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Abstract

An inductive characterization is given of the subsets of a group that extend to the
positive cone of a right order on the group. This characterization is used to relate
validity of equations in lattice-ordered groups (`-groups) to subsets of free groups
that extend to the positive cone of a right order. As a consequence, new proofs are
obtained of the decidability of the word problem for free `-groups and generation
of the variety of `-groups by the `-group of automorphisms of the real line. An
inductive characterization is also given of the subsets of a group that extend to the
positive cone of an order on the group. In this case, the characterization is used
to relate validity of equations in varieties of representable `-groups to subsets of
relatively free groups that extend to the positive cone of an order.
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1. Introduction

The first aim of this paper is to establish a correspondence between validity
of equations in lattice-ordered groups (`-groups) and subsets of free groups that
extend to positive cones of right orders on the group, thereby relating validity in
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`-groups also to properties of the topological spaces of right orders on free groups.
This correspondence is used to obtain new proofs of the decidability of the word
problem for free `-groups and generation of the variety of `-groups by the `-group
of automorphisms of the real line. A correspondence is also established between
validity of equations in varieties of representable `-groups (equivalently, classes of
ordered groups) and subsets of relatively free groups that extend to positive cones
of orders on the group. Our main tools for proving these results will be ordering
theorems for groups that stem from proof-theoretic investigations and require very
little structure theory for ordered groups.

Recall first, referring to [18] for further details and references, that an `-group
is an algebraic structure L = 〈L,∧,∨, ·, −1, e〉 such that 〈L, ·, −1, e〉 is a group and
〈L,∧,∨〉 is a lattice with an order a ≤ b :⇔ a ∧ b = a that is compatible with
left and right multiplication (i.e., a ≤ b implies cad ≤ cbd for all a, b, c, d ∈ L).
If ≤ is also total, then L is called an ordered group (o-group). The class LG
of `-groups forms a variety, and the class of o-groups generates the variety RG
of representable `-groups. By a fundamental theorem of Holland, every `-group
embeds into the group Aut(〈Ω,≤〉) of order-preserving bijections of a totally or-
dered set 〈Ω,≤〉 equipped with coordinate-wise lattice operations [13]. This rep-
resentation was used by Holland in [14] to prove that LG is generated as a variety
by Aut(〈R,≤〉) and, with McCleary in [15], to establish the decidability of the
word problem for free `-groups. Alternative proofs of these theorems that avoid
the use of Holland’s embedding theorem and sharpen the decidability result to co-
NP completeness were given by Galatos and Metcalfe [10]; this approach forms
part of a broader program that aims to develop relationships between `-groups and
varieties of residuated lattices (see, e.g., [2, 11, 12]).

Recall next that a partial order ≤ on the universe of a group G = 〈G, ·, −1, e〉
is called a partial right order on G if it is compatible with right multiplication (i.e.,
a ≤ b implies ac ≤ bc for all a, b, c ∈ G), and a right order if it is also total. The
positive cone P≤ := {a ∈ G | e < a} of a partial right order on G is always a
subsemigroup of G (i.e., a, b ∈ P≤ implies ab ∈ P≤) that omits e. Conversely,
if P ⊆ G is a subsemigroup of G omitting e, then a ≤P b :⇔ ba−1 ∈ P ∪ {e}
defines a partial right order on G satisfying P≤P = P . Hence from now on,
we will identify partial right orders on G with subsemigroups of G that omit e,
and right orders with partial right orders P such that a ∈ P or a−1 ∈ P for all
a ∈ G\{e}. In particular, each right order on G can be viewed as a subset of G
and the set RO(G) of right orders on G forms a compact totally disconnected
topological space with the subspace topology inherited from the product topology
on the powerset 2G. This topological perspective is explored in detail in [21, 3, 8]

2



and related to spectral spaces of `-groups in [5].
We prove here that a finite subset {t1, . . . , tn} of a free group F extends to a

right order on F if and only if the inequation e ≤ t1∨· · ·∨tn fails in some `-group
(Theorem 2). Since every `-group term is equivalent in LG to a term of the form∧
i∈I

∨
j∈Ji tiji where each tiji is a group term, this correspondence provides a full

characterization of validity in LG. The result may be established using Hollister’s
theorem [16] that the lattice order of an `-group is the intersection of right orders
on its group reduct. However, we use here instead an inductive characterization
of subsets of groups that extend to right orders (Theorem 1, closely related to a
theorem of Conrad [7]), to obtain a proof that requires almost no structure theory
of `-groups. We then make use of the correspondence to obtain new proofs of the
generation of LG as a variety by Aut(〈R,≤〉) and the decidability of the word
problem for free `-groups, the latter by appealing to an algorithm by Clay and
Smith that recognizes when a given finite subset of a finitely generated free group
extends to a right order [4].

In the last part of the paper, we turn our attention to validity of equations in
varieties of representable `-groups (equivalently, validity in classes of o-groups).
A partial order on the universe of a group G = 〈G, ·, −1, e〉 that is compatible
with left and right multiplication is called a partial order on G, and an order if
it is total. Positive cones of partial orders on G then correspond to normal (i.e.,
closed under conjugation) subsemigroups of G omitting e. We give an inductive
characterization of subsets of groups that extend to orders (Theorem 7, closely
related to a theorem of Ohnishi [20]), and use this to prove that a finite subset
{t1, . . . , tn} of a relatively free group of a variety V of groups extends to an order
if and only if the inequation e ≤ t1 ∨ · · · ∨ tn fails in some o-group with group
reduct in V (Theorem 8).

