified CpGs, 4 were localized on chromosome 6 (chr6p21.32-p21.33), and 2 of the 16 iden-

tified CpGs, BAT3 and NEU1, showed a correlation between DNA and mRNA values, and

were previously investigated in the context of asthma and HRVI.

Table 1. Characteristics of the study population.

Control (N = 10) Asthma (N = 10) p value

Males (n) 5 5

Atopy (n) 0 9 0.0001

Steroid naive (n) 10 2 0.0055��

Allergic sensitisation (n) 1 8 0.0055��

Doctors Diagnosis of AR 0 4 0.0010��

Doctors Diagnosis of AD 0 3 0.0035��

Mean SD Mean SD

Age (years) 11.6 (8–15) 2.2 11.6 (8–15) 2.5 0.9705�

Weight (kg) 44.9 (28–68) 10.8 43.9 (29–66) 13.24 0.9097�

FEV1% predicted 96.5 11.8 100.2 9.7 0.4055�

FEV1/FVC (%) 98.36 14.5 90.2 13.3 0.9607�

NO (ppb) 16. 8 6.7 32.8 33.2 0.8063�

AR–allergic rhinitis, AD–atopic dermatitis, SD–standard deviation, FEV1 –forced expiratory volume in 1 second, FVC–forced vital capacity, NO- Nitric Oxide

� nonparametric t-test (Mann-Whitney test)

��Fisher’s exact test

https://doi.org/10.1371/journal.pone.0205275.t001

Fig 2. Increased expression of IL6 and IL8 in human nasal epithelial cells after HRVI. IL6 (A) and IL8 (B) protein

(supernatant concentration) and mRNA expression (qPCR, ΔCT, RPS18 as reference gene) were increased in human

nasal epithelial cells after HRVI (n = 20, Mann-Whitney test). mRNA expression was verified by RNA sequencing

(RPKM).

https://doi.org/10.1371/journal.pone.0205275.g002
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The CpG cg24890294 is localized in exon 3 of the HLA-B-associated transcript 3 (BAT3)

gene. The median percentage difference of DNA methylation (ΔHRVI-MOCK) after HRVI

between asthmatics and controls was -3.4% (Fig 5A). This finding was confirmed by pyrose-

quencing (Fig 5B). Furthermore, we detected decreased mRNA expression after HRVI in

asthma compared to control subjects (-0.62 RPKM) using RNA sequencing and qPCR (Fig 5C

and 5D). The correlation between HRVI-induced modification of DNA methylation and the

change in mRNA expression (Fig 5E) suggests the possibility that cg24890294 is involved in

the regulation of BAT3mRNA expression.

Further, two CpGs in BAT3 g (cg14661811 and cg26710858) were also demonstrated to

have differential DNA methylation in asthma compared with control (Table 4). A multi-facto-

rial analysis of cg14661811, cg26710858, and cg24890294 was carried out to determine the

influence of these CpGs on BAT3mRNA expression, and only a model composed of

cg24890294 and cg14661811 correlated to the mRNA expression values of BAT3 (Fig 6).

The second gene with significant RIDM and RIRE in asthmatics vs. controls was Neur-

aminidase 1 (NEU1). Similar to what we observed in BAT3, NEU1 had decreased DNA meth-

ylation in cg05550349 (exon 3) after HRVI in children with asthma compared to controls. The

mean value of RIDM (asthma vs. control) in this CpG was -4.9% (Fig 7A). NEU1mRNA

expression after HRVI in nasal epithelial cells was reduced in children with asthmaas

Fig 3. Distribution of p-values within RIDMs and RIREs of asthmatics vs controls. Changes were identified for

individual CpG DNA methylation (A) and mRNA expression (B) between children with and without asthma, using

ANOVA. Representation of the HRVI-induced associated changes (Δ = HRVI-MOCK) of CpG DNA methylation and

mRNA expression change are shown in (C). The crosses display the16 targets with a HRVI-induced change in DNA

methylation (minimum-change 3%) and mRNA expression (minimum-change 0.1 RPKM). Red crosses represent the

changes in BAT3 andNEU1.

https://doi.org/10.1371/journal.pone.0205275.g003

Table 2. Up- and down-regulated pathways from RIDMs in nasal epithelial cells of asthmatics vs. controls.

