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Abstract

Protozoan parasites of the genus Giardia are highly prevalent globally, and infect a wide

range of vertebrate hosts including humans, with proliferation and pathology restricted to

the small intestine. This narrow ecological specialization entailed extensive structural and

functional adaptations during host-parasite co-evolution. An example is the streamlined

mitosomal proteome with iron-sulphur protein maturation as the only biochemical pathway

clearly associated with this organelle. Here, we applied techniques in microscopy and pro-

tein biochemistry to investigate the mitosomal membrane proteome in association to mito-

some homeostasis. Live cell imaging revealed a highly immobilized array of 30–40

physically distinct mitosome organelles in trophozoites. We provide direct evidence for the

single giardial dynamin-related protein as a contributor to mitosomal morphogenesis and

homeostasis. To overcome inherent limitations that have hitherto severely hampered the

characterization of these unique organelles we applied a novel interaction-based proteome

discovery strategy using forward and reverse protein co-immunoprecipitation. This allowed

generation of organelle proteome data strictly in a protein-protein interaction context. We

built an initial Tom40-centered outer membrane interactome by co-immunoprecipitation

experiments, identifying small GTPases, factors with dual mitosome and endoplasmic retic-

ulum (ER) distribution, as well as novel matrix proteins. Through iterative expansion of this

protein-protein interaction network, we were able to i) significantly extend this interaction-

based mitosomal proteome to include other membrane-associated proteins with possible

roles in mitosome morphogenesis and connection to other subcellular compartments, and ii)

identify novel matrix proteins which may shed light on mitosome-associated metabolic func-

tions other than Fe-S cluster biogenesis. Functional analysis also revealed conceptual con-

servation of protein translocation despite the massive divergence and reduction of protein

import machinery in Giardia mitosomes.
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der Universität Zürich (www.researchers.uzh.ch).

The funders had no role in study design, data

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1006036&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.snf.ch
http://www.researchers.uzh.ch


Author Summary

Organelles with endosymbiotic origin are present in virtually all extant eukaryotes and

have undergone considerable remodeling during > 1 billion years of evolution. Highly

diverged organelles such as mitosomes or plastids in some parasitic protozoa are the prod-

uct of extensive secondary reduction. They are sufficiently unique to generate interest as

targets for pharmacological intervention, in addition to providing a rich ground for evolu-

tionary cell biologists. The so-called mitochondria-related organelles (MROs) comprise

mitosomes and hydrogenosomes, with the former having lost any role in energy metabo-

lism along with the organelle genome. The mitosomes of the intestinal pathogen Giardia
lamblia are the most highly reduced MROs known and have proven difficult to investigate

because of their extreme divergence and their unique biophysical properties. Here, we

implemented a novel strategy aimed at systematic analysis of the organelle proteome by

iterative expansion of a protein-protein interaction network. We combined serial forward

and reverse co-immunoprecipitations with mass spectrometry analysis, data mining, and

validation by subcellular localization and/or functional analysis to generate an interac-

tome network centered on a giardial Tom40 homolog. This iterative ab initio proteome

reconstruction provided protein-protein interaction data in addition to identifying novel

organelle proteins and functions. Building on this data we generated information on

organelle replication, mitosome morphogenesis and organelle dynamics in living cells.

Introduction

Since the single endosymbiotic event leading to establishment of mitochondria approximately

2 billion years ago [1,2,3] these organelles have undergone massive changes and have evolved

into highly specialized and essential subcellular compartments in all eukaryotes [4,5], with

only one possible exception identified so far [6]. These changes comprise a dramatic size

reduction, nuclear transfer of organelle genomes, and a renewal of the proteome, which is syn-

thesized almost entirely as precursor proteins on cytosolic ribosomes [7,8,9,10,11,12,13,14]

and imported from the cytoplasm [15]. Mitochondria have been remodeled and/or restruc-

tured to very different degrees in different species. Mitochondria-related organelles (MROs), i.
e. hydrogenosomes and mitosomes [16,17,18,19,20] in some protists lacking canonical mito-

chondria represent extreme forms of reduction and/or divergence. The potential of highly

diverged organelle-specific pathways as targets for intervention has sparked research into the

evolution of MROs in single-celled organisms of all five eukaryotic supergroups [21,22]. Nota-

bly, the microaerophilic protozoan pathogens Entamoeba histolytica [20] and Giardia lamblia
[23,24], as well as intracellular parasites such as Cryptosporidium parvum [25] and Encephalito-
zoon cuniculi [26] harbor mitosomes. Interestingly, recent investigation of MROs in Spironu-
cleus salmonicida, a diplomonad and the closest relative of G. lamblia belonging to the

Excavata super-group, revealed that these organelles are in fact hydrogenosomes [27].

Although it has been demonstrated that G. lamblia mitosomes do not produce hydrogen, this

sheds a completely new light on the evolution of MROs in diplomonads.

Proliferating G. lamblia trophozoites contain 20–50 double membrane-bounded 100 nm

spherical mitosomes [23,24] devoid of an organelle genome [28,29,30,31]. Although not

proven experimentally, G. lamblia mitosomes are likely essential due to a subset of conserved

mitochondrial proteins required for iron- sulphur (Fe-S) protein maturation [23,32,33,34,35].

Yeast genetic experiments suggested that Fe-S protein maturation, the only function currently

ascribable to G. lamblia mitosomes, is in fact the minimal essential function of mitochondria
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[36]. Hence, these organelles have also attracted considerable interest as cell biological models

to study extreme reductive evolution of MROs [23,37,38,39,40,41,42]. However, due to mas-

sive, albeit selective sequence divergence in G. lamblia, conventional data mining strategies for

identification of mitosome proteins based on homology-based in silico searches fall short

[26,28,32,43,44,45,46,47]. Moreover, classical, organelle enrichment-based proteome analyses

approaches have had only limited success owing to the small size of the organelles and the

omnipresence of contaminating endoplasmic reticulum (ER) and cytoskeleton elements in

mitosome fractions [33,48,49].

Nevertheless, there is unambiguous experimental evidence for the functional conservation of

the mitosomal protein import machinery [20,23,24,49]. The small subset of structurally con-

served mitosome proteins such as G. lamblia IscU, ferredoxin, Cpn60, IscS and mtHsp70 are

imported by transit peptide-dependent and -independent mechanisms [23]. However, the pre-

dicted components of the TOM/TIM import apparatus are diverged beyond recognition by

state-of-the-art homology search tools. Indeed, the protein repertoire of the mitosomal outer

membrane and its networks are scarcely characterized: only one subunit of the translocon in the

outer mitochondrial (TOM) complex, a highly diverged Tom40 homologue (GlTom40), and [50]

more recently a giardial Tim44 homologue [49], have been identified. Furthermore, there is no

information on how mitosome homeostasis is achieved in terms of organelle size and number.

To address questions concerning protein networks at mitosomal membranes in association

with mitosome homeostasis and to account for the extreme sequence divergence in G. lamblia,

we implemented novel experimental approaches. We were successful to tag two outer mem-

brane organelle proteins with GFP to show that these small organelles are immobilized, dis-

tinctive entities with no appreciable inter-organelle exchange or network character. Using a

giardial TOM40 homolog as a starting bait we generated information on protein-protein inter-

actions at the outer membrane as well as expanding the organelle proteome by identifying

novel components. By using interactome targets validated by subcellular localization as baits

for subsequent reverse co-IP rounds, we were able to extend this initial interactome beyond

the outer membrane, including dually localized endoplasmic reticulum (ER) and mitosome

proteins, as well as identifying previously described and novel imported organelle proteins. In

addition to identification of two components with a role in mitosome morphogenesis and

homeostasis the combined data revealed a core organelle membrane interactome composed of

only 3 tightly-associated proteins. Furthermore, we tested constraints for import of nuclear-

encoded mitosome proteins and could show conservation of this mechanism even in the

highly diverged and reduced Giardia mitosome.

Materials and Methods

Giardia cell culture, induction of encystation, pulse-empty chase set-up

and transfection

G. lamblia WB (line C6; ATCC catalog number 50803) trophozoites were grown and harvested

using standard protocols [51]. Encystation was induced with the two-step method as described

previously [40,52]. Transgenic parasites were generated according to established protocols by

electroporation of linearized pPacV-Integ-based plasmid vectors prepared from E. coli as

described in [42]. After selection for puromycin resistance, transgenic G. lamblia cell lines

were cultured without puromycin.

Construction of expression vectors

All sequences of oligonucleotide primers for PCR used in this work are listed in S1 Table.

Mitosomes in Giardia lamblia
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For cloning of C-terminally hemagglutinin (HA)-tagged proteins in Giardia, a vector

PAC-CHA was designed on the basis of the previously described vector pPacV-Integ [42],

where additional restriction sites were inserted [53].

A cyst wall protein 1 promoter (pCWP1)-driven G. lamblia ferredoxin (fd)-human dihy-

drofolate reductase (DHFR) chimeric gene was generated by fusing two genes by overlapping

PCR: i) an intron-less fd mitosomal targeting signal (MTS) (MTSfdΔint) open reading frame

(ORF) was generated using primer pair 33 (S1 Table) with G. lamblia cDNA as template, ii) a

DHFR_HA minigene was generated using primer pair 34 (S1 Table) with a cloned human

DHFR cDNA as template. The fused product was digested with SpeI and PacI and inserted in a

PAC vector to yield construct pCWP1_MTSfdΔint-DHFR_HA.

A pCwp1_ MTSfdΔint-DHFR_Neomycin resistance construct (without HA tag) was gener-

ated for protein import block assays. Primer pair 35 (S1 Table) was used on pCwp1_

MTSfdΔint-DHFR_HA as a template. The amplified product was digested with NsiI and PacI
and ligated into a vector containing a neomycin resistance cassette [51].

Co-immunoprecipitation with limited cross-linking

G. lamblia WBC6 and transgenic trophozoites expressing C-terminally HA tagged bait pro-

teins were harvested and subjected to immunofluorescence assay to confirm correct subcellu-

lar distribution of bait proteins. Parasites were collected by centrifugation (900 x g, 10 minutes,

4˚C), washed in 50 ml of cold phosphate buffer saline solution (PBS) and adjusted to 2 x107

cells.ml-1 in PBS (VWR Prolabo). The appropriate formaldehyde concentration for cross-link-

ing (2.25%) was determined by a titration assay (S2 Fig). For the co-immunoprecipitation (co-

IP) assays, 109 parasites were resuspended in 10 ml 2.25% formaldehyde (in PBS) supple-

mented with 1 mM phenylmethylsulfonyl fluoride (PMSF; SIGMA, Cat. No. P7626) and incu-

bated for 30 minutes at room temperature (RT). Cells were pelleted, washed once with 10 ml

PBS, and quenched in 10 ml 100 mM glycine in PBS for 15 minutes at RT. The collected cells

were then resuspended in 5 ml RIPA lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1% IGE-

PAL, 0.5% sodium deoxycholate, 0.1% SDS, 10 mM EDTA) supplemented with 2 mM PMSF

and 1 x Protease Inhibitor cocktail (PIC, Cat. No. 539131, Calbiochem USA) and sonicated

twice using a Branson Sonifier with microtip (Branson Sonifier 250, Branson Ultrasonics Cor-

poration) with the following settings: 60 pulses, 2 output control, 30% duty cycle and 60 pulses,

4 output control, 40% duty cycle. The sonicate was incubated on a rotating wheel for 1 h at

4˚C, aliquoted into 1.5 ml tubes and centrifuged (14,000 x g, 10 minutes, 4˚C). The soluble

protein fraction was mixed with an equal volume detergent-free RIPA lysis buffer supple-

mented with 2% TritonX (TX)-100 (Fluka Chemicals) and 40 μl anti-HA agarose bead slurry

(Pierce, product # 26181). After binding of tagged proteins to the beads at 4˚C for 2 h on a

rotating wheel, beads were pulse-centrifuged and washed 4 times with 3 ml Tris-Buffered

Saline (TBS) supplemented with 0.1% TX-100 at 4˚C. After a final wash with 3 ml PBS the

loaded beads were resuspended in 350 μl PBS, transferred to a spin column (Pierce spin col-

umn screw cap, product # 69705, Thermo Scientific) and centrifuged for 10 s at 4˚C. Elution

was performed by resuspending beads in 30 μl of PBS. Dithiothreitol (DTT; 100mM; Thermo

Scientific, Cat. # RO861) was added and samples were boiled for 5 min followed by centrifuga-

tion (14,000 x g, 10 minutes, RT).