Let us remark finally that a proof-theoretic account of some of the results
presented here is given in the conference paper [6]. Note also that Wessel in [22]
develops an alternative syntactic approach to orderability of groups that yields a
new proof of a finitary version of Sikora’s theorem for free abelian groups [21].

2. A right ordering condition for groups

Let us fix a group G = 〈G, ·, −1, e〉 and denote the subsemigroup of G gen-
erated by S ⊆ G by 〈S〉. Clearly, 〈S〉 is a partial right order on G if and only if
e 6∈ 〈S〉. The following characterization of the subsets of G that extend to right
orders on G is proved by a straightforward application of Zorn’s lemma (see [1]):
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(†) S ⊆ G extends to a right order on G if and only if for all a1, . . . , an ∈ G\{e},
there exist δ1, . . . , δn ∈ {−1, 1} satisfying e 6∈ 〈S ∪ {aδ11 , . . . , aδnn }〉.

We make use here, however, of an alternative inductive description of these sets
(similar to characterizations by Ohnishi [20] for orderable groups, and Conrad [7]
for right-orderable groups) that is more suitable for establishing relationships with
validity in `-groups. We define inductively for n ∈ N:

R0(G) = {S ⊆ G | S ∩ S−1 6= ∅};

Rn+1(G) = Rn(G) ∪ {T ∪ {ab} | T ∪ {a}, T ∪ {b} ∈ Rn(G)};

R(G) =
⋃
n∈N Rn(G).

It follows that R(G) ⊆ P(G) is the smallest set containing R0(G) such that T ∪
{a}, T ∪ {b} ∈ R(G) implies T ∪ {ab} ∈ R(G). Since any S ⊆ G occurring in
R(G) must occur in Rn(G) for some n ∈ N, there exists in this case a finite binary
tree of subsets of G with root S and leaves in R0(G) such that each non-leaf node
is of the form T ∪ {ab} and has parent nodes T ∪ {a}, T ∪ {b}.

Example 1. Let Z be the additive group of the integers. Then {1,−1} ∈ R0(Z),
so {1,−2} ∈ R1(Z). But {2,−2} ∈ R1(Z), so {3,−2} ∈ R2(Z), and since
also {3,−3} ∈ R2(Z), it follows that {3,−5} ∈ R3(Z) ⊆ R(Z). This chain of
reasoning can be displayed as a binary tree of finite sets of integers as follows:

{3,−3}
{2,−2}

{1,−1} {1,−1}
{1,−2}

{3,−2}
{3,−5}

It is easily proved that S ⊆ Z is in R(Z) if and only if S contains elements m ≤ 0
and n ≥ 0. This corresponds to the fact that S ⊆ Z extends to a (right) order on Z
(of which there are just two, the standard one and its dual) if and only if it contains
only strictly positive elements or only strictly negative elements (see Theorem 1).

Example 2. Let F(2) denote the free group on two generators x, y. The following
binary tree of subsets of F (2) demonstrates that {xx, yy, x−1y−1} ∈ R(F(2)):

{x, yy, x−1} {x, yy, x−1}
{xx, yy, x−1}

{xx, y, y−1} {xx, y, y−1}
{xx, yy, y−1}

{xx, yy, x−1y−1}
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This corresponds to the fact that {xx, yy, x−1y−1} does not extend to a right order
on F(2) (see Theorem 1) and also the fact that the inequation e ≤ xx∨yy∨x−1y−1
is valid in all `-groups (see Theorem 2).

The remainder of this section is devoted to proving the following result.

Theorem 1.
(a) A group G is right-orderable if and only if {a} 6∈ R(G) for all a ∈ G\{e}.
(b) If a group G is right-orderable, then S ⊆ G extends to a right order on G if

and only if S 6∈ R(G).

We first establish some elementary properties of R(G) for an arbitrary group G.

Lemma 1. For any S ∪ T ∪ {a, b} ⊆ G:

(a) S ∪ {e} ∈ R(G);

(b) if S ∈ R(G), then S ∪ T ∈ R(G);

(c) if S ∈ R(G), then S ′ ∈ R(G) for some finite S ′ ⊆ S;

(d) if S ∪ {ab} ∈ R(G), then S ∪ {a, b} ∈ R(G);

(e) S ∈ R(G) if and only if 〈S〉 ∈ R(G).

Proof. For (a), clearly {e, e−1} = {e} ⊆ S ∪ {e} and, by definition, S ∪ {e} ∈
R(G). The claims in (b) and (c) follow by a straightforward induction on k ∈ N
such that S ∈ Rk(G). For (d), observe that if S ∪ {ab} ∈ R(G), then, by (b),
S∪{a, ab} ∈ R(G). But also S∪{a, a−1} ∈ R(G), and hence S∪{a, b} ∈ R(G).
Finally, for (e), the left-to-right-direction follows directly from (b), and the right-
to-left-direction follows by applying (b) and (c) to obtain a finite S ′ ⊆ 〈S〉 such
that S ∪ S ′ ∈ R(G) and then applying (d) repeatedly to obtain S ∈ R(G).

We now prove the left-to-right direction of Theorem 1 part (b), noting that for this
direction there is no need to assume the right orderability of G.

Lemma 2. If S ∈ R(G), then S does not extend to a right order on G.