Down-regulated pathways p value ES number of CpGs

Dorso ventral axis formation 0.002 -0.61 15

Focal adhesion 0.005 -0.37 130

ECM receptor interaction 0.008 -0.43 58

Adherens junction 0.009 -0.43 56

Notch signalling pathway 0.019 -0.45 36

Lysine degradation 0.035 -0.46 31

WNT signalling pathway 0.036 -0.35 97

Complement and coagulation Cascades 0.038 -0.43 35

Inositol phosphate metabolism 0.039 -0.47 25

Vibrio cholerae infection 0.047 -0.43 31

Up-regulated pathways

Olfactory transduction 0.002 0.24 76

ES–enrichment score

https://doi.org/10.1371/journal.pone.0205275.t002
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compared to controls (-1.07 RPKM, Fig 7B and 7C). The correlation between RIDM and RIRE

is displayed in Fig 7D. Within NEU1, 4 additional CpGs with HRVI-induced asthma-specific

DNA methylation modifications were found (Table 4), though these changes were less than

3% and were thus not further investigated. A multi-factorial analysis could not confirm any

involvement of these 4 CpGs in NEU1mRNA expression regulation.

Fig 4. Genes with significant RIDM and RIRE in asthma vs control. Minimum-changes of 3% for DNA methylation

(DNA met) and of 0.1 RPKM for mRNA expression (RNA exp) were applied to identify HRVI-induced asthma-

specific modifications. HRVI-induced asthma-specific changes in DNA methylation (RIDM) and mRNA (RIRE)

expression were analysed by ANOVA (�). Linear models were applied to correlate Δ DNA met / Δ RNA exp values

(��).

https://doi.org/10.1371/journal.pone.0205275.g004

Table 3. Location and function of genes with RIDM (minimum-change 3%) and RIRE (minimum-change 0.1 RPKM) in nasal epithelial cells from children with

asthma.

Gene CpG Position Chromosome Intron/exon Function�

AGPAT1 cg02525705 6p21.32 chr6:32145146 Intron 1/6 transferase activity, enzyme converts lysophosphatidic acid into phosphatidic acid

BAT3 cg24890294 6p21.33 chr6:31617323 Exon 3/25 control of apoptosis

NEU1 cg05550349 6p21.33 chr6:31828980 Exon 3/6 lysosomal enzyme

ANAPC11 cg08119847 17q25.3 chr17:79853461 Intron 3/3 ubiquitin ligase or transferase activity

MGST3 cg09553581 1q24.1 chr1:165603690 Intron 1/5 glutathione transferase or peroxidase activity

CCT6A cg23839680 7p11.2 chr7:56118238 prior Exon 1 poly(A) RNA and unfolded protein binding

MICB cg20240154 6p21.33 chr6:31464981 Intron 1/4 antigen and natural killer cell lectin-like receptor binding

SMN1 cg04281426 5q13.2 chr5:69345099 prior Exon

1/7

protein and RNA binding

LOC442454 cg03897851 Xp11.21 chrX:56764294 Intron 2/2 unknown

KLHL8 cg03129732 4q22.1 chr4:88084298 Exon 10/10 substrate-specific adapter for ubiquitination and degradation of RAPSN (Receptor Associated

Protein of the Synapse)

SLC16A3 cg07012687 17q25.3 chr17:80195180 Exon 4/5 poly(A) RNA binding and transmembrane transporter activity

GP1BA cg07892449 17p13.2 chr17:4835627 Exon 1/2 Integrin alpha IIb beta3 signalling and thrombin receptor activity

DNAJC7 cg21219666 17q21.2 chr17:40166108 Intron 1/13 heat shock protein binding

VDAC2 cg20673929 10q22.2 chr10:76990994 Exon 11/11 nucleotide binding and voltage-gated anion channel activity