Protein analysis and sample preparation for mass spectrometry-based

protein identification

SDS-PAGE and immunoblotting analysis of input, flow-through, and eluate fractions was per-

formed on 4%-12% polyacrylamide gels under reducing conditions, (molecular weight marker

Mitosomes in Giardia lamblia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006036 December 7, 2016 4 / 32



Cat. No. 26616, Thermo Scientific, Lithuania). Transfer to nitrocellulose membranes and anti-

body probing were done as described previously [54], using anti-HA (dilution 1:500; Roche)

followed by anti-rat antibodies coupled to horseradish peroxidase (dilution 1:5000; Southern

Biotech). Gels for mass spectrometry (MS) analysis were stained using Instant blue (Expedeon,

Prod. # ISB1L) and de-stained with sterile water.

Mass Spectrometry, protein identification and data storage

Stained gel lanes were cut into 8 equal sections. Each section was further diced into smaller

pieces and washed twice with 100 μl of 100 mM ammonium bicarbonate/ 50% acetonitrile for

15 min at 50˚C. The sections were dehydrated with 50 μl of acetonitrile. The gel pieces were

rehydrated with 20 μl trypsin solution (5 ng/μl in 10 mM Tris-HCl/ 2 mM CaCl2 at pH 8.2)

and 40 μl buffer (10 mM Tris-HCl/ 2 mM CaCl2 at pH 8.2). Microwave-assisted digestion was

performed for 30 minutes at 60˚C with the microwave power set to 5 W (CEM Discover, CEM

corp., USA). Supernatants were collected in fresh tubes and the gel pieces were extracted with

150 μl of 0.1% trifluoroacetic acid/ 50% acetonitrile. Supernatants were combined, dried, and

the samples were dissolved in 20 μl 0.1% formic acid before being transferred to the autosam-

pler vials for liquid chromatography-tandem MS (injection volume 7 to 9 μl). Samples were

measured on a Q-exactive mass spectrometer (Thermo Scientific) equipped with a nanoAc-

quity UPLC (Waters Corporation). Peptides were trapped on a Symmetry C18, 5 μm, 180 μm

x 20 mm column (Waters Corporation) and separated on a BEH300 C18, 1.7 μm, 75 μm x 150

mm column (Waters Corporation) using a gradient formed between solvent A (0.1% formic

acid in water) and solvent B (0.1% formic acid in acetonitrile). The gradient started at 1% sol-

vent B and the concentration of solvent B was increased to 40% within 60 minutes. Following

peptide data acquisition, database searches were performed using the MASCOT search pro-

gram against the G. lamblia database (http://giardiadb.org/giardiadb/) with a concatenated

decoy database supplemented with commonly observed contaminants and the Swissprot data-

base to increase database size. The identified hits were then loaded onto the Scaffold Viewer

version 4 (Proteome Software, Portland, US) and filtered based on high stringency parameters,

i.e. 95% for peptide probability, a protein probability of 95%, and a minimum of 2 unique pep-

tides per protein. Where indicated in the text, slightly relaxed filtering parameters were

applied. Proteins identified in both bait-specific and control datasets were considered of inter-

est if they were at least 5-fold enriched in the bait-specific datasets (in terms of spectral counts)

based on high stringency parameters. Access to raw MS data is provided through the Proteo-

meXchange Consortium on the PRIDE platform [55].

In silico co-immunoprecipitation dataset analysis

Analysis of primary structure and domain architecture of putative mitosomal hypothetical

proteins was performed using the following tools and databases: MITOPROT (https://ihg.gsf.

de/ihg/mitoprot.html) and PSORTII (http://psort.hgc.jp/form2.html) for subcellular localiza-

tion prediction, TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) for transmembrane

helix prediction, SMART (http://smart.embl-heidelberg.de/) for prediction of patterns and

functional domains, pBLAST for protein homology detection (http://blast.ncbi.nlm.nih.gov/

Blast.cgi?PAGE=Proteins), HHPred (http://toolkit.tuebingen.mpg.de/hhpred) for protein

homology detection based on Hidden Markov Model (HMM-HMM) comparison, and the

Giardia Genome Database (http://giardiadb.org/giardiadb/) to extract other/organism-specific

information, e.g. expression levels of the protein, predicted molecular size and nucleotide/pro-

tein sequence. For functional domains predicted by SMART we used an e-value of 10e-5 as cut-

off, and for protein homologies predicted by pBLAST we accepted alignment scores above 80.
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However, since G. lamblia homologs for eukaryotic proteins are highly diverged, we also con-

sidered functional domain predictions associated to a lower e-value. Alignment scores between

50 and 80 were accepted only when pBLAST predictions were consistent with HHPred output.

Immunofluorescence analysis (IFA) and microscopy

Preparation of chemically fixed cells for immunofluorescence and analysis of subcellular distri-

bution of reporter proteins by wide-field and confocal microscopy were done as described pre-

viously [42,54]. Nuclear labelling was performed with 4’,6-diamidino-2-phenylindole (DAPI).

The HA epitope tag was detected with a monoclonal anti-HA antibody coupled to FITC (dilu-

tion 1:50; Roche) whereas GlIscU was detected with a self-made antibody (dilution 1:300) fol-

lowed by an anti-mouse antibody coupled to Alexafluor 594 (dilution 1:300; Molecular

Probes). To avoid any possibility for cross reaction, co-labelling experiments for IFA were per-

formed by incubating first with the anti-GlIscU antibody, followed by the AF594-conjugated

anti-mouse secondary antibody, and direct detection of the HA epitope tag with a FITC-conju-

gated rat anti-HA monoclonal antibody as a final step.

Live-cell microscopy and fluorescence recovery after photobleaching

(FRAP)

Transgenic G. lamblia trophozoites expressing GFP-GlTom40 or Gl29147-GFP were harvested

and prepared for imaging in PBS supplemented with 5 mM glucose (Cat. No. 49139, Fluka), 5

mM L-cysteine (Cat. No. C6852, Sigma) and 0.1 mM ascorbic acid (Cat. No. 95209, Fluka) at

pH 7.1. FRAP and time-lapse series were performed as described previously [54,56].

Sample preparation for transmission electron microscopy

Transgenic trophozoites ectopically expressing wild type G. lamblia dynamin related protein

(GlDRP) (ORF Gl50803_14373) or the constitutively active (GTP-locked) GlDRP-K43E variant

under the control of the CWP1 promoter [56] were harvested 3 h post induction and analyzed

by transmission electron microscopy (TEM) as described previously [56].

Sub-cellular fractionation analysis

For sub-cellular fraction experiments, 4.106 GlDRP-HA and GlDRP-K43E-HA- expressing

transgenic cells were lysed by freeze-thawing and supernatant (soluble fraction) and pellet

(membrane fraction) were prepared by centrifugation at 14’000 x g for 10 minutes at 4˚C. The

HA-tagged proteins were detected by SDS-PAGE and Western blot using a rat anti-HA mAb

(clone 3F10, Roche) as described previously [54].

DHFR-MTX protein import block assay

The MTSfdΔint-DHFR fusion (see also above under “Constructs”) was expressed under the

control of the inducible CWP1 promoter in a background transgenic line constitutively

expressing HA- tagged 17030 (cell line Cwp1_MTSfdΔint-DHFR/Gl17030HA). DHFR expres-

sion was induced using the 2-step method [40] for 4 h and “chased” for 24 h by placing the

cells again in standard growth medium in the presence or absence of 1 μM methotrexate

(MTX). Total cell lysates were separated by SDS-PAGE and Western blot to detect processed

and unprocessed forms of the Gl17030HA reporter. Subcellular distribution was analyzed by

immunofluorescence assay (IFA) using wide field microscopy.

Mitosomes in Giardia lamblia
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Results

G. lamblia mitosomes do not form dynamic networks and are associated

to the single dynamin-related protein GlDRP

Mitochondria in higher eukaryotes are highly dynamic organelle networks that move in the

cell via microtubules and microfilaments and undergo constant fission and fusion to meet the

energy requirements of the cell [57,58]. IFA and TEM analyses suggest that G. lamblia mito-

somes are very small spherical organelles with no evidence of network formation. In addition,

the mitosome population in each cell can be divided into peripheral mitosomes (PM) distrib-

uted randomly in the cytoplasm and what has been dubbed the central mitosome complex

(CMC) [23]. The latter consists of a grape-like cluster of individual organelles of the size and

shape of peripheral mitosomes that is closely and permanently associated to the basal body

complex between the two nuclei [23]. Interestingly, these organelles remain spatially distinct

despite their close proximity. The motility of this central cluster is highly constrained and

restricted to ordered segregation with the duplicated basal body complex during cell division

[23]. Because green fluorescent protein (GFP) imported into the mitosome matrix is not fluo-

rescent [23], GFP-tagging of mitosomes has not been possible until now. Martinkova et al.

[59] have shown that mitosomes in trophozoites can be labeled for live cell microscopy using

HaloTag markers [60]. However, no quantitative information on the spatial dynamics of

peripheral mitosomes in the cytoplasm was presented in this report. We investigated organelle

dynamics in living cells by performing time lapse microscopy of cells expressing GFP-tagged

mitosome reporters for the outer membrane. Conditional expression of N-terminally GFP-

tagged GlTom40 with 3 h of induction followed by “chasing” newly-synthesized GFP-Tom40

into mitosomes over 2–3 h in normal conditions was found suitable for labeling organelles in

living cells (Fig 1A and 1B). Tracking of individual organelles over a period of>30 min

showed no significant cytoplasmic movement or changes in number or morphology (Fig 1C),

suggesting that organelles neither move randomly nor are they transported directionally in the

cytoplasm along cytoskeleton structures. To test whether mitosome outer membrane proteins

are exchanged between organelles we performed FRAP experiments on cells conditionally

expressing GlTom40-GFP. Since GlTom40-GFP is membrane-anchored, FRAP addresses the

question whether mitosomes are isolated organelles and whether they form membrane conti-

nuities which would allow exchange of outer membrane proteins. No recovery of fluorescence

in bleached CMC or PM organelles was detected (Fig 1D–1G) suggesting that peripheral and

CMC organelle membranes remain distinct.