Proof. Using (†), it suffices to prove that for any k ∈ N and S ∈ Rk(G), there
exist c1, . . . , cn ∈ G\{e} such that for all δ1, . . . , δn ∈ {−1, 1},

e ∈ 〈S ∪ {cδ11 , . . . , cδnn }〉.

We prove this claim by induction on k. For the base case, if S ∈ R0(G), then
{a, a−1} ⊆ S for some a ∈ G, so e = aa−1 ∈ 〈S〉. For the inductive step, suppose
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that S = T ∪ {ab} ∈ Rk+1(G) because T ∪ {a} ∈ Rk(G) and T ∪ {b} ∈ Rk(G).
By the induction hypothesis twice, we may assume without loss of generality that
there exist c1, . . . , cn ∈ G\{e} such that for all δ1, . . . , δn ∈ {−1, 1},

e ∈ 〈T ∪ {a, cδ11 , . . . , cδnn }〉 and e ∈ 〈T ∪ {b, cδ11 , . . . , cδnn }〉.

But then for all δ1, . . . , δn, δn+1 ∈ {−1, 1}, we obtain as required

e ∈ 〈T ∪ {ab, cδ11 , . . . , cδnn , aδn+1}〉.

To establish part (a) and the right-to-left direction of part (b) of Theorem 1, we
prove two preparatory lemmas, related to Theorems 2.2 and 2.3 of [7].

Lemma 3. For any S ⊆ G such that S 6∈ R(G), there exists a subsemigroup T of
G extending S such that T 6∈ R(G), and G\T is a subsemigroup of G.

Proof. Suppose that S 6∈ R(G) and consider the set U of all subsemigroups of
G extending S that are not contained in R(G), partially ordered by inclusion.
Clearly 〈S〉 ∈ U by part (e) of Lemma 1. Moreover, if (Ti)i∈I is a chain in U ,
then also

⋃
i∈I Ti ∈ U ; otherwise

⋃
i∈I Ti ∈ R(G) and, using parts (b) and (c) of

Lemma 1, we would have Ti ∈ R(G) for some i ∈ I , a contradiction. Hence an
application of Zorn’s lemma yields a maximal element T of U .

To prove that G\T is a subsemigroup of G, suppose that b, c ∈ G\T . Then
T ∪ {b} and T ∪ {c} both properly extend T . Since T is maximal, it follows that
T ∪ {b}, T ∪ {c} ∈ R(G). Hence also T ∪ {bc} ∈ R(G) and, since T 6∈ R(G),
we obtain bc ∈ G\T .

Lemma 4. If S ⊆ G satisfies S 6∈ R(G) and {a} 6∈ R(G) for all a ∈ G\{e},
then S extends to a right order on G.

Proof. Suppose that S 6∈ R(G) and {a} 6∈ R(G) for all a ∈ G\{e}. Consider the
set W of all subsemigroups T of G extending S such that e 6∈ T and G\T is a
subsemigroup of G, partially ordered by inclusion. It follows from Lemma 3 that
W is non-empty. Moreover, if (Ti)i∈I is a chain in W , then also

⋃
i∈I Ti ∈ W .

Hence an application of Zorn’s lemma yields a maximal element P of W .
We claim that P is a right order on G extending S. Suppose for a contradiction

that there exists a ∈ G\{e} such that a, a−1 6∈ P . By Lemma 3, the assumption
{a} 6∈ R(G) yields a subsemigroup Ta of G containing a such that Ta 6∈ R(G)
and G\Ta is a subsemigroup of G. In particular, e 6∈ Ta. We claim that the
maximality of P is contradicted by

P ∗ = P ∪ {b ∈ Ta | b, b−1 6∈ P}.
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Observe first that P ∗ properly extends P and does not contain e. It remains to
prove that P ∗ and G\P ∗ are subsemigroups of G.

Consider first b, c ∈ P ∗. If b, c ∈ P , then bc ∈ P ⊆ P ∗. Also, if b, c ∈ Ta and
b, b−1, c, c−1 6∈ P , then bc ∈ Ta (since Ta is a subsemigroup) and bc, c−1b−1 6∈ P
(sinceG\P is a subsemigroup), so bc ∈ P ∗. Suppose now that c ∈ P and b ∈ Ta is
such that b, b−1 6∈ P . Observe that b−1bc = c ∈ P . Since G\P is a subsemigroup
and b−1 6∈ P , we must have bc ∈ P ⊆ P ∗.

Now consider b, c 6∈ P ∗. In particular, b, c 6∈ P , so bc 6∈ P . There are three
cases. If b, c 6∈ Ta, then bc 6∈ Ta and hence, bc 6∈ P ∗. If b, c ∈ Ta, then, since
b, c 6∈ P ∗, we must have b−1, c−1 ∈ P . So also c−1b−1 ∈ P , and it follows that
bc 6∈ P ∗. Suppose finally, without loss of generality, that b ∈ Ta and c 6∈ Ta. Since
b ∈ Ta, b 6∈ P , and b 6∈ P ∗, we must have b−1 ∈ P . Equivalently, cc−1b−1 ∈ P ,
which, together with the fact that c 6∈ P , implies c−1b−1 ∈ P . Hence bc 6∈ P ∗.

Proof of Theorem 1. For (a), note first that if {a} 6∈ R(G) for all a ∈ G\{e}, then
an application of Lemma 4 with S = ∅ yields a right order on G. For the converse
direction, suppose that G is right-orderable and let a ∈ G\{e}. Then {a} extends
to a right order on G and Lemma 2 yields {a} 6∈ R(G). Part (b) now follows
immediately from Lemma 2 and Lemma 4.