FBXO7 cg17197051 22q12.3 chr22:32870183 prior Exon

1/9

protein kinase binding and ubiquitin-protein transferase activity

TP53I3 cg22999525 2p23.3 chr2:24300821 Intron 4/4 protein homodimerization activity and transferase activity

� http://www.genecards.org/

https://doi.org/10.1371/journal.pone.0205275.t003
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Comparison of the ALLIANCE DNA methylation findings to the Inner

City Asthma Consortium

The differences in DNA methylation between children with and without asthma that were

found in our study were compared with the published data of the Inner City Asthma Consor-

tium [16]. In their dataset, Yang et al. identified asthma-specific basal DNA methylations in

nasal epithelial cells from children with (n = 66 children) and without asthma (n = 36 chil-

dren), using also the HumanMethylation450 BeadChip Kit and pyrosequencing. The CpGs

with most pronounced DNA methylation differences (asthma vs. control) as reported by Yang

et al. were compared to our dataset (ALLIANCE dataset). We identified 14 out of the 20 most

pronounced asthma-specific CpGs of the Inner City Asthma Consortium in our ALLIANCE

dataset with comparable DNA methylation differences (Table 5).

Discussion

This is, to our knowledge, the first time that HRVI-induced genome-wide differences in DNA

methylation and coupled gene expression have been analysed in primary paediatric airway epi-

thelial cells of asthmatics and controls. 471 CpGs were identified as having significant RIDM

coinciding with RIRE. Of these, 16 showed a change in DNA methylation of greater than 3%

which were accompanied by an mRNA expression change greater than 0.1 RPKM.

Fig 5. RIDM of cg24890294 in BAT3 in nasal epithelial cells of asthmatic and controls. Changes in DNA

methylation were detected with a HumanMethylation450 BeadChip Kit (A), verified by pyrosequencing (B), and

modified mRNA expression (ΔHRVI-MOCK) detected by RNA sequencing (C) and qPCR (D). The correlation

between change in DNA methylation of cg24890294 and change in mRNA expression of BAT3 (E). Crosses represent

children with asthma and the triangles represent controls.

https://doi.org/10.1371/journal.pone.0205275.g005

Table 4. CpGs with RIDM in BAT3 and NEU1 in children with asthma.

CpG Gene p value HRVI-induced Δ DNA met (%) change (asthma-control)

cg14661811 BAT3 0.0326 1.4

cg24890294 BAT3 0.0027 -3.4

cg26710858 BAT3 0.0492 -0.7

cg00890041 NEU1 0.0159 0.5

cg01427769 NEU1 0.0344 1.0

cg05550349 NEU1 0.0039 -4.9

cg16194451 NEU1 0.0251 1.4

cg19036153 NEU1 0.0493 1.0

https://doi.org/10.1371/journal.pone.0205275.t004
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A genome-wide DNA methylation study demonstrated that HRVI led to specific changes

in the levels of nasal cell DNA methylation in adult asthmatics compared with controls [17].

Consistent with the findings of this adult study, our study confirmed 17 out of the 27 HRVI-

induced DNA methylation modifications on gene level reported by McErlean et al. [17]. How-

ever, none of the CpGs and associated genes reported by McErlean et al. remained in the top

target list for this study, likely a result of the very stringent cut-offs for changes of DNA meth-

ylation and mRNA expression applied during the minimum-change-filtering process.

This study focused on genes with modified DNA methylation and mRNA expression in

response to a viral infection, and those previously reported to be important in asthma. In our

cohort, HRVI-induced BAT3 expression was reduced in children with asthma compared with

Fig 6. Linear model of cg24890294 and cg14661811 DNA methylation-dependent mRNA expression of BAT3.

Crosses represent the data points of children with asthma and the triangles represent those children without asthma

(r2 = 0.15 for the linear model).

https://doi.org/10.1371/journal.pone.0205275.g006

Fig 7. RIDM (cg05550349) and RIRE of NEU1 for asthmatics and controls. RIDM were detected with a

HumanMethylation450 BeadChip Kit (A) and RIRE was detected by mRNA sequencing (B) and qPCR (C). The

correlation between change in DNA methylation in cg05550349 with change in mRNA expression ofNEU1 (D).