Despite intensive research in the field of MROs, little is known regarding factors required

for their division. Dynamin-related proteins (DRPs) are implicated in mitochondrial and

hydrogenosomal division in higher eukaryotes and in protozoa such as Trypanosoma brucei
[61,62] and Trichomonas vaginalis [63]. G. lamblia harbors a single DRP (ORF

Gl50803_14373) [56] with a previously documented role in trafficking of cyst wall material,

and endocytic and exocytic organelle homeostasis [56]. To test for a hitherto unrecognized

role of GlDRP in determining mitosome morphology and/number, we used a dual cassette

expression vector [54] to express constitutive C-terminally myc-tagged GlTom40 as a reporter

for mitosomes and inducible C-terminally HA-tagged wild-type (GlDRP-HA) or GTP-locked

(GlDRP-K43E-HA) variants in trophozoites. In trophozoites expressing GlDRP-HA (Fig 2A–

2C), IFA analyses demonstrated the typical random cytoplasmic distribution of PMs i.e. “dis-

persed” [23]. However, cells expressing the GTP-locked variant GlDRP-K43E-HA (Fig 2D–

2F) presented a “clustered” mitosome phenotype, indicative of enlarged organelles. Consistent

with this phenotype and in line with previous reports [56], the subcellular distribution of HA-

tagged GlDRP remained mostly cytosolic (Fig 2B). Conversely, GlDRP-K43E-HA showed a

Mitosomes in Giardia lamblia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006036 December 7, 2016 7 / 32



Fig 1. G. lamblia mitosomes are immobilized and do not form dynamic networks. (A-B) Detection of typical organelle

distribution of GFP-tagged GlTom40 (green) in time-lapse microscopy. (B) Overlay showing the CMC between the two nuclei and

PMs which show a canonical dispersed localization throughout the cell. (C) Tracking of organelles during a period of 30 min shows no

significant movement of mitosomes in the cytosol. (D-G) FRAP experiments performed on cells conditionally expressing GFP-tagged

GlTom40 suggest that outer membrane proteins are not able to move amongst/in between organelles. (E) Photobleaching of a single

mitosome (region of interest 1 (ROI 1)) in a living cell is shown. (F-G) Fluorescence in a bleached organelle (green line in the graph)

does not recover even after several minutes (>20 min). Purple and brown lines in the graph represent fluorescence in unbleached

areas (ROIs 2 and 3). (G) Fluorescence micrographs from the image series at the start (0 sec) of the experiment, during bleaching,

and at the beginning of the recovery phase (20 sec). Arbitrary units of fluorescence are indicated [I]. Broken lines connect pre- and

post-bleaching values in the graph. Scale bar: 1 μM.

doi:10.1371/journal.ppat.1006036.g001
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punctate distribution (Fig 2E) and significant signal overlap with GlTom40-myc (Fig 2F), sug-

gesting selective accumulation of GlDRP-K43E-HA on mitosome membranes. We tested

whether this marked association of ectopically expressed GlDRP-K43E with organelle mem-

branes compared to the wild type DRP variant in IFA could be corroborated in cell fraction-

ation experiments. Separation by SDS-PAGE and immunoblot analysis revealed that

GlDRP-HA was almost equally distributed between the “cytosolic” and “membrane” fraction,

whereas the mutated variant GlDRP-K43E-HA was detected only in the “membrane” fraction

(Fig 2G). These data were consistent with the microscopical analysis in Fig 2E and suggest

increased association of GlDRP-K43E-HA with organelle membranes compared to wild-type

GlDRP-HA. To characterize the nature of the GlDRP-K43E-HA-dependent phenotype in

more detail, we performed transmission electron microscopy of induced transgenic cells. Cells

expressing the GlDRP-K43E-HA variant frequently presented elongated and tubular mito-

some structures (Fig 2I and 2J) compared to cells expressing wild type GlDRP-HA (Fig 2H).

Taken together, these data show how mitosomes are immobilized in the cell and present no

measurable outer membrane exchange in the conditions tested. Their morphogenesis is per-

turbed following conditional ectopic expression of a dominant-negative GTP-locked GlDRP

variant, suggesting a previously unappreciated role for this GTPase in the maintenance of

mitosome integrity and organelle morphogenesis in G. lamblia.

Co-IP with the G. lamblia Tom40 homolog identifies novel interacting

proteins in the mitosome outer membrane

The aberrant mitosome morphology after conditional expression of GlDRP-K43E points

towards mitosome-associated machinery at the organelle’s surface involved in organelle

homeostasis. Despite efforts aimed at defining the protein content of mitosomes in Giardia
[33,49,50], the composition of this organelle’s outer and inner membrane proteome remains

sparsely characterized, with the exception of a highly diverged putative Tom40 homologue

(GlTom40; ORF Gl50803_17161) and a structurally-conserved Tim44 [49,50]. To generate a

robust mitosome outer membrane proteome we focused on GlTom40 as a point of origin and

developed a tailored co-IP protocol with an HA-tagged variant as “bait”. A transgenic line

GlTom40-HA constitutively expressing the epitope-tagged bait protein was generated; exclu-

sive mitosome localization of the bait protein in transgenic cells was confirmed by IFA in co-

labelling experiments with a newly-made anti-GlIscU antibody (Fig 3A and S1A Fig). To

ensure solubilization of mitosomal membranes while avoiding disruption of Tom40-associated

protein complexes, we used carefully titrated, formaldehyde-based cross-linking [64] to stabi-

lize predicted protein-protein interactions in co-IP experiments during extraction with the

option to reverse covalent bonds (S2 Fig; see also in Materials and Methods). Following MS

analysis and data filtration using a control dataset obtained from non-transgenic cells (ctrl.co-

IP) we identified a total of 52 proteins, 46 exclusive and 6 enriched in the GlTom40 co-IP data-

set (Fig 3B). This protein set was parsed and subdivided into different metabolic and/or func-

tional categories (Fig 3C). In the mitosomal protein category few detected four previously

identified mitosome proteins namely: mitochondrial HSP70 (ORF Gl50803_14581),

Fig 2. Conditional expression of GlDRP-K43E elicits a mitosome morphogenesis phenotype. (A-C) Subcellular localization of a

C-myc tagged GlTom40 (red) by IFA in cells induced to express a wild type GlDRP (green) or GTP-locked variant GlDRP-K43E (D-F).

Note the altered size and distribution of organelles labeled with Tom40-myc in GlDRP-K43E expressing lines. Nuclear DNA is stained

with DAPI (blue). Insets: DIC images. Scale bar: 1 μM (G) -Cell fractionation experiments confirm fixed membrane localization of

GlDRP-K43E. (H) TEM: normal morphology of mitosomes (black arrows) in the CMC in cells expressing wild type GlDRP whilst cells

expressing GlDRP-K43E show enlarged dumbbell-shaped mitosomes (black arrows in I, J) indicative of defective organelle division.

Nu: nucleus. Scale bars: 100 nm.

doi:10.1371/journal.ppat.1006036.g002
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oxidoreductase 1 (GlOR1; ORF Gl50803_91252), proteins Gl50803_9296 and Gl50803_14939,

recently named MOMP35 [33,49]. We extracted additional information from the GlTom40

co-IP data by relaxing stringency parameters to (95_1_95), obtaining a total of 150 proteins

(FDR 3.4%). Of these, 109 hits were exclusive to the expanded GlTom40 co-IP dataset which

contained 3 additional annotated mitosome proteins namely, chaperonin 60 (Cpn60; ORF

Fig 3. Co-IP with HA_tagged GlTom40 yields numerous candidate interacting proteins. (A) Immunofluorescence microscopy: C-terminally

HA-tagged GlTom40 (GlTom40-HA) is an exclusive marker for mitosomes (green). Nuclear DNA is stained with DAPI (blue). Inset: DIC image.

(B) Venn diagram indicating 46 GlTom40 specific hits. (C) Parsing of 46 GlTom40-specific and 6 enriched proteins in metabolic categories based

on available annotations in www.giardiaDB.org.

doi:10.1371/journal.ppat.1006036.g003
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Gl50803_103891),GlQb-SNARE 3 (putative Sec20, ORF Gl50803_5161) and GlIscU (NifU-like

protein; ORF Gl50803_15196).

Imaging-based validation of the GlTom40 co-IP dataset

Limited chemical cross-linking in co-IP assays expands the range of discovery beyond primary

interactions with the bait. We therefore performed an initial validation of the predicted

GlTom40 interacting proteins in this dataset by subcellular localization of ectopically

expressed, epitope-tagged candidates to mitosomes. We selected 13 of the 109 candidate Mito-

somal Outer Membrane Tom40 interacting proteins (MOMTiP; Table 1) based on their spec-

tral counts with high stringency parameters and/or protein domains identified with HHPred

(S2 Table) and engineered endogenous promoter-driven, C-terminally HA-tagged variants for

all. IFA analysis of corresponding transgenic lines showed mitosomal localization for 8 candi-

dates (Fig 4A–4H), of which 4 proteins of unknown function (MOMTiP-5 to 8) presented

dual localization (mitosome and ER) (Fig 4F–4I). The five remaining proteins of this set of 13

candidates (MOMTiP- 9–13; Fig 4J–4N) showed dispersed patterns of subcellular distribution

and were not considered mitosome proteins. Fig 4O shows a consolidated depiction of a first

GlTom40-centered mitosomal outer membrane interactome, which includes the 8 proteins

localized to mitosomes described above, as well as 4 previously identified matrix proteins and

3 newly validated hypothetical proteins comprised in the list of GlTom40 interacting proteins.

Taken together, the imaging data are in agreement with the protein-protein interaction data,

and support limited chemical crosslinking as a suitable method to stabilize protein complexes

during co-IP.

Iterative reverse co-IP experiments expand the mitosomal protein

interactome network beyond the outer membrane

IFA analysis of MOMTiP-1 to 13 indicated that the majority of these proteins are associated to

mitosomes, thereby providing preliminary validation of the selected 13 candidates of the pri-

mary GlTom40-specific co-IP dataset. To further test the robustness of this primary interac-

tome and expanding it beyond the mitosomal membrane, we performed a first reverse co-IP

experiment using MOMTiP-1 (ORF Gl50803_29147) as bait. MOMTiP-1 was chosen because

Table 1. Selected MOMTiP proteins for validation by light microscopy.

ORF number Assigned name Peptide count in GlTom40-specific co-IP dataset (none detected in WB)

Gl50803_29147 MOMTiP-1 30

Gl50803_10971 MOMTiP-2 63

Gl50803_14939 MOMTiP-3 (GiMOMP35) [49] 21

Gl50803_9296 MOMTiP-4 11

Gl50803_21943 MOMTiP-5 13

Gl50803_22587 MOMTiP-6 8

Gl50803_5785 MOMTiP-7 (Qb-SNARE 4) [65] 11

Gl50803_9503 MOMTiP-8 1

Gl50803_7188 MOMTiP-9 1

Gl50803_114546 MOMTiP-10 1

Gl50803_113892 MOMTiP11 43

Gl50803_9719 MOMTiP-12 47

Gl50803_10822 MOMTiP-13 3

doi:10.1371/journal.ppat.1006036.t001
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it presented the largest spectral count with high stringency parameters in the GlTom40 dataset

and localized unequivocally to mitosomes (S1B Fig).

MOMTiP-1 is a Giardia-specific mitosome-localized protein of unknown function. In silico
analysis using TMHMM robustly detected a 22 amino acid-long transmembrane helix in the

N-terminal part of the protein followed by a large C-terminal domain predicted to be exposed

to the cytosol on the mitosomal surface. To track this protein in vivo, we engineered MOM-

TiP-1 constructs for live cell imaging using GFP reporters. We have shown previously that

GFP only fluoresces if exposed to the cytoplasm and never after import into mitosomes [23].

Therefore, the brightly fluorescing and mitosome-localized MOMTiP-1-GFP fusion supports

the predicted topology for MOMTiP-1 as a type 1 transmembrane protein with respect to the

outer mitosomal membrane. Surprisingly, many cells expressing MOMTiP-1-GFP showed a

mitosome morphology dubbed “string” phenotype suggestive of extensive elongation of organ-

elles to large tubules (Fig 5A; left). In many cases, virtually all PMs had been replaced by a sin-

gle long organelle with a diameter that corresponded to that of an individual mitosome.

Although the “string” mitosome phenotype was compatible with survival of the parasites,

many trophozoites appeared to be delayed or even arrested in cytokinesis and had a typical

heart-shaped appearance (Fig 5A; middle) previously observed in cells which are unable to

complete cytokinesis [66]. Because the tubular organelles ran through the non-divided part

connecting both daughter cells, we postulated that inability to divide mitosomes impairs com-

pletion of cytokinesis.