3. Right orders on free groups and the word problem for free `-groups

In this section, we establish a correspondence between valid `-group equations
and subsets of free groups that extend to right orders. We use this correspondence
to obtain new proofs of the decidability of the word problem for free `-groups (first
proved by Holland and McCleary [15]) and the equivalent problem of checking
when a given finite subset of a finitely generated free group extends to a right order
(first proved by Clay and Smith [4]). We also obtain a new proof of the generation
of LG as a variety by Aut(〈R,≤〉) (first proved by Holland [14]).

Let T(X) and T`(X) denote the term algebras over a set X for the languages
of groups and `-groups, respectively. A group term t ∈ T (X) is said to be reduced
if t = e or t = xλ11 x

λ2
2 · · ·xλnn (associating to the left) with x1, . . . , xn ∈ X and

λ1, . . . , λn ∈ {−1, 1} such that t contains no occurrence of xx−1 or x−1x for any
x ∈ X . The reduced form of a group term t ∈ T (X) is the reduced group term
obtained from t by associating to the left and cancelling occurrences of xx−1 or
x−1x for x ∈ X as necessary. We define the free group F(X) over X (writing
F(k) when |X| = k ∈ N) to be the set of all reduced group terms in T (X) with
the product of reduced group terms s, t defined as the reduced form of st. We
write t to denote both a term in T (X) and the reduced form of t in F (X).
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Theorem 2. The following are equivalent for t1, . . . , tn ∈ T (X):

(1) {t1, . . . , tn} does not extend to a right order on F(X);

(2) {t1, . . . , tn} ∈ R(F(X));

(3) LG |= e ≤ t1 ∨ · · · ∨ tn.

Proof. The equivalence (1)⇔ (2) follows immediately from Theorem 1 and the
fact that F(X) is right-orderable (see, e.g., [3]).

We prove (2)⇒ (3) by induction on k ∈ N such that {t1, . . . , tn} ∈ Rk(F(X)).
For the base case, suppose that ti = tj

−1 in F(X) for some i, j ∈ {1, . . . , n}.
Then LG |= ti ≈ tj

−1, so, since e ≤ x ∨ x−1 is valid in all `-groups, also
LG |= e ≤ t1 ∨ · · · ∨ tn. For the inductive step, suppose that tn = uv and
{t1, . . . , tn−1, uv} ∈ Rk+1(F(X)) because

{t1, . . . , tn−1, u} ∈ Rk(F(X)) and {t1, . . . , tn−1, v} ∈ Rk(F(X)).

By the induction hypothesis twice,

LG |= e ≤ t1 ∨ · · · ∨ tn−1 ∨ u and LG |= e ≤ t1 ∨ · · · ∨ tn−1 ∨ v.

The validity of the quasi-equation (e ≤ x∨y) & (e ≤ x∨z)⇒ (e ≤ x∨yz) in all
`-groups (see, e.g., [10, Lemma 3.3 (iv)]) then yieldsLG |= e ≤ t1∨· · ·∨tn−1∨uv.

We prove (3) ⇒ (1) by contraposition. Suppose that {t1, . . . , tn} extends to
a right order ≤ on F(X). Then t1, . . . , tn are all negative with respect to the
dual right order ≤∂ on F(X). Let ϕ be the homomorphism from T`(X) to the
`-group Aut(〈F (X),≤∂〉) with coordinate-wise lattice-ordering ≤p, defined by
mapping each x ∈ X to the order-automorphism ϕ(x) : s 7→ sx. Then each
t ∈ T (x) is mapped to the order-automorphism ϕ(t) : s 7→ st. In particular,
ϕ(ti)(e) = ti <

∂ e for each i ∈ {1, . . . , n}, and hence, since <∂ is total, for some
j ∈ {1, . . . , n},

ϕ(t1 ∨ · · · ∨ tn)(e) = tj <
∂ e.

But ϕ(e)(e) = e, so in Aut(〈F (X),≤∂〉),

ϕ(e) 6≤p ϕ(t1 ∨ · · · ∨ tn).

Hence LG 6|= e ≤ t1 ∨ · · · ∨ tn.

Since, by (†), a set of elements of a group extends to a right order if and only
if each of its finite subsets extends to a right order, we obtain the following result.
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Corollary 1. S ⊆ T (X) extends to a right order on F(X) if and only if LG 6|=
e ≤ t1 ∨ · · · ∨ tn for all {t1, . . . , tn} ⊆ S.

Theorem 2 can be generalized to arbitrary right-orderable groups. Given a
class L of `-groups and Σ ∪ {s ≈ t} ⊆ (T `(X))2, let Σ |=L s ≈ t denote that
for any L ∈ L and homomorphism ϕ : T`(X) → L, whenever ϕ(s′) = ϕ(t′)
for all s′ ≈ t′ ∈ Σ, also ϕ(s) = ϕ(t). Recall also that a group presentation
〈X | R〉 describes the quotient of the free group F(X) by the normal subgroup
generated by R ⊆ T (X); for t ∈ T (X), we let t denote the equivalence class of
the corresponding reduced group term t ∈ F (X) in this quotient.

Theorem 3. Suppose that G = 〈X | R〉 is a right-orderable group. Then the
following are equivalent for t1, . . . , tn ∈ T (X):

(1) {t1, . . . , tn} does not extend to a right order on G;

(2) {t1, . . . , tn} ∈ R(G);

(3) {r ≈ e | r ∈ R} |=LG e ≤ t1 ∨ · · · ∨ tn.