Crosses represent children with asthma and the triangles represent controls.

https://doi.org/10.1371/journal.pone.0205275.g007
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children without asthma. BAT3, also known as HLA-B-associated transcript 6 (BAG6),

encodes for a cytoplasmic protein which is involved in mammalian cell apoptosis and prolifer-

ation [18, 19]. BAT3 is also involved in the activation process of natural killer cells initiating

IFN-γ and TNF-α cytokine release [20, 21]. It is reported that airway epithelial cells of individ-

uals with asthma have a decreased ability to increase IFN-γ production during HRVI [22].

IFN-γ is central in the initiation of the anti-viral immune response [23]. The reported reduced

IFN-γ production by epithelial cells and potentially by natural killer cells in asthmatics, might

be a result of decreased BAT3 expression after HRVI, and could explain the increased suscepti-

bility of asthma patients to LRTIs [8].

Another gene identified in our study and involved in NK cell activation is MHC Class I

Polypeptide-Related Sequence B (MICB). MICB is reported to bind to the NKG2D receptor

[24–26]. MICB expression is in general increased after HRVI of airway epithelial cells. In

healthy individuals, sputum MICB is increased following HRVI, while this was not seen in

asthma. In healthy individuals with HRVI, the number of NK cells in the bronchoalveolar

lavage (BAL) positively correlated with serum MICB levels [27]. Our study showedMICB
mRNA expression to be increased during HRVI in children without asthma compared to the

children with asthma. This finding suggests increased NK cell activation as a possible cause of

the positive correlation of NK cells number and serum MICB previously reported in healthy

individuals during a HRVI [27].

A third gene with RIDM and RIRE was the catalytic enzyme Neuraminidase 1 (NEU1).
Katoh et al. showed that NEU1 plays a role in the T helper type 2 (Th2)-mediated airway

inflammation in a murine acute asthma model [28]. Katoh and colleagues demonstrate that

Table 5. Comparison of asthma-specific CpGs within the ALLIANCE dataset with the Inner City Asthma Consortium.

Gene CpG Chromosom Start Yang et.al. p value Yang et.al. Δ DNA met [%] ALLIANCE p value ALLIANCE Δ DNA met [%]

LDLRAD3 cg24656207 chr11 36030085–36030086 0.002895 -28.8 0.0009 -26.5

METTL1 cg20372759 chr12 58162286 2.12E-05 -27 0.0005 -23.1

LINC00703 cg03875819 chr10 4386801–4386802 2.28E-05 -26.1 n.s. -16.3

CDC45 cg02333649 chr22 19471092–19471093 4.13E-04 -24.4 0.0092 -17.3

C15orf54 cg10099207 chr15 39544143–39544144 0.01364 -22.9 0.0144 -24.9

DUOX1 cg13570892 chr15 45449436–45449437 6.83E-07 -22.7 n.s. -16.5

ZFPM1 cg04983687 chr16 88558222–88558223 1.43E-05 -29.5 n.s. 0.3

LDLRAD3 cg24656207 chr11 36030085–36030086 6.23E-06 -28.8 0.0009 -26.5

METTL1 cg20372759 chr12 58162286–58162287 5.03E-08 -27 0.0005 -23.1

LINC00703 cg03875819 chr10 4386801–4386802 5.03E-08 -26.1 n.s. -16.3

CDC45 cg02333649 chr22 19471092–19471093 8.17E-07 -24.4 0.0092 -17.3

SERPINB6 cg03668556 chr6 2977292–2977293 4.99E-04 -24.1 n.s. -22.9

C15orf54 cg10099207 chr15 39544143–39544144 2.62E-05 -22.9 0.0144 -24.9

Validation set Yang et al.
ALOX15 cg11609940 chr17 4541333–4541334 7.82E-04 -10.1 0.0093 -16.1