Co-IP with an HA-tagged variant of MOMTiP-1 yielded a large dataset of 221 exclusive hits

(Fig 5B) which included GlTom40 detected at high stringency parameters, thereby confirming

the strong interaction between GlTom40 and MOMTiP-1. The 221 MOMTiP-1 co-IP specific

hits and an additional 20 enriched candidates were parsed according to different metabolic

and/or functional categories (Fig 5B). In addition to GlTom40, the dataset contained several

known mitosomal proteins, including matrix proteins HSP70 and GiOR1, cysteine desulfurase

(IscS; Gl50803_14519), Cpn60, [2Fe-2S] ferredoxin (Gl50803_27266) and NifU-like protein,

along with all 8 hypothetical proteins previously identified in the GlTom40 co-IP dataset and 4

additional non-annotated candidate mitosome proteins (Fig 5C–5F). Similarly to MOMTiP-1,

one of these (Gl50803_17276) is also predicted to carry a TMD close to its N-terminus. Fur-

thermore, this dataset contained two axoneme-associated GASP-180 proteins

(Gl50803_137716and Gl50803_16745) [67] detected with high stringency parameters, in line

with association of the CMC to basal bodies.

Taken together, a first reverse co-IP analysis using the single-pass transmembrane MOM-

TiP-1 provided robust validation of the experimental approach used to identify mitosome

membrane proteins, and has expanded the predicted mitosomal membrane and import

machinery interactome to 22 proteins (Fig 5G).

Reverse co-IP using MOMTiP-1 as bait demonstrated that this protein and GlTom40 are

strong interaction partners. We analyzed the intersection of their respective datasets to identify

common candidate interaction partners and identified 27 proteins with high reliability (Fig

5H), 10 of which localized to mitosomes (Fig 4). Given MOMTiP-1’s predicted topology,

strong interaction with GlTom40 and the interactome overlap, we postulated that MOMTiP-1

Fig 4. Subcellular localization of co-precipitated GlTom40 interaction partners. (A-N) Immunofluorescence microscopy: subcellular localization

of C-terminally HA-tagged GlTom40 and 13 putative interaction partners (green) falls into 3 categories: Typical mitosome localization (A-E); dual

localization to mitosomes and ER (F-I); no or ambiguous mitosome localization (J-N). Nuclear DNA is stained with DAPI (blue). Insets: DIC image.

Scale bars: 1μm. (O) Partially validated GlTom40 interactome showing the bait protein (orange sphere), matrix proteins (purple), previously identified

and mitosome-localized proteins (black), and mitosome-localized hypothetical proteins (blue). The stringency parameters used for detection (high,

medium, and relaxed) are represented by bold, dashed, and dotted arrows, respectively.

doi:10.1371/journal.ppat.1006036.g004
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Fig 5. Expansion and validation of the GlTom40 interactome by reverse co-IP with MOMTiP-1. (A) The “string” mitosome phenotype observed

upon constitutive expression of GFP-tagged MOMTiP-1 (MOMTiP-1-GFP). Left panel: MOMTiP-1-GFP localized exclusively to mitosomes and in some

cases virtually all of the peripheral organelles have been replaced by a single long tubular mitosome spanning both daughter cells length-wise. Middle

panel: DIC image. Right panel: Overlay of the two channels. (B) Venn diagram showing MOMTiP-1-specific proteins identified after filtering the dataset.

(C-F) Subcellular localization of selected C-terminally HA-tagged novel hypothetical proteins by IFA (green). Nuclear DNA is stained with DAPI (blue).

Insets: DIC images. (G) Preliminary interactome of GlTom40 and MOMTiP-1 showing validated hits. Bait proteins (orange spheres), matrix proteins

(purple), previously identified and localized proteins (black), and localized hypothetical proteins (blue). The stringency parameters used for detection

Mitosomes in Giardia lamblia
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and GlTom40 exist in a core complex mostly likely involved in protein translocation across the

outer mitosomal membrane. To characterize other components of this core interactome of the

outer mitosomal membrane and to move beyond individual complexes to explore the bound-

aries of the growing protein interactome network (Fig 5G), we performed a series of additional

reverse co-IP experiments using HA-tagged Qb-SNARE 4 (MOMTiP-7), GlIscS, protein

Gl50803_9296 (MOMTiP-4) and protein Gl50803_14939 (MOMTiP-3) as baits. MOMTiP-7

(Qb-SNARE 4), MOMTiP-4 and MOMTiP-3 were chosen because they were identified either

exclusively or in both the GlTom40- and MOMTiP-1 co-IP datasets, suggesting they may

reside in the mitosomal outer membrane and could thus serve as tools for a lateral and out-

ward expansion of this compartment’s interactome. On the other hand, GIIscS was chosen to

extend the mitosomal proteome inwards towards the organellar matrix. Correct mitosomal

localization for all 4 HA-tagged variants had been previously confirmed by IFA (Fig 4 and

S1C–S1F Fig).

Expansion of the mitosomal membrane interactome network beyond and within the

outer mitosomal membrane with MOMTiP-3, MOMTiP-4 and MOMTiP-7. MOMTiP-3,

also known as MOMP35 [49], is predicted to contain 2 TMDs and was analyzed because of its

potential role as a component of the import complex [49]. Co-IP using HA-tagged MOMTiP-

3 as bait yielded 93 bait-specific candidate interactors. Both GlTom40 and G. lamblia oxidore-

ductase 1 (GiOR1) were detected in this dataset, in addition to several previously identified

hypothetical mitosomal proteins (e.g. Gl50803_29147,Gl50803_10971 and Gl50803_7188) (Fig

6A), suggesting that MOMTiP-3 is a significant interacting partner of GlTom40 and MOM-

TiP-1.

Consistent with its prediction as a SNARE protein, MOMTiP-7 presents dual localization,

(mitosome and ER; Fig 4H and S1C Fig) and was identified as a strong interactor in both the

GlTom40 and MOMTiP-1 co-IP datasets. We postulated that MOMTiP-7 may have a role in

inter-organelle communication between mitosomes and the ER, possibly in protein/lipid

transport [68,69]. We reasoned that identifying interaction partners could shed light on the

nature of physical contacts between mitosomes and other membrane-bounded compartments.

Analysis of co-IP using HA-tagged MOMTiP-7 as bait yielded 157 bait-specific proteins. Inter-

estingly, the only 2 proteins in the dataset with high spectral counts were the bait itself and

MOMTiP-3. Several non-annotated proteins, e.g. MOMTiP-2, MOMTiP-1, MOMTiP-9,

GlTom40 as well as Type III DnaJ protein Gl50803_9751were detected with relaxed stringency

parameters.

MOMTiP-4 is a predicted soluble Giardia-specific protein of unknown function with a

mitochondrial targeting signal. In line with this, HA-tagged MOMTiP-4 localized exclusively

to mitosomes (Fig 4E and S1E Fig). MS data analysis performed with high stringency parame-

ters of a MOMTiP-4 co-IP experiment (95_2_95; FDR 0%) yielded only 12 bait-specific hits,

none of them known mitosome proteins. The bait protein itself was by far the most significant

hit in the dataset. Analysis with more relaxed stringency parameters (90_1_90; FDR 6.2%)

yielded 47 bait-specific identifications which included matrix proteins GlIscS, GlIscA,

GlHsp70, and also GlTom40. The MOMTiP-4 co-IP dataset suggests that despite its clear-cut

localization and considerable expression levels judged by the signal obtained in Fig 4E, this

mitosomal protein has a limited interactome enriched mostly in matrix proteins. MOMTiP-

1was identified only at very low stringency (20_1_20; FDR 51%) in this dataset, suggesting that

(high, medium, and relaxed) are represented by bold, dashed, and dotted arrows, respectively. (H) Venn diagram showing the intersection of GlTom40

and MOMTiP-1datasets.

doi:10.1371/journal.ppat.1006036.g005
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MOMTiP-4 and MOMTiP-1 are not direct interactors but could be connected via bridging

proteins. All identified MOMTiP-4-interacting proteins are depicted in Fig 6D.

Expansion of the the GlTom40 interactome towards the matrix with GlIscS. GlIscS is a

mitosomal matrix protein and the central component of the Fe-S assembly machinery [70]. All

mitosomal matrix proteins including GlIscS are translated in the cytoplasm and reach their

final destination after unfolding and translocation across the mitosome double membrane.

Thus, this trafficking route (cytoplasm–translocon–matrix) should be reflected in the protein-

protein interactions of a co-IP dataset with GlIscS-HA as bait. Co-IP of HA-tagged GlIscS

yielded 177 bait-specific protein hits. Among these, we identified all 5 known matrix proteins

namely, NifU-like protein, HSP70, [2Fe-2S] ferredoxin, Cpn60, and GiOR1. GlTom40 as the

sentinel protein for the outer membrane translocon was detected with relaxed stringency

(50_1_50, FDR of 30%). Seventy out of 177 hits were enriched in the GlIscS-specific dataset,

with� 5 peptide counts. Eighteen of those (25%) belong to the Protein 21.1 family. The bio-

logical function of this protein family in G. lamblia [71] and the significance of its association

to GlIscS is unknown.

In summary, we have generated an extensive mitosome-centered protein interaction net-

work (Fig 6E) from 6 independent co-IP assays using epitope-tagged GlTom40 and 5 interac-

tion partners (MOMTiP-1, MOMTiP-3, MOMTiP-7, GlIscS and MOMTiP-4) as baits based

on i) spectral counts with high stringency parameters in the GlTom40 co-IP dataset and ii)

confirmed localization of epitope-tagged variants to mitosomes by IFA. All 24 localized mito-

some proteins (previously known and newly identified hypotheticals) were parsed according

to molecular function and biological process (S3 Fig) using Blast2go (https://www.blast2go.

com/). Metal ion, Fe-S, ATP, and protein binding were the major molecular functions associ-

ated with these proteins. Interestingly, other biological processes involving response to lipid

and transmembrane transport were also identified with significant p-values. An additional 93

candidates annotated as hypothetical proteins (from all the 6 co-IP assays) were analyzed

using Blast2go (S4 Fig). Binding and catalytic activities were the 2 major GO terms associated

to this group. Interestingly, GlDRP was strongly overrepresented in 3 high-stringency co-IP

datasets where mitosome membrane proteins were specifically used as bait. Moreover, with

relaxed stringency parameters GlDRP was detected in all 6 co-IP datasets (Fig 6F), indicating

that GlDRP is associated to mitosomes. These data are clearly in line with our previous obser-

vations concerning the perturbation of mitosome morphogenesis by mutant GlDRP (Fig 2D–

2F). In Table 2, we have combined our data with data reported in [33,49] for a state-of-the-art

overview of the main confirmed interactions within the mitosome-centered protein

interactome.

A pharmacologically-induced mitosome matrix-targeted DHFR complex

inhibits processing of an imported endogenous reporter in mitosomes

Evidence from extensive primary and reverse co-IP data combined with IFA analysis led us to

postulate that GlTom40, MOMTiP-1 and MOMTiP-3 exist in an outer membrane core com-

plex, likely involved in protein import. We probed the functional conservation of mitosomal

import across the GlTom40 translocon with respect to the corresponding process in bona fide
mitochondria by adapting the DHFR-folate analogue system [49,73] to G. lamblia. Pre-

sequence directed DHFR is a classical substrate used in protein translocation studies due to its

ability to fold irreversibly upon binding a folate analog, e.g. MTX. Complexed with MTX,

DHFR becomes unsuitable as a substrate for import and blocks translocons, which results in a

general blockage of organelle protein import [73]. Transfection of MTSfdΔint-DHFR into a

Gl17030-HA background, i.e. a transgenic line expressing an HA-tagged MTS-directed

Mitosomes in Giardia lamblia
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mitosomal reporter, allowed testing of the general effects of MTX-induced import block. We

reasoned that the presence of MTX in MTSfdΔint-DHFR expressing cells could lead to an

import block due to jamming of the translocase. Localization of the reporter by IFA showed an

increased cytosolic Gl17030-HA signal after addition of 1 μM MTX (Fig 7B) compared to para-

sites exposed to the solvent alone (Fig 7A). This suggested accumulation of the reporter in the

cytosol in cells exposed to MTX as a result of a generalized import block. To test this we mea-

sured the ratio of the slightly larger Gl17030-HA reporter precursor protein and the imported

and therefore processed form without the MTS by SDS-PAGE and Western blot using anti-

HA antibodies. Consistent with the IFA data, unprocessed Gl17030-HA was strongly increased

in the drug treated sample, whilst only the processed form was present in untreated controls

(Fig 7C). Taken together the data support functional conservation of the highly diverged pro-

tein import machinery in G. lamblia mitosomes.