Proof. The equivalence (1)⇔ (2) follows again immediately from Theorem 1 and
the fact that G is assumed to be right-orderable. Also, we can prove (2)⇒ (3) by
induction on k ∈ N such that {t1, . . . , tn} ∈ Rk(G) following the same reasoning
as in the proof of Theorem 2.

The proof of (3) ⇒ (1) generalizes the reasoning of Theorem 2. Suppose
contrapositively that {t1, . . . , tn} extends to a right order≤ on G. Then t1, . . . , tn
are all negative with respect to the dual right order ≤∂ on G. Let ϕ be the map
evaluating each x ∈ X by the order-automorphism ϕ(x) : s 7→ sx in the `-group
Aut(〈G,≤∂〉) with coordinate-wise lattice-ordering ≤p. Then each t ∈ T (x) is
mapped to the order-automorphism ϕ(t) : s 7→ st. Observe that for all r ∈ R,

ϕ(r)(s) = sr = se = s = ϕ(e)(s).

So ϕ satisfies {r ≈ e | r ∈ R}. But also ϕ(ti)(e) = ti <
∂ e for each i ∈

{1, . . . , n}, and hence, since <∂ is total,

ϕ(t1 ∨ · · · ∨ tn)(e) <∂ e = ϕ(e)(e).

So ϕ(e) 6≤p ϕ(t1 ∨ · · · ∨ tn). Hence {r ≈ e | r ∈ R} 6|=LG e ≤ t1 ∨ . . . ∨ tn.

Example 3. Consider the fundamental group K = 〈x, y | xyx−1y〉 of the Klein
bottle. It is easily shown that {xyx−1y ≈ e} |=LG e ≤ y−1x−1 ∨ x and hence, by
the preceding theorem, {y−1x−1, x} does not extend to a right order on K.
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We devote the rest of this section to decidability and generation problems.
First, we recall the following result established by Holland and McCleary in [15].

Theorem 4. The word problem for free `-groups is decidable.

The following decidability result is then an immediate consequence of Theorem 2.

Theorem 5. The problem of deciding if a finite subset of a free group extends to
a right order is decidable.

Galatos and Metcalfe have proved that the word problem for free `-groups is co-
NP-complete [10], and it follows that the problem of deciding whether or not a
finite subset of a free group extends to a right order is also in the complexity class
co-NP. It is not known, however, if this latter problem is co-NP-complete.

We now use the results of the previous section to present a proof of Theorem 4
that does not appeal to further algebraic results such as the Holland embedding
theorem. As a byproduct, we obtain also an alternative proof that LG is generated
as a variety by Aut(〈R,≤〉).

Given S ⊆ T (X), let Sr denote the corresponding set of reduced group
terms. We define is(S) := {u ∈ T (X) | uv ∈ Sr; u, v reduced group terms}
and cis(S) := {uv−1 | u, v ∈ is(S); u 6= v}.

Proposition 1. The following are equivalent for any t1, . . . , tn ∈ T (X):

(1) LG |= e ≤ t1 ∨ · · · ∨ tn;

(2) Aut(〈R,≤〉) |= e ≤ t1 ∨ · · · ∨ tn;

(3) For {s1, . . . , sm} = cis({t1, . . . , tn}) and all δ1, . . . , δm ∈ {−1, 1},

e ∈ 〈{t1, . . . , tn, sδ11 , . . . , sδmm }〉.

Proof. (1) ⇒ (2) is immediate. For (3) ⇒ (1), observe that (3) implies, using
(†), that {t1, . . . , tn} does not extend to a right order on F(X), and hence, by
Theorem 2, that LG |= e ≤ t1 ∨ · · · ∨ tn.

(2)⇒ (3) is proved in some detail in [10]; we recall the main ingredients of this
proof here for the sake of completeness. Suppose contrapositively that e 6∈ 〈S〉
for some choice of δ1, . . . , δm ∈ {−1, 1} and S = {t1, . . . , tn, sδ11 , . . . , sδmm }. Let
au be a variable for each u ∈ is({t1, . . . , tn}). We define a set of inequations T
consisting of all au < av such that u, v ∈ is({t1, . . . , tn}) and uv−1 ∈ 〈S〉.

Claim 1. T is satisfiable over R.
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Proof. Suppose for a contradiction that T is unsatisfiable over R, i.e., there is
no assignment of real numbers to the variables that satisfies all the inequations
in T with respect to the standard order. Then there must exist a chain au1 <
au2 < . . . < auk < au1 in T . But then e = u1u2

−1, u2u3
−1, . . . , uku1

−1 ∈ S,
contradicting our assumption.

By Claim 1, there exists a map sending each au for u ∈ is({t1, . . . , tn}) to a real
number ru that satisfies T . In particular, tie−1 ∈ S for each i ∈ {1, . . . , n}, and
hence ati < ae ∈ T , yielding rti < re. Now for each x ∈ X , define a partial map
x̂ from R to R, that sends ru to rux if u, ux ∈ is({t1, . . . , tn}), and rux−1 to ru if
ux−1, u ∈ is({t1, . . . , tn}).

Claim 2. x̂ is order preserving.