POSTN cg04922971 chr13 38172802–38172803 7.25E-04 -11.6 0.0459 -6.1

LDLRAD3 cg24656207 chr11 36030085–36030086 6.23E-06 -28.3 0.0009 -26.5

ATXN7L1 cg16027132 chr17 105521115–

05521116

4.09E-09 -27.3 0.0001 -37.9

METTL1 cg20372759 chr12 58162286–58162287 5.03E-08 -27 0.0005 -23.1

CCL5 cg02483931 chr17 34202460–34202461 0.017 1.9 n.s. 0.9

CTSC cg25636441 chr11 88059526–88059527 1.51E-03 -1.1 0.0044 -12.5

DNA met–DNA methylation, n.s.–not significant, Δ DNA met = asthma—control [%], ALLIANCE p value was determined by ANOVA model

https://doi.org/10.1371/journal.pone.0205275.t005
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the accumulation of Th2 cells was reduced in the airway of SM/J NEU1-knockout mice using a

Dermatophagoides farinae -induced model of asthma [28]. It has been reported, that NEU1

forms complexes with Toll Like Receptors (TLR2, 3, 4) and governs the activation of TLR sig-

nalling [29, 30]. TLR3 in lung epithelial cells recognizes RNA from HRV [31] and expression

is increased post-HRVI [32]. Furthermore, it was reported that blocking the TLR3 receptor in

lung epithelial cells leads to general increased IL-6, IL-8 and CCL-5 production [32]. This

implies that the failure of asthmatic airway cells to express NEU1 in response to HRVI would

result in limited TLR3 activation in those individuals compared to healthy subjects. As a result

of the limited TLR3 activation, cytokine expression in asthmatics would be above that of

healthy subjects when exposed to HRVI. IL-6 is increased in patients with asthma and is espe-

cially increased during asthma attacks [33, 34]. CCL5mRNA expression in our data is

increased in children with asthma after HRVI (although this was not statistically significant,

p = 0.08), whereas an unremarkable increase was observed in children without asthma (Fig

8A). Our study is therefore supportive for this interaction, demonstrating a negative relation

between NEU1 and mRNA expression of IL6 (r2 = 0.11, p = 0.035) (Fig 8B).

This study has several strengths but also some limitations. Very strict filtering processes

and multiple verification steps were included to disentangle epigenetic effects in children with

and without asthma, adding strength to the target candidates identified. This approach allows

the creation of a valid dataset without a false discovery rate (FDR) correction of the generated

genome wide data analysis. Another strength of this study is the verification of the successful

HRVI within the cultures of primary nasal epithelial cells.

However, one limitation of this study was the use of primary cell cultures and, thus, an

inability to distinguish the impact of HRV-infected cells from the impact of uninfected and

indirectly responding cells (e.g. cytokines). To date, there have been no studies exploring these

two cell populations. Separation of infected cells with a fluorescence-activated cell sorting

based on increased ICAM1 expression [35] would allow further insight into the effect of HRVI

on changes of DNA methylation and related mRNA expression, however, large numbers of

cells are required for this technique, not feasible in a paediatric cohort. Also, single cell

sequencing analysis would generate an explicit understanding of HRV dependent modifica-

tions within direct infected or uninfected by-stander cells. Nevertheless, the reported results in

this study allow an insight into the potential role of HRVI-induced asthma-specific differences

in DNA methylation and altered mRNA expression. This experimental design may be more

representative of an in vivoHRVI where infected and uninfected cells are likely to be present

during an infection.