Discussion

G. lamblia mitosomes remain the smallest known and least characterized MROs. Identification

of protein components using shotgun proteomic analysis of enriched mitosome preparations

has proven challenging primarily due to difficulties in isolating sufficient amounts of contami-

nant-free organelles [33,48]. Extensive sequence divergence prevents identification of organ-

elle proteins via homology-based searches; a case in point is GlTOM40 whose sequence

degeneration is so extensive that the identification of orthologues in Giardia, Entamoeba or

Spironucleus remains tentative despite the constraints imposed by the beta barrel structure of

these mitochondrial porins [44]. The function of candidate factors identified by other means

and localized to organelle membranes usually cannot be deduced based on existing structural

information from well-characterized mitochondrial homologs. A notable exception to this is a

recently identified highly-diverged but structurally-conserved GlTim44 homologue [49].

Taken together, these challenges have frustrated attempts at systematizing intra- and inter-

organelle mitosome-centered interactions, thereby limiting analysis to isolated complexes

[49,50]. For example attempts at analyzing isolated GlTom40-containing protein complexes

(presumably enriched mitosomal outer membrane translocons) using blue-native PAGE [50]

detected no mitosomal proteins aside from GlTom40 and an unidentified 32kDa protein

which could not be mapped to any known Giardia sequence. These data demonstrate how

challenging it is to define novel GlTom40-interacting partners, probably due to the translocon

complex being embedded in the outer membrane of the organelle. Here, we used epitope-

tagged GlTOM40 [23,33] as first bait, and implemented an iterative co-immunoprecipitation

approach to expand the mitosomal membrane interactome network beyond the few known

components. With only 5 more bait proteins, this strategy allowed for building of a core mem-

brane interactome and a complex interactome network extending inwards to the organelle

matrix as well as outwards to components of the ER membrane, the axoneme cytoskeleton and

the cytoplasm. The rationale is that with sufficient numbers of targeted reverse co-IP experi-

ments using validated organelle proteins as baits, a comprehensive proteome interactome

could be built, thereby achieving a systems-biological view of the giardial mitosome proteome.

Fig 6. Expansion of the core interactome beyond the outer mitosomal membrane with co-IPs of HA-tagged MOMTiP-7, MOMTiP-4, MOMTiP-3 and

GlIscS. Epitope (HA)-tagged (A) MOMTiP-3, (B) MOMTiP-7, (C) GlIscS and (D) MOMTiP-4 –derived interactomes. (E, F) Alternative depictions of the

cumulative interactome of proteins localizing to mitosomes generated with 6 bait proteins. Note the tight association of GlTom40 with MOMTiP-1 and

MOMTiP-3. (F) A socio-affinity depiction of protein-protein interactions derived from all co-IP experiments. Proteins are grouped according to how many baits

they were significantly associated with. GlDRP (green sphere) is pulled down with all 6 bait proteins used in the co-IP assay at different stringency

parameters. Bait proteins (orange spheres), matrix proteins (purple), previously identified and localized proteins (black), and localized hypothetical proteins

(blue). The stringency parameters used for detection (high, medium, and relaxed) are represented by bold, dashed, and dotted arrows, respectively.

doi:10.1371/journal.ppat.1006036.g006
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From a technical point of view, building an interactome network using a forward- and reverse

co-IP approach allows isolation of “true” mutual interactions by validation in two completely

independent co-IP experiments. Specifically, the 108 MS hits detected in the Tom40 co-IP

dataset which include numerous non-specific interactions can be filtered with data from

reverse co-IP assays to reveal actual protein-protein interactions (depicted in Fig 6E) that can

be unambiguously distinguished from false-positive hits. Combined with imaging data and

predicted topology this provides a robust platform to construct an integrated working model

of all mitosome-associated protein interactome networks known to date (Fig 8). Blast2Go in
silico enrichment analyses suggest that mitosomes may have a role beyond Fe-S protein matu-

ration (S3 and S4 Figs) Only recently the major function of E. histolytica mitosomes was

shown to be sulfate activation, and not Fe-S protein maturation as previously thought [44].

Although genes involved in this pathway are missing in other MRO-containing organisms

such as G. lamblia, T. vaginalis, and C. parvum, the Entamoeba example points to a wider

range of functions ascribable to mitosomes. This may even include general functions in stage-

differentiation as recently shown in E. histolytica whose mitosomes are essential for the encys-

tation process [74].

Fig 7. MTX treatment of cells expressing mitosome-targeted DHFR affects processing of a mitosomal

matrix reporter. Subcellular distribution of a matrix-targeted reporter (Gl17030-HA) without MTX (A) or after

addition of 1μM MTX for 24 h (B) in transgenic cells expressing mitosome-targeted DHFR. Note the

accumulation of HA-signal in the cytoplasm. Nuclear DNA is stained with DAPI (blue). Insets: DIC images. (C)

Immunoblot analysis detects accumulation of unprocessed Gl17030-HA in the presence of MTX.

doi:10.1371/journal.ppat.1006036.g007

Mitosomes in Giardia lamblia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006036 December 7, 2016 22 / 32



GlTom40 and interaction partners MOMTiP-1 and MOMTiP-3: a

minimized mitosome protein import apparatus?

Following its identification as a prominent GlTom40 interaction partner, the single pass mem-

brane protein MOMTiP-1 was the first bait protein selected for reverse co-IP to expand the

GlTom40 interactome. MOMTiP-1 as bait pulled down GlTom40 with the most abundant

peptide counts. GFP-tagging and detection of MOMTiP-1::GFP on mitosomes suggests a

membrane topology in line with characterized mitochondrial receptor proteins such as Tom20

[75]. Further support for MOMTiP-1’s membrane topology may derive from a definition of

membrane orientation using alternative methods such as in situ proximity ligation or protease

protection assays. The latter approach has proven useful in the determination of membrane

topology for other mitosomal candidate proteins in Giardia [49]. The identification of

Fig 8. An integrated model for mitosome interactome networks. Schematic representation of all proteins identified via protein-protein interaction data

through serial coIP assays using 6 different mitosomal bait proteins are shown in a model. Previously identified/ known mitosomal proteins are depicted in

yellow. Newly identified mitosome localized hypothetical proteins are shown in blue. Proteins with dual localization (mitosomes and ER) are shown in blue/

green. As yet un-identified pore (translocase) in the inner membrane is shown in red. Positioning of these identified proteins on the model is based on in silico

data (presence/ absence of (1) mitochondrial targeting sequence, (2) transmembrane domain), localization data and socio- affinity interaction of these

proteins with their respective and other bait proteins.

doi:10.1371/journal.ppat.1006036.g008
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MOMTiP-1 provides an exciting lead; however, a detailed functional characterization of this

protein is required to provide independent evidence for the exact nature of this interaction

and to test the hypothesis that MOMTiP-1 is a component of the GlTom40 complex with a

receptor function. So far 20 proteins have been validated by localization to mitosomes, allow-

ing for a significant expansion of the GlTom40/MOMTiP-1 interactome. This protein’s pre-

dicted topology combined with its exclusive mitosomal localization and the size and

composition of its interactome, supports MOMTiP-1 as a GlTom40 accessory protein with a

potential receptor function for protein import. To test this hypothesis, we engineered a trun-

cated HA-tagged version of MOMTiP-1 consisting only of the predicted C-terminal domain

(residues 31–133; C-MOMTiP-1). Ectopic expression of C-MOMTiP-1 showed a distinct cyto-

solic localization by IFA (S5A Fig). Native co-IP of C-MOMTiP-1 and analysis of the bait-spe-

cific dataset with medium stringency parameters (95_1_95) identified only 2 mitosomal

proteins (Gl50803_16424 and MOMTiP-8) (S5B Fig). These data show that the soluble cyto-

plasmic MOMTiP-1 variant does not recapitulate the interaction properties of the full-length

membrane-anchored protein, suggesting that capture of imported matrix proteins may require

incorporation of the putative receptor domain into a fully-assembled TOM complex, complete

with ancillary factors.

MOMTiP-3 was exclusively identified in the GlTom40 and the MOMTiP-1 co-IP datasets,

suggesting that these 3 proteins may function in a tightly-knit complex, likely involved in pro-

tein import across the outer mitosomal membrane. TMHMM predicts two TMDs at MOM-

TiP-3’s N-terminus, followed by a large C-terminal domain. Powerful HMMER-based

searches across several eukaryotic lineages, including the closely related diplomonad Spironu-
cleus salmonicida [76], yielded no orthologues for MOMTiP-3, neither was there any predicted

functional information available. Nevertheless, analysis of protease protection assays for this

protein showed that MOMTiP-3 localizes at the outer mitosome membrane with its C- termi-

nus in the cytosol [49]. These data, in combination with data on MOMTiP-1 predicted topol-

ogy and interactomes developed herein, support a model for GlTom40, MOMTiP-1, and

MOMTiP-3 for a minimized mitosomal import apparatus whose core import machinery is

composed of only these 3 proteins. The dramatic perturbation of mitosomal homeostasis

observed when either MOMTiP-1 (this work) or MOMTiP-3 [49] were constitutively overex-

pressed supports the hypothesis for their belonging to the same complex. Protein translocation

across the outer mitosomal membrane through this highly reduced import apparatus would be

conserved in its mechanism, given that MTX-induced complexing of mitosome-targeted

DHFR caused accumulation of unprocessed i.e. untranslocated mitosome reporters (Fig 7C,

[49]). Incidentally, these data also confirm that mitosome membrane translocation requires

pre-proteins to remain in an unfolded state [49].

Mitosome-ER contact sites

Co-IP data combined with imaging of tagged variants identified 6 proteins with dual localiza-

tion at mitosomes and ER (Fig 8). Contact between these organelles would serve at least two

major functions, i.e. replication of mitosomes and transport associated to lipid biosynthesis.

Thus far, we have identified five mitosome proteins with dual localization potentially involved

in inter-organelle communication (Fig 4F). One of them is a transmembrane Qb-SNARE 4

(MOMTiP-7) [65] identified in GlTom40 and MOMTiP-1 co-IP datasets.

For their biogenesis, mitochondria and MROs rely on lipid transfer from the ER, the central

site for phospholipid synthesis in the cell [77,78]. SNAREs are best known for mediating mem-

brane fusion in vesicular transport [79] whereas in the context of mitochondria and the ER,

they function as components of so called ER-mitochondria encounter structures (ERMES). In
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addition to being associated to mitochondrial protein import [80,81], ERMES fulfills an essen-

tial function in inter-organelle lipid transport [80]. Phosphatidylserine is shuttled from the ER

to mitochondria through the ERMES complex where it is converted to phosphatidylethanol-

amine (PE) by a decarboxylation reaction that generates most if not all PE in mitochondria

[80,82]. Unlike in the hydrogenosome-containing T. vaginalis [83], ERMES homologs have

not been identified in G. lamblia, possibly due to extensive sequence divergence. Thus,

whether this function is preserved in Giardia mitosomes is not known however, organelle bio-

genesis would necessarily depend on ER-derived lipids which are transported to mitosomes

either by carrier proteins or via membrane contact sites. The latter requires tethering com-

plexes to facilitate phospholipid exchange between the two organelles. Given that MOMTiP-7

is predicted to be a SNARE, we explored the idea that this protein is part of a larger complex

mediating ER-mitosome interaction. Co-IP of MOMTiP-7 specifically detected, in addition to

outer membrane proteins such as GlTom40, MOMTiP-1 and MOMTiP-3, 3 hypothetical pro-

teins, two of which, MOMTiP-8 and MOMTiP-5 (both predicted soluble proteins), localized

both to the ER and to mitosomes. In addition, a domain in MOMTiP-8 has similarity to a

yeast “Maintenance of mitochondrial morphology” protein 1 (Mmm1) of the ERMES com-

plex. Moreover, HHpred analysis revealed a link between MOMTiP-5 and a beta barrel lipid

binding protein MLN64 (e-value 0.0006) in H. sapiens which facilitates cholesterol transport to

mitochondria [84]. These preliminary data support the existence of an outer mitosomal mem-

brane-associated complex in G. lamblia mitosomes possibly involved in generating ER—mito-

some membrane contact sites (Fig 8).