Proof. Suppose first that x̂ maps ru to rux and rv to rvx, but ru < rv and rvx <
rux. Then uv−1 ∈ S and (vx)(x−1u−1) = vu−1 ∈ S, so au < av ∈ T and
av < au ∈ T , contradicting Claim 1. Alternatively, suppose that x̂ maps ru to rux
and rvx−1 to rv, but ru < rvx−1 and rv < rux. Then u(vx−1)

−1
= uxv−1 ∈ S

and v(ux)−1 = vx−1u−1 ∈ S, aux < av ∈ T and av < aux ∈ T , contradicting
Claim 1. Other cases are very similar.

Finally, we extend each x̂ for x ∈ X linearly to a function ϕ̂(x) in Aut(〈R,≤〉).
But then ϕ̂(ti)(re) = rti for each i ∈ {1, . . . , n}, while ϕ̂(e)(re) = re. Hence,
ϕ̂(t1 ∨ · · · ∨ tn)(re) = rtj < re for some j ∈ {1, . . . , n}. This establishes
Aut(〈R,≤〉) 6|= e ≤ t1 ∨ · · · ∨ tn as required.

Implicit in the proof of this proposition is a decision procedure for checking the
validity of an inequation e ≤ t1∨ · · · ∨ tn in LG, and hence a proof of Theorem 4.
Namely, calculate cis({t1, . . . , tn}) and denote its elements by s1, . . . , sm. For
each choice of δ1, . . . , δm ∈ {−1, 1} and S = {t1, . . . , tn, sδ11 , . . . , sδmm }, check
the satisfiability of the resulting set of inequations T over R. If all of these sets
are unsatisfiable, then we have established the equivalent condition (3) above, so
LG |= e ≤ t1∨· · ·∨tn. Otherwise, there is a set of inequations T that is satisfiable
over R and, as described in the proof above, Aut(〈R,≤〉) 6|= e ≤ t1 ∨ · · · ∨ tn, so
LG 6|= e ≤ t1 ∨ · · · ∨ tn.

The equivalence of (1) and (2) also yields the following result, first proved by
Holland [14].

Corollary 2. The variety LG of `-groups is generated by Aut(〈R,≤〉).

This generation result can be interpreted in terms of extending subsets of free
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groups to right orders.

Corollary 3. A set of elements {t1, . . . , tn} of a free group over x1, . . . , xk extends
to a right order if and only if there exist order-preserving bijections x̂1, . . . , x̂k of
the real line such that t̂i(0) < 0 for all i ∈ {1, . . . , n}.

As mentioned above, Theorem 5 is a direct consequence of Theorems 2 and 4.
However, an algorithm for recognizing when a finite subset of a finitely generated
free algebra F(k) extends to a right order was already provided by Clay and Smith
in [4]. Let |t| denote the length of a reduced group term t in F(k), and for l ∈ N,
let Fl(k) = {t ∈ F (k) | |t| ≤ l}. Note that Fl(k) is finite and can be viewed as
the l-ball of the Cayley graph of F (k) relative to X . For a subset S of F(k) that
omits e, we say that S is an l-truncated right order on F(k) if S = 〈S〉 ∩ Fl(k),
and for all t ∈ Fl−1(k)\{e}, either t ∈ S or t−1 ∈ S.

Proposition 2 (Clay and Smith [4]). S ⊆ F (k) extends to a right order on F(k)
if and only if S extends to an l-truncated right order on F(k) for some l ∈ N.

Hence we obtain the following algorithm for deciding if a finite subset S of F (k)
extends to a right order on F(k), noting that termination is guaranteed by the fact
that Fl(k) is finite for any l ∈ N.

1. Let l = max{|t| | t ∈ S}.
2. Let M = {S}.
3. If M = ∅, then output "no" and stop.
4. Select S1 ∈M.
5. Construct S∗1 = 〈S1〉 ∩ Fl(k).
6. If e ∈ S∗1, then remove S1 from M and go to 3.
7. If t ∈ S∗1 or t−1 ∈ S∗1 for all t ∈ Fl−1(k)\{e}, then output

"yes" and stop.
8. Select t ∈ Fl−1(k)\{e} such that t 6∈ S∗1 and t−1 6∈ S∗1.
9. Replace S1 with S∗1∪{t} and S∗1∪{t−1} in M and go to 3.

Example 4. Consider S = {xx, yy, x−1y−1} ⊆ F (2). We let l = 2, M = {S}
and select S1 = S (steps 1-4). Adding all products in F2(2) of members of S1

(step 5), we obtain

S∗1 = {xx, yy, x−1y−1, xy−1, x−1y, xy}.

Since e 6∈ S∗1 , x 6∈ S∗1 , x−1 6∈ S∗1 (steps 6-7), we select x (step 8) and let M =
{S∗1 ∪{x}, S∗1 ∪{x−1}} (step 9). Selecting next S2 = S∗1 ∪{x} (step 4) and taking
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products in F2(2) (step 5), we obtain a set S∗2 that contains xx−1yxx−1y−1 = e.
Hence we let M = {S∗1 ∪ {x−1}} (step 6). Selecting now S3 = S∗1 ∪ {x−1}
(step 4) and taking products in F2(2) (step 5), we obtain a set S∗3 that contains
x−1x−1xx = e. Hence we let M = ∅ (step 6) and output “no” (step 3). It follows
that S does not extend to a right order on F(2) and

LG |= e ≤ xx ∨ yy ∨ x−1 y−1.