Fig 8. Increase of CCL5 production in children without asthma. Specific increase (A) and linear correlation of IL6
and NEU1mRNA expression in nasal epithelial cells from children without asthma (r2 = 0.11) (B).

https://doi.org/10.1371/journal.pone.0205275.g008
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A second limitation of the study design was that we can only take a snapshot of the different

epigenetic changes in asthma and healthy children. Future longitudinal studies could assess

whether these reported RIDMs/RIREs are conserved and if those differences would increase

with repetitive infections over a lifetime. It was reported by Lopez-Souza et al. that nasal epi-

thelial cells were more resistant to HRVIs compared to bronchial epithelial cells, with viral rep-

lication being more effective in bronchial epithelial cells [36]. This might lead to the

assumption that the above identified genes could be subjected to further methylation in the

lung epithelium of children infected with virus. This scenario may pave the way for the possi-

bility that recurrent HRVI could predispose children for the development of asthma later in

life, or the worsening of asthma severity. Lastly, the sample size of our cohort was small and

the results will require verification in a larger cohort. However, the results of the top targets

were verified by an alternative analytical technique (qPCR and Pyrosequencing) and so we

expect that the presented results are reliable and representative.

Due to ethical constraints associated with the collection of bronchial epithelial cells from

children, the study used samples of the nasal epithelium to model the bronchial epithelium.

Bergougnoux et al. summarizes that nasal epithelial cells are a reliable model system to study

DNA methylation in diseases affecting the lower airway tract [37]. They concluded that in dif-

ferent diseased states, similar patterns of gene expression and modification are reflected in

nasal and bronchial epithelial cells. Additionally, the histological structure and cellular compo-

sition of the nasal and bronchial epithelium is similar [37]. To ensure epithelial-specific meth-

ylation is generated and retrieved, we confirmed the nasal epithelial cell cultures had a high

expression of typical epithelial cell marker mRNA [38, 39] and minimal mRNA expression of

typical fibroblasts markers (Fig 9) [40–42].

Fig 9. mRNA expression of cell markers. The epithelial cell markers Mucin 1 (MUC1), Cadherin 1 (CDH1), and

Claudin 1 (CLDN1) and the fibroblast markers Thy-1 Cell Surface Antigen (THY1), Actin Alpha 1 Skeletal Muscle

(ACTA1), and Atlastin GTPase 1 (ATL1) were measured to verify the homogeneity of the analysed nasal epithelial cell

cultures.

https://doi.org/10.1371/journal.pone.0205275.g009
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Notably, it should be mentioned that 8 of the 10 analysed asthmatic children are not steroid

native and the impact of ICS use on DNA methylation and the immune response against

HRVI could not be excluded.

Yang et al. showed evidence of asthma-specific DNA methylation in nasal epithelial cells

from asthmatics when compared to age-matched healthy subjects [16]. The comparison of the

asthma-specific single CpG methylations reported by Yang et al. and the MOCK-infected cells

in our study set confirmed 14 out of 20 asthma-specific CpGs in the asthma cohort. Also the

detected dimension of asthma-specific DNA methylation were comparable between both

cohorts for the identified CpGs. 10 of the 14 CpGs with asthma-specific DNA methylation

showed a decreased DNA methylation of more than 20% in both cohorts. The consistencies

between the 2 cohorts indicate that asthmatics show specific methylation patterns and consis-

tency of the datasets suggest that the findings of our study are representative of the asthma

population.

Jackson et al. reported that infant wheezing as a result of combined HRV and Respiratory

Syncytial Virus infections is a risk factor for asthma development at the age of 6 [5]. Future

experiments into viral-induced genomic modifications would benefit from including other

viruses such as Respiratory Syncytial Virus, Influenza virus and bacterial infection or coloniza-

tion associated with asthma [43, 44].

Conclusion

This pilot study is the first to report genome-wide DNA methylation and correlated mRNA

expression in the context of an asthma-specific HRVI response of nasal epithelial cells from

children. Stringent application of minimum-change-filtering and verification of identified

DNA methylation and mRNA expression findings allowed identification of asthma-specific

target genes like BAT3 and NEU1 and offers potential new avenues for patient stratification

and personalized therapy. Our data might contribute to a better understanding of the complex

relationship of early viral infections and development and/or progression of asthma. More-

over, these reported gene targets might have the potential for further applications in asthma

prevention or treatment. The promising findings of this pilot study would benefit from further

investigation in a lager patient cohort of children with and without asthma.
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