Mitosome dynamics and a novel role for MOMTiP-1 and GlDRP in

mitosome homeostasis

We had previously shown that replication and inheritance of the CMC is coordinated in a cell

cycle-dependent manner, whereas PMs divided stochastically [23]. The lack of a system to

track organelles in living trophozoites precluded addressing the question directly whether

mitosomes were motile and constituted a dynamic network of organelles with measurable

exchange. Development of two GFP-tagged reporters GFP-GlTom40 and MOMTiP-1-GFP

(this study) allowed for time-lapse experiments to follow individual organelles in a cell. How-

ever, we found no evidence for motility of organelles, neither in the CMC nor in PMs, even

after prolonged observation (1.5 h). This is consistent with the lack of motor proteins such as

kinesins and dyneins in any of the mitosomal protein interactomes we generated. Moreover,

FRAP experiments revealed no exchange of GFP-tagged membrane proteins between organ-

elles during the period of observation (Fig 7F and 7G), which further corroborated the relative

isolation of mitosomes within the cytosol. The lack of mitosomal motility and contact compli-

cates investigation of their replication and morphogenesis. The two most plausible scenarios

for this are currently the following: i) PMs are released from the CMC, which continuously

produces new organelles by elongation and fission to maintain a constant number of organ-

elles in a cell-cycle independent manner; ii) PMs and the CMC organelles replicate indepen-

dently in a cell-cycle independent and -dependent manner, respectively [23]. Although time-

lapse microscopy experiments did not provide evidence in support of either scenario, condi-

tional expression of a dominant-negative, constitutively active GlDRP-K43E revealed a distinct

morphogenesis phenotype (see also below) indicative of an organelle replication defect. As one

of the key players in the regulation of mitochondrial fission, DRPs are mechano-enzymes con-

served from yeast to vertebrates [85,86,87,88]. G. lamblia harbors a single dynamin homologue

GlDRP shown to play a major role in this parasite’s endocytic pathway and stage conversion

[56,89,90]. Transgenic parasites expressing the GlDRP-K43E variant exhibited larger and
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fewer mitosomes, compared to cells expressing the wild type GlDRP variant(Fig 6). This is in

line with the dominant-negative effect on mitochondrial fission elicited by the corresponding

mutation in DRPs in other organisms. To our knowledge, this is the first report on the involve-

ment of GlDRP in mitosome homeostasis, supporting the (at least partial) functional conserva-

tion of mitochondrial and MRO fission [91,92,93,94]. The notion that G. lamblia mitosome

fission is functionally conserved is further substantiated by the identification of MOMTiP-6
which presents dual localization to mitosomes and the ER. HMMER-based predictions relate

MOMTiP-6 to human mitochondrial fission protein (Fis1, e-value 6.3E-05) which participates

in the recruitment of dynamin-related protein 1 (Drp1) to the mitochondrial surface for

organelle fission [95,96]. The distinctive “string” mitosome phenotype in cells expressing

MOMTiP-1-GFP clearly demonstrated that mitosomes can assume an elongated, tubular mor-

phology, which is a prerequisite for organelle division and replication. The implication is that

G. lamblia mitosomes retain at least the machinery for fission in which the mechano-enzyme

GlDRP and outer mitosomal membrane elements such as MOMTiP-1 and 3 [49] play central

roles.

Conclusion

We used an iterative approach based on co-IP experiments to generate a GlTom40-centered

interactome network. Ultimately this strategy should allow building a combined proteome,

which delineates the full complement of organelle proteins, peripherally associated factors, as

well as interfaces with the ER and the cytoskeleton. Although this strategy requires numerous

rounds of sequential co-IP and validation, it is highly informative because it produces interac-

tion data in addition to identifying novel organelle proteins. Combined with testing of epi-

tope-tagged variants of candidate proteins for organelle localization as a straightforward

validation criterion, serial co-IPs allow for unambiguous definition of the organelle-specific

proteome, as well as interfaces with other cellular structures. This strategy also led to the dis-

covery of MOMTiP-1, a strong GlTom40 interaction partner which plays a role in mitosomal

morphogenesis. Together with GlDRP (this work) and MOMTiP-3 (MOMP35; [49]), these are

the only proteins so far known to affect mitosomal homeostasis in G. lamblia.

Supporting Information

S1 Table. Oligonucleotides used in this study.

(XLSX)

S2 Table. MOMTiP-1 to 13 spectral counts with high stringency parameters, available

annotation and experimentally-verified subcellular distribution.

(XLSX)

S1 Fig. Co-labelling of HA-tagged co-IP baits with the mitosomal marker GlIscU. Immu-

nofluorescence co-labelling and wide-field microscopy analysis of transgenic G. lamblia lines

expressing (A) GlTom40, (B) MOMTiP-1, (C) MOMTiP-7, (D) GlIscS, (E) MOMTiP-4 and

(F) MOMTiP-3, all used as HA-tagged baits in co-IP experiments (upper row, in green), in

combination with the endogenous mitosomal marker GlIscU (middle row, in red). Nuclei

were stained with DAPI (lower row, in blue). The central mitosome complex was clearly

labelled by both fluorophores in all lines. Scale bar: 1μm.

(TIF)

S2 Fig. Titration assay to determine optimum crosslinker concentration for co-IP experi-

ments. With increasing concentrations of formaldehyde (0–4.5%), immuno-detection (West-

ern blot) of the Tom40-HA reporter shows a shift from the monomeric form to higher
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molecular weight complexes,. Molecular size (kDa) marker (M) bands are indicated on the left

axis. A concentration of 2.25% formaldehyde (arrowhead) was later adopted for all subsequent

forward and reverse co-IPs.

(TIF)

S3 Fig. Blast2Go analysis for 26 mitosome localized proteins. (A) Data distribution pie

chart for protein hits with either Blast2Go annotation (“B2G annotated”), or associated to

gene ontology (GO) terms (“with GO mapping”) or to Blast annotation data (“with Blast

hits”). (B) The top 20 GO terms distributed in the three root categories for “biological process”

(BP), “molecular function” (MF) and “cellular component” (CC). (C) A direct count of GO

terms associated to MF. (D) A direct count of GO terms associated to BP.

(TIF)

S4 Fig. Blast2Go analysis for 93 hypothetical mitosomal proteins from 6 co-IP assays. (A)

Data distribution pie chart for protein hits with either Blast2Go annotation (“B2G annotated”),

or associated to gene ontology (GO) terms (“with GO mapping”) or to Blast annotation data

(“with Blast hits”). (B) The top 20 GO terms distributed in the three root categories for “biolog-

ical process” (BP), “molecular function” (MF) and “cellular component” (CC). (C) A direct

count of GO terms associated to MF. (D) A direct count of GO terms associated to BP.

(TIF)

S5 Fig. IFA and native co-IP analysis of the predicted C-terminal domain of MOMTiP-1.

(A) IFA and wide-field microscopy analysis of transgenic Giardia cells expressing C-MOM-

TiP-1 (in green), a truncated HA-tagged version of MOMTiP-1 consisting only of the pre-

dicted C-terminal domain (residues 31–133). C-MOMTiP-1 accumulates primarily in the

cytosol. Nuclei are labelled with DAPI (in blue). Inset: DIC image. Scale bar: 1μm. (B) Venn

diagram depicting the overlap of datasets derived from native co-IP of C-MOMTiP-1 and con-

trol WB cells.

(TIF)
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16. Cerkasovová A, Lukasová G, Cerkasòv J, J K (1973) Biochemical characterization of large granule frac-

tion of Tritrichomonas foetus (strain KV1). Journal of Protozoology 20.

17. Lindmark DG, Muller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tri-

trichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248: 7724–7728. PMID: 4750424

18. Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, et al. (1999) Hsp60 is targeted to a cryptic mito-

chondrion-derived organelle ("crypton") in the microaerophilic protozoan parasite Entamoeba histoly-

tica. Mol Cell Biol 19: 2198–2205. PMID: 10022906

19. Muller M (1993) The hydrogenosome. J Gen Microbiol 139: 2879–2889. doi: 10.1099/00221287-139-

12-2879 PMID: 8126416

20. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the ami-

tochondrial parasite Entamoeba histolytica. Mol Microbiol 32: 1013–1021. PMID: 10361303

Mitosomes in Giardia lamblia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006036 December 7, 2016 28 / 32

http://www.ncbi.nlm.nih.gov/pubmed/10066161
http://dx.doi.org/10.1186/1471-2148-4-2
http://www.ncbi.nlm.nih.gov/pubmed/15005799
http://www.ncbi.nlm.nih.gov/pubmed/3892535
http://www.ncbi.nlm.nih.gov/pubmed/8282683
http://www.ncbi.nlm.nih.gov/pubmed/7907991
http://dx.doi.org/10.1016/j.cub.2016.03.053
http://www.ncbi.nlm.nih.gov/pubmed/27185558
http://www.ncbi.nlm.nih.gov/pubmed/10603473
http://dx.doi.org/10.1038/nsb1201-1008
http://www.ncbi.nlm.nih.gov/pubmed/11723465
http://www.ncbi.nlm.nih.gov/pubmed/10542408
http://dx.doi.org/10.1093/embo-reports/kvd093
http://www.ncbi.nlm.nih.gov/pubmed/11258479
http://dx.doi.org/10.1371/journal.pbio.0020160
http://www.ncbi.nlm.nih.gov/pubmed/15208715
http://dx.doi.org/10.1021/pr050477f
http://www.ncbi.nlm.nih.gov/pubmed/16823961
http://dx.doi.org/10.1073/pnas.2135385100
http://dx.doi.org/10.1073/pnas.2135385100
http://www.ncbi.nlm.nih.gov/pubmed/14576278
http://dx.doi.org/10.1038/nsb0402-234
http://www.ncbi.nlm.nih.gov/pubmed/11914726
http://dx.doi.org/10.1016/j.bbabio.2004.07.011
http://www.ncbi.nlm.nih.gov/pubmed/15576054
http://www.ncbi.nlm.nih.gov/pubmed/4750424
http://www.ncbi.nlm.nih.gov/pubmed/10022906
http://dx.doi.org/10.1099/00221287-139-12-2879
http://dx.doi.org/10.1099/00221287-139-12-2879
http://www.ncbi.nlm.nih.gov/pubmed/8126416
http://www.ncbi.nlm.nih.gov/pubmed/10361303


21. Shiflett AM, Johnson PJ (2010) Mitochondrion-related organelles in eukaryotic protists. Annu Rev

Microbiol 64: 409–429. doi: 10.1146/annurev.micro.62.081307.162826 PMID: 20528687

22. Adl SM, Simpson AG, Lane CE, Lukes J, Bass D, et al. (2012) The revised classification of eukaryotes.

J Eukaryot Microbiol 59: 429–493. doi: 10.1111/j.1550-7408.2012.00644.x PMID: 23020233

23. Regoes A, Zourmpanou D, Leon-Avila G, van der Giezen M, Tovar J, et al. (2005) Protein import, repli-

cation, and inheritance of a vestigial mitochondrion. J Biol Chem 280: 30557–30563. doi: 10.1074/jbc.