Consider now T = {xx, xy, yx−1} ⊆ F (2). We let l = 2, M = {T} and select
T1 = T (steps 1-4). Adding all products in F2(2) of members of T1 (step 5), we
obtain

T ∗1 = {xx, xy, yx−1, yx, yy}.

Since e 6∈ T ∗1 , x 6∈ T ∗1 , x−1 6∈ T ∗1 (steps 6-7), we select x (step 8) and let M =
{T ∗1 ∪ {x}, T ∗1 ∪ {x−1}} (step 9). Selecting T2 = T ∗1 ∪ {x} (step 4) and taking
products in F2(2) (step 5), we obtain

T ∗2 = {xx, xy, yx−1, yx, yy, x, y}.

Then e 6∈ T ∗2 (step 6) and t ∈ T ∗2 or t−1 ∈ T ∗2 for all t ∈ F1(k)\{e} (i.e., T ∗2 is a
2-truncated right order on F(2)), so we output “yes” (step 7). Hence T extends to
a right order on F(2) and

LG 6|= e ≤ xx ∨ xy ∨ yx−1.

We conclude this section by mentioning a topological result regarding right
orders on free groups, and its interpretation in terms of validity in `-groups. Note
first that a right order is isolated in the space RO(G) of right orders on a group
G if and only if it is the unique right order extending some finite subset of G.
In [19] McCleary proved the following result for spaces of right orders on finitely
generated free groups.

Theorem 6 (McCleary [19]). RO(F(k)) has no isolated points for k ≥ 2.

By Theorem 2, we obtain the following feature of validity in `-groups.

Corollary 4. The following are equivalent for t1, . . . , tn ∈ T (k) where k ≥ 2:

(1) LG |= e ≤ t1 ∨ · · · ∨ tn;

(2) LG |= e ≤ t1∨· · ·∨ tn∨s or LG |= e ≤ t1∨· · ·∨ tn∨s−1 for all s ∈ T (k).
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Proof. (1)⇒ (2) is immediate. For (2)⇒ (1), suppose thatLG 6|= e ≤ t1∨· · ·∨ tn.
By Theorem 2, the set {t1, . . . , tn} extends to a right order on F(k). But also, by
Theorem 6, the space of right orders on F(k) has no isolated points, so there is
more than one right order on F(k) extending {t1, . . . , tn}. In particular, there
must exist an s ∈ T (k) such that both {t1, . . . , tn, s} and {t1, . . . , tn, s−1} extend
to right orders on F(k). Theorem 2 then yields LG 6|= e ≤ t1 ∨ · · · ∨ tn ∨ s and
LG 6|= e ≤ t1 ∨ · · · ∨ tn ∨ s−1 as required.

Let us remark finally that Proposition 2 can be used to show that every isolated
point of RO(F(k)) (k ≥ 2) is finitely generated as a semigroup, which, together
with a result of Kielak [17] that no right order of F(k) is finitely generated as a
semigroup, yields an alternative proof of Theorem 6 (see [8] for details).

4. Ordering relatively free groups and validity in ordered groups

We turn our attention in this section to orders on relatively free groups and
validity of equations in corresponding classes of ordered groups (equivalently,
validity in varieties of representable `-groups). We begin by providing a charac-
terization of subsets of a group that extend to orders. Since the results and proofs
are very similar to those presented for right orders in Section 2, we confine our-
selves here to presenting the main ingredients of the approach, pointing out only
the most significant differences.

Let us again fix a group G = 〈G, ·, −1, e〉 and denote by 〈〈S〉〉 the normal
subsemigroup of G generated by S ⊆ G. Clearly, 〈〈S〉〉 is a partial order on G if
and only if e 6∈ 〈〈S〉〉. As in the case of right orders, the following characterization
of subsets of G that extend to orders on G is established by a straightforward
application of Zorn’s lemma (see [9]):

(‡) S ⊆ G extends to an order on G if and only if for all a1, . . . , an ∈ G\{e},
there exist δ1, . . . , δn ∈ {−1, 1} such that e 6∈ 〈〈S ∪ {aδ11 , . . . , aδnn }〉〉.

Our alternative characterization (similar again to those obtained in [20] and [7])
supplements the characterization for right orders with an extra condition to take
care of normality. We define inductively for n ∈ N:

B0(G) = {S ⊆ G | S ∩ S−1 6= ∅};

Bn+1(G) = Bn(G) ∪ {T ∪ {ab} | T ∪ {a}, T ∪ {b} ∈ Bn(G)

or T ∪ {ba} ∈ Bn(G)};

B(G) =
⋃
n∈N Bn(G).
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It follows that B(G) ⊆ P(G) is the smallest set containing B0(G) such that
T ∪ {a}, T ∪ {b} ∈ B(G) implies T ∪ {ab} ∈ B(G), and also T ∪ {ba} ∈ B(G)
implies T ∪ {ab} ∈ B(G).

Example 5. In the free group F(2) generated by x, y, clearly {x, x−1} ∈ B0(F(2))
and hence {x, yx−1y−1} ∈ B1(F(2)). This reflects the fact that {x, yx−1y−1} does
not extend to an order on F(2) and also the fact that e ≤ x ∨ yx−1y−1 is valid
in all o-groups (see Theorem 8). Note, however, that {x, yx−1y−1} 6∈ R(F(2)),
reflecting the fact that {x, yx−1y−1} does extend to a right order on F(2) and the
fact that e ≤ x ∨ yx−1y−1 is not valid in all `-groups (see Theorem 2).