M500787200 PMID: 15985435

24. Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, et al. (2003) Mitochondrial remnant organelles

of Giardia function in iron-sulphur protein maturation. Nature 426: 172–176. doi: 10.1038/nature01945

PMID: 14614504

25. Riordan CE, Ault JG, Langreth SG, Keithly JS (2003) Cryptosporidium parvum Cpn60 targets a relict

organelle. Curr Genet 44: 138–147. doi: 10.1007/s00294-003-0432-1 PMID: 12928750

26. Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, et al. (2001) Genome sequence and gene

compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414: 450–453. doi: 10.1038/

35106579 PMID: 11719806

27. Jerlstrom-Hultqvist J, Einarsson E, Xu F, Hjort K, Ek B, et al. (2013) Hydrogenosomes in the diplomo-

nad Spironucleus salmonicida. Nature communications 4: 2493. doi: 10.1038/ncomms3493 PMID:

24042146

28. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, et al. (2004) Complete genome

sequence of the apicomplexan, Cryptosporidium parvum. Science 304: 441–445. doi: 10.1126/

science.1094786 PMID: 15044751

29. Leon-Avila G, Tovar J (2004) Mitosomes of Entamoeba histolytica are abundant mitochondrion-related

remnant organelles that lack a detectable organellar genome. Microbiology 150: 1245–1250. doi: 10.

1099/mic.0.26923-0 PMID: 15133087

30. Turner G, Muller M (1983) Failure to detect extranuclear DNA in Trichomonas vaginalis and Tritricho-

monas foetus. J Parasitol 69: 234–236. PMID: 6600788

31. van der Giezen M, Sjollema KA, Artz RR, Alkema W, Prins RA (1997) Hydrogenosomes in the anaero-

bic fungus Neocallimastix frontalis have a double membrane but lack an associated organelle genome.

FEBS Lett 408: 147–150. PMID: 9187356

32. Dolezal P, Smid O, Rada P, Zubacova Z, Bursac D, et al. (2005) Giardia mitosomes and trichomonad

hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 102: 10924–

10929. doi: 10.1073/pnas.0500349102 PMID: 16040811

33. Jedelsky PL, Dolezal P, Rada P, Pyrih J, Smid O, et al. (2011) The minimal proteome in the reduced

mitochondrion of the parasitic protist Giardia intestinalis. PLoS One 6: e17285. doi: 10.1371/journal.

pone.0017285 PMID: 21390322

34. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460: 831–838. doi: 10.1038/

nature08301 PMID: 19675643

35. Craig EA, Voisine C, Schilke B (1999) Mitochondrial iron metabolism in the yeast Saccharomyces cere-

visiae. Biol Chem 380: 1167–1173. doi: 10.1515/BC.1999.148 PMID: 10595579

36. Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends

in biochemical sciences 25: 352–356. PMID: 10916152

37. Ankarklev J, Jerlstrom-Hultqvist J, Ringqvist E, Troell K, Svard SG (2010) Behind the smile: cell biology

and disease mechanisms of Giardia species. Nat Rev Microbiol 8: 413–422. doi: 10.1038/nrmicro2317

PMID: 20400969

38. Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, et al. (2007) Genomic minimalism in the

early diverging intestinal parasite Giardia lamblia. Science 317: 1921–1926. doi: 10.1126/science.

1143837 PMID: 17901334

39. Davis-Hayman SR, Nash TE (2002) Genetic manipulation of Giardia lamblia. Molecular and biochemi-

cal parasitology 122: 1–7. PMID: 12076765

40. Boucher SE, Gillin FD (1990) Excystation of in vitro-derived Giardia lamblia cysts. Infection and immu-

nity 58: 3516–3522. PMID: 2228222

41. Abodeely M, DuBois KN, Hehl A, Stefanic S, Sajid M, et al. (2009) A contiguous compartment functions

as endoplasmic reticulum and endosome/lysosome in Giardia lamblia. Eukaryot Cell 8: 1665–1676.

doi: 10.1128/EC.00123-09 PMID: 19749174

42. Stefanic S, Morf L, Kulangara C, Regos A, Sonda S, et al. (2009) Neogenesis and maturation of tran-

sient Golgi-like cisternae in a simple eukaryote. J Cell Sci 122: 2846–2856. doi: 10.1242/jcs.049411

PMID: 19622633

Mitosomes in Giardia lamblia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006036 December 7, 2016 29 / 32

http://dx.doi.org/10.1146/annurev.micro.62.081307.162826
http://www.ncbi.nlm.nih.gov/pubmed/20528687
http://dx.doi.org/10.1111/j.1550-7408.2012.00644.x
http://www.ncbi.nlm.nih.gov/pubmed/23020233
http://dx.doi.org/10.1074/jbc.M500787200
http://dx.doi.org/10.1074/jbc.M500787200
http://www.ncbi.nlm.nih.gov/pubmed/15985435
http://dx.doi.org/10.1038/nature01945
http://www.ncbi.nlm.nih.gov/pubmed/14614504
http://dx.doi.org/10.1007/s00294-003-0432-1
http://www.ncbi.nlm.nih.gov/pubmed/12928750
http://dx.doi.org/10.1038/35106579
http://dx.doi.org/10.1038/35106579
http://www.ncbi.nlm.nih.gov/pubmed/11719806
http://dx.doi.org/10.1038/ncomms3493
http://www.ncbi.nlm.nih.gov/pubmed/24042146
http://dx.doi.org/10.1126/science.1094786
http://dx.doi.org/10.1126/science.1094786
http://www.ncbi.nlm.nih.gov/pubmed/15044751
http://dx.doi.org/10.1099/mic.0.26923-0
http://dx.doi.org/10.1099/mic.0.26923-0
http://www.ncbi.nlm.nih.gov/pubmed/15133087
http://www.ncbi.nlm.nih.gov/pubmed/6600788
http://www.ncbi.nlm.nih.gov/pubmed/9187356
http://dx.doi.org/10.1073/pnas.0500349102
http://www.ncbi.nlm.nih.gov/pubmed/16040811
http://dx.doi.org/10.1371/journal.pone.0017285
http://dx.doi.org/10.1371/journal.pone.0017285
http://www.ncbi.nlm.nih.gov/pubmed/21390322
http://dx.doi.org/10.1038/nature08301
http://dx.doi.org/10.1038/nature08301
http://www.ncbi.nlm.nih.gov/pubmed/19675643
http://dx.doi.org/10.1515/BC.1999.148
http://www.ncbi.nlm.nih.gov/pubmed/10595579
http://www.ncbi.nlm.nih.gov/pubmed/10916152
http://dx.doi.org/10.1038/nrmicro2317
http://www.ncbi.nlm.nih.gov/pubmed/20400969
http://dx.doi.org/10.1126/science.1143837
http://dx.doi.org/10.1126/science.1143837
http://www.ncbi.nlm.nih.gov/pubmed/17901334
http://www.ncbi.nlm.nih.gov/pubmed/12076765
http://www.ncbi.nlm.nih.gov/pubmed/2228222
http://dx.doi.org/10.1128/EC.00123-09
http://www.ncbi.nlm.nih.gov/pubmed/19749174
http://dx.doi.org/10.1242/jcs.049411
http://www.ncbi.nlm.nih.gov/pubmed/19622633


43. Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, et al. (2008) Localization and functionality

of microsporidian iron-sulphur cluster assembly proteins. Nature 452: 624–628. doi: 10.1038/

nature06606 PMID: 18311129

44. Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T (2009) Mitosomes in Entamoeba histolytica con-

tain a sulfate activation pathway. Proc Natl Acad Sci U S A 106: 21731–21736. doi: 10.1073/pnas.

0907106106 PMID: 19995967

45. Putignani L, Tait A, Smith HV, Horner D, Tovar J, et al. (2004) Characterization of a mitochondrion-like

organelle in Cryptosporidium parvum. Parasitology 129: 1–18. PMID: 15267107

46. Sanderson SJ, Xia D, Prieto H, Yates J, Heiges M, et al. (2008) Determining the protein repertoire of

Cryptosporidium parvum sporozoites. Proteomics 8: 1398–1414. doi: 10.1002/pmic.200700804 PMID:

18306179

47. Tsaousis AD, Kunji ER, Goldberg AV, Lucocq JM, Hirt RP, et al. (2008) A novel route for ATP acquisi-

tion by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453: 553–556. doi: 10.1038/

nature06903 PMID: 18449191

48. Wampfler PB, Tosevski V, Nanni P, Spycher C, Hehl AB (2014) Proteomics of secretory and endocytic

organelles in Giardia lamblia. PLoS One 9: e94089. doi: 10.1371/journal.pone.0094089 PMID:

24732305

49. Martincova E, Voleman L, Pyrih J, Zarsky V, Vondrackova P, et al. (2015) Probing the biology of Giardia

intestinalis mitosomes using in vivo enzymatic tagging. Mol Cell Biol.

50. Dagley MJ, Dolezal P, Likic VA, Smid O, Purcell AW, et al. (2009) The protein import channel in the

outer mitosomal membrane of Giardia intestinalis. Mol Biol Evol 26: 1941–1947. doi: 10.1093/molbev/

msp117 PMID: 19531743

51. Hehl AB, Marti M, Kohler P (2000) Stage-specific expression and targeting of cyst wall protein-green

fluorescent protein chimeras in Giardia. Mol Biol Cell 11: 1789–1800. PMID: 10793152

52. Morf L, Spycher C, Rehrauer H, Fournier CA, Morrison HG, et al. (2010) The transcriptional response to

encystation stimuli in Giardia lamblia is restricted to a small set of genes. Eukaryotic cell 9: 1566–1576.

doi: 10.1128/EC.00100-10 PMID: 20693303

53. Zumthor J, Cernikova L, Rout S, Kaech A, Faso C, et al. (2016) Static clathrin assemblies at the periph-

eral vacuole—plasma membrane interface of the parasitic protozoan Giardia lamblia. PLoS Pathog in

press.

54. Konrad C, Spycher C, Hehl AB (2010) Selective condensation drives partitioning and sequential secre-

tion of cyst wall proteins in differentiating Giardia lamblia. PLoS Pathog 6: e1000835. doi: 10.1371/

journal.ppat.1000835 PMID: 20386711

55. Vizcaino JA, Csordas A, Del-Toro N, Dianes JA, Griss J, et al. (2016) 2016 update of the PRIDE data-

base and its related tools. Nucleic Acids Res 44: D447–456. doi: 10.1093/nar/gkv1145 PMID:

26527722

56. Gaechter V, Schraner E, Wild P, Hehl AB (2008) The single dynamin family protein in the primitive pro-

tozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 9: 57–71. doi:

10.1111/j.1600-0854.2007.00657.x PMID: 17892527

57. Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:

1241–1252. doi: 10.1016/j.cell.2006.06.010 PMID: 16814712

58. Chen H, Chan DC (2009) Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in

neurodegenerative diseases. Human molecular genetics 18: R169–176. doi: 10.1093/hmg/ddp326

PMID: 19808793

59. Martincova E, Voleman L, Najdrova V, De Napoli M, Eshar S, et al. (2012) Live imaging of mitosomes

and hydrogenosomes by HaloTag technology. PloS one 7: e36314. doi: 10.1371/journal.pone.

0036314 PMID: 22558433

60. England CG, Luo H, Cai W (2015) HaloTag technology: a versatile platform for biomedical applications.

Bioconjugate chemistry 26: 975–986. doi: 10.1021/acs.bioconjchem.5b00191 PMID: 25974629

61. Morgan GW, Goulding D, Field MC (2004) The single dynamin-like protein of Trypanosoma brucei regu-

lates mitochondrial division and is not required for endocytosis. J Biol Chem 279: 10692–10701. doi:

10.1074/jbc.M312178200 PMID: 14670954

62. Chanez AL, Hehl AB, Engstler M, Schneider A (2006) Ablation of the single dynamin of T. brucei blocks

mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. Journal of cell science

119: 2968–2974. doi: 10.1242/jcs.03023 PMID: 16787942

63. Wexler-Cohen Y, Stevens GC, Barnoy E, van der Bliek AM, Johnson PJ (2014) A dynamin-related pro-

tein contributes to Trichomonas vaginalis hydrogenosomal fission. Faseb J 28: 1113–1121. doi: 10.