Example 6. In the fundamental group K of the Klein bottle (see Example 3),
{y, xyx−1} ∈ B0(K) and hence {y} ∈ B1(K). This corresponds to the fact that
K is not orderable (Theorem 7).

The proof of the following theorem proceeds similarly to the proof of Theorem 1,
using condition (‡) to establish the left-to-right direction of (b), and considering
normal subsemigroups of G extending S ⊆ G to establish analogues of Lemmas 3
and 4.

Theorem 7.
(a) A group G is orderable if and only if {a} 6∈ B(G) for all a ∈ G\{e}.
(b) If a group G is orderable, then S ⊆ G extends to an order on G if and only

if S 6∈ B(G).

We now establish a correspondence between subsets of relatively free groups
that extend to orders, and the valid `-group equations of a corresponding class of
ordered groups. Let V be a variety of groups and letKV be the class of all o-groups
that have a group reduct in V . In particular, if V is the variety of all groups, then
KV is the class of all o-groups. We consider a relatively free group FV(X) of V
over some non-empty set X of generators, writing again t to denote the element
of FV(X) corresponding to a group term t ∈ T (X).

Theorem 8. If FV(X) is orderable, then the following are equivalent for all
t1, . . . , tn ∈ T (X):

(1) {t1, . . . , tn} does not extend to an order on FV(X);

(2) {t1, . . . , tn} ∈ B(FV(X));

(3) KV |= e ≤ t1 ∨ · · · ∨ tn.
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Proof. The equivalence (1)⇔ (2) follows immediately from Theorem 7.
We prove (2)⇒ (3) by induction on k ∈ N such that {t1, . . . , tn} ∈ Bk(FV(X)).

The base case follows exactly as in the proof of Theorem 2, as does the in-
ductive step for the case where {t1, . . . , tn−1, uv} ∈ Bk+1(FV(X)) results from
{t1, . . . , tn−1, u} ∈ Bk(FV(X)) and {t1, . . . , tn−1, v} ∈ Bk(FV(X)). Suppose
now that {t1, . . . , tn−1, uv} ∈ Bk+1(FV(X)) follows from {t1, . . . , tn−1, vu} ∈
Bk(FV(X)). By the induction hypothesis,

KV |= e ≤ t1 ∨ · · · ∨ tn−1 ∨ vu,

and hence, since the quasi-equation (e ≤ x ∨ yz) ⇒ (e ≤ x ∨ zy) is valid in all
o-groups, KV |= e ≤ t1 ∨ · · · ∨ tn−1 ∨ uv.

We prove (3)⇒ (1) by contraposition. Suppose that {t1, . . . , tn} extends to an
order ≤ on FV(X). Then t1, . . . , tn are all negative with respect to the dual order
≤∂ on FV(X). Let L ∈ KV be the o-group with group reduct FV(X) and order
≤∂ , and let ϕ be the homomorphism from T`(X) to L defined by mapping each
x ∈ X to x ∈ FV(X). Then ϕ(t) is t ∈ FV(X) for each group term t, and, since
≤∂ is total, ϕ(t1 ∨ · · · ∨ tn) = ϕ(ti) = ti ∈ FV(X) for some i ∈ {1, . . . , n}. But
given that t1, . . . , tn are all negative, also

ϕ(t1 ∨ · · · ∨ tn) = ti <
∂ e = ϕ(e).

So KV 6|= e ≤ t1 ∨ · · · ∨ tn.

Corollary 5. If FV(X) is orderable, then S ⊆ F (X) extends to an order on
FV(X) if and only if KV 6|= e ≤ t1 ∨ · · · ∨ tn for all {t1, . . . , tn} ⊆ S.

We may also view these results from the opposite direction, starting with some
particular variety of `-groups rather than a variety of groups. Let L be a variety
of representable `-groups defined relative to RG by a set Σ ⊆ (T (X))2 of group
equations, and let V be the variety of groups defined by Σ. If the relatively free
group FV(X) is orderable, then Theorem 8 implies that {t1, . . . , tn} ⊆ T (X)
extends to an order on FV(X) if and only if L 6|= e ≤ t1 ∨ · · · ∨ tn. Note also
that in this case, if an `-group equation fails in L, then it fails in FV(X) equipped
with some order. So, if the relatively free groups of L are orderable, then L is
generated as a variety by the class of o-groups with group reducts of FV(X). In
particular, the variety of representable `-groups is generated as a variety by the
class of o-groups whose group reducts are free groups.

Finally, let us remark that some questions discussed in Section 3 for right
orders and `-groups are still open for orders and representable `-groups. It follows
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from Theorem 8 that the decidability of the word problem for free representable
`-groups is equivalent to the problem of deciding whether a given finite set of
elements of a free group extends to an order. Both of these problems are, as far as
we know, still open. Also from a topological perspective, much less is known in
the case of orders. The topological space BO(G) of orders on a group G consists
of the set of normal subsemigroups P such that P ∪ P−1 = G\{e}, equipped
with the induced powerset topology, and forms a closed subspace of RO(G). It
is not known, however, whether the space BO(F(k)) of orders on a (non-trivial)
finitely generated free group has any isolated point. Equivalently, it is not known
if for t1, . . . , tn ∈ T (k), whenever RG |= e ≤ t1 ∨ · · · ∨ tn ∨ s or RG |= e ≤
t1 ∨ · · · ∨ tn ∨ s−1 for all s ∈ T (k), thenRG |= e ≤ t1 ∨ · · · ∨ tn.
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