1096/fj.13-235473 PMID: 24297697

Mitosomes in Giardia lamblia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006036 December 7, 2016 30 / 32

http://dx.doi.org/10.1038/nature06606
http://dx.doi.org/10.1038/nature06606
http://www.ncbi.nlm.nih.gov/pubmed/18311129
http://dx.doi.org/10.1073/pnas.0907106106
http://dx.doi.org/10.1073/pnas.0907106106
http://www.ncbi.nlm.nih.gov/pubmed/19995967
http://www.ncbi.nlm.nih.gov/pubmed/15267107
http://dx.doi.org/10.1002/pmic.200700804
http://www.ncbi.nlm.nih.gov/pubmed/18306179
http://dx.doi.org/10.1038/nature06903
http://dx.doi.org/10.1038/nature06903
http://www.ncbi.nlm.nih.gov/pubmed/18449191
http://dx.doi.org/10.1371/journal.pone.0094089
http://www.ncbi.nlm.nih.gov/pubmed/24732305
http://dx.doi.org/10.1093/molbev/msp117
http://dx.doi.org/10.1093/molbev/msp117
http://www.ncbi.nlm.nih.gov/pubmed/19531743
http://www.ncbi.nlm.nih.gov/pubmed/10793152
http://dx.doi.org/10.1128/EC.00100-10
http://www.ncbi.nlm.nih.gov/pubmed/20693303
http://dx.doi.org/10.1371/journal.ppat.1000835
http://dx.doi.org/10.1371/journal.ppat.1000835
http://www.ncbi.nlm.nih.gov/pubmed/20386711
http://dx.doi.org/10.1093/nar/gkv1145
http://www.ncbi.nlm.nih.gov/pubmed/26527722
http://dx.doi.org/10.1111/j.1600-0854.2007.00657.x
http://www.ncbi.nlm.nih.gov/pubmed/17892527
http://dx.doi.org/10.1016/j.cell.2006.06.010
http://www.ncbi.nlm.nih.gov/pubmed/16814712
http://dx.doi.org/10.1093/hmg/ddp326
http://www.ncbi.nlm.nih.gov/pubmed/19808793
http://dx.doi.org/10.1371/journal.pone.0036314
http://dx.doi.org/10.1371/journal.pone.0036314
http://www.ncbi.nlm.nih.gov/pubmed/22558433
http://dx.doi.org/10.1021/acs.bioconjchem.5b00191
http://www.ncbi.nlm.nih.gov/pubmed/25974629
http://dx.doi.org/10.1074/jbc.M312178200
http://www.ncbi.nlm.nih.gov/pubmed/14670954
http://dx.doi.org/10.1242/jcs.03023
http://www.ncbi.nlm.nih.gov/pubmed/16787942
http://dx.doi.org/10.1096/fj.13-235473
http://dx.doi.org/10.1096/fj.13-235473
http://www.ncbi.nlm.nih.gov/pubmed/24297697


64. Rajala N, Hensen F, Wessels HJ, Ives D, Gloerich J, et al. (2015) Whole cell formaldehyde cross-linking

simplifies purification of mitochondrial nucleoids and associated proteins involved in mitochondrial gene

expression. PLoS One 10: e0116726. doi: 10.1371/journal.pone.0116726 PMID: 25695250

65. Elias EV, Quiroga R, Gottig N, Nakanishi H, Nash TE, et al. (2008) Characterization of SNAREs deter-

mines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J Biol Chem

283: 35996–36010. doi: 10.1074/jbc.M806545200 PMID: 18930915

66. Sonda S, Stefanic S, Hehl AB (2008) A sphingolipid inhibitor induces a cytokinesis arrest and blocks

stage differentiation in Giardia lamblia. Antimicrobial agents and chemotherapy 52: 563–569. doi: 10.

1128/AAC.01105-07 PMID: 18086854

67. Elmendorf HG, Rohrer SC, Khoury RS, Bouttenot RE, Nash TE (2005) Examination of a novel head-

stalk protein family in Giardia lamblia characterised by the pairing of ankyrin repeats and coiled-coil

domains. International journal for parasitology 35: 1001–1011. doi: 10.1016/j.ijpara.2005.03.009 PMID:

15982656

68. Isenmann S, Khew-Goodall Y, Gamble J, Vadas M, Wattenberg BW (1998) A splice-isoform of vesicle-

associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell 9:

1649–1660. PMID: 9658161

69. Duman JG, Forte JG (2003) What is the role of SNARE proteins in membrane fusion? Am J Physiol Cell

Physiol 285: C237–249. doi: 10.1152/ajpcell.00091.2003 PMID: 12842832

70. Bandyopadhyay S, Chandramouli K, Johnson MK (2008) Iron-sulfur cluster biosynthesis. Biochemical

Society transactions 36: 1112–1119. doi: 10.1042/BST0361112 PMID: 19021507

71. Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A, et al. (2011) The minimal kinome of Giardia lam-

blia illuminates early kinase evolution and unique parasite biology. Genome biology 12: R66. doi: 10.

1186/gb-2011-12-7-r66 PMID: 21787419

72. Martincova E, Voleman L, Pyrih J, Zarsky V, Vondrackova P, et al. (2015) Probing the Biology of Giardia

intestinalis Mitosomes Using In Vivo Enzymatic Tagging. Mol Cell Biol 35: 2864–2874. doi: 10.1128/

MCB.00448-15 PMID: 26055323

73. Eilers M, Schatz G (1986) Binding of a specific ligand inhibits import of a purified precursor protein into

mitochondria. Nature 322: 228–232. doi: 10.1038/322228a0 PMID: 3016548

74. Mi-Ichi F, Miyamoto T, Takao S, Jeelani G, Hashimoto T, et al. (2015) Entamoeba mitosomes play an

important role in encystation by association with cholesteryl sulfate synthesis. Proc Natl Acad Sci U S

A.

75. Dudek J, Rehling P, van der Laan M (2013) Mitochondrial protein import: common principles and physi-

ological networks. Biochim Biophys Acta 1833: 274–285. doi: 10.1016/j.bbamcr.2012.05.028 PMID:

22683763

76. Xu F, Jerlstrom-Hultqvist J, Einarsson E, Astvaldsson A, Svard SG, et al. (2014) The genome of Spiro-

nucleus salmonicida highlights a fish pathogen adapted to fluctuating environments. PLoS genetics 10:

e1004053. doi: 10.1371/journal.pgen.1004053 PMID: 24516394

77. de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified

mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mito-

chondrial outer membrane? Biochim Biophys Acta 1325: 108–116. PMID: 9106488

78. Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, et al. (1991) Phospholipid synthesis

and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae.

J Bacteriol 173: 2026–2034. PMID: 2002005

79. Kumar P, Guha S, Diederichsen U (2015) SNARE protein analog-mediated membrane fusion. Journal

of peptide science: an official publication of the European Peptide Society 21: 621–629.

80. Tamura Y, Sesaki H, Endo T (2014) Phospholipid transport via mitochondria. Traffic 15: 933–945. doi:

10.1111/tra.12188 PMID: 24954234

81. Yamano K, Tanaka-Yamano S, Endo T (2010) Tom7 regulates Mdm10-mediated assembly of the mito-

chondrial import channel protein Tom40. J Biol Chem 285: 41222–41231. doi: 10.1074/jbc.M110.

163238 PMID: 21036907

82. Tatsuta T, Scharwey M, Langer T (2014) Mitochondrial lipid trafficking. Trends Cell Biol 24: 44–52. doi:

10.1016/j.tcb.2013.07.011 PMID: 24001776

83. Wideman JG, Gawryluk RM, Gray MW, Dacks JB (2013) The ancient and widespread nature of the ER-

mitochondria encounter structure. Mol Biol Evol 30: 2044–2049. doi: 10.1093/molbev/mst120 PMID:

23813918

84. Rigotti A, Cohen DE, Zanlungo S (2010) STARTing to understand MLN64 function in cholesterol trans-

port. Journal of lipid research 51: 2015–2017. doi: 10.1194/jlr.E008854 PMID: 20511492

Mitosomes in Giardia lamblia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006036 December 7, 2016 31 / 32

http://dx.doi.org/10.1371/journal.pone.0116726
http://www.ncbi.nlm.nih.gov/pubmed/25695250
http://dx.doi.org/10.1074/jbc.M806545200
http://www.ncbi.nlm.nih.gov/pubmed/18930915
http://dx.doi.org/10.1128/AAC.01105-07
http://dx.doi.org/10.1128/AAC.01105-07
http://www.ncbi.nlm.nih.gov/pubmed/18086854
http://dx.doi.org/10.1016/j.ijpara.2005.03.009
http://www.ncbi.nlm.nih.gov/pubmed/15982656
http://www.ncbi.nlm.nih.gov/pubmed/9658161
http://dx.doi.org/10.1152/ajpcell.00091.2003
http://www.ncbi.nlm.nih.gov/pubmed/12842832
http://dx.doi.org/10.1042/BST0361112
http://www.ncbi.nlm.nih.gov/pubmed/19021507
http://dx.doi.org/10.1186/gb-2011-12-7-r66
http://dx.doi.org/10.1186/gb-2011-12-7-r66
http://www.ncbi.nlm.nih.gov/pubmed/21787419
http://dx.doi.org/10.1128/MCB.00448-15
http://dx.doi.org/10.1128/MCB.00448-15
http://www.ncbi.nlm.nih.gov/pubmed/26055323
http://dx.doi.org/10.1038/322228a0
http://www.ncbi.nlm.nih.gov/pubmed/3016548
http://dx.doi.org/10.1016/j.bbamcr.2012.05.028
http://www.ncbi.nlm.nih.gov/pubmed/22683763
http://dx.doi.org/10.1371/journal.pgen.1004053
http://www.ncbi.nlm.nih.gov/pubmed/24516394
http://www.ncbi.nlm.nih.gov/pubmed/9106488
http://www.ncbi.nlm.nih.gov/pubmed/2002005
http://dx.doi.org/10.1111/tra.12188
http://www.ncbi.nlm.nih.gov/pubmed/24954234
http://dx.doi.org/10.1074/jbc.M110.163238
http://dx.doi.org/10.1074/jbc.M110.163238
http://www.ncbi.nlm.nih.gov/pubmed/21036907
http://dx.doi.org/10.1016/j.tcb.2013.07.011
http://www.ncbi.nlm.nih.gov/pubmed/24001776
http://dx.doi.org/10.1093/molbev/mst120
http://www.ncbi.nlm.nih.gov/pubmed/23813918
http://dx.doi.org/10.1194/jlr.E008854
http://www.ncbi.nlm.nih.gov/pubmed/20511492


85. Zhao J, Lendahl U, Nister M (2013) Regulation of mitochondrial dynamics: convergences and diver-

gences between yeast and vertebrates. Cell Mol Life Sci 70: 951–976. doi: 10.1007/s00018-012-1066-

6 PMID: 22806564

86. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold

Spring Harb Perspect Biol 5.

87. Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukary-

otes. Annu Rev Genet 39: 503–536. doi: 10.1146/annurev.genet.38.072902.093019 PMID: 16285870

88. Elgass K, Pakay J, Ryan MT, Palmer CS (2013) Recent advances into the understanding of mitochon-

drial fission. Biochim Biophys Acta 1833: 150–161. doi: 10.1016/j.bbamcr.2012.05.002 PMID:

22580041

89. Marti M, Li Y, Schraner EM, Wild P, Kohler P, et al. (2003) The secretory apparatus of an ancient

eukaryote: protein sorting to separate export pathways occurs before formation of transient Golgi-like

compartments. Mol Biol Cell 14: 1433–1447. doi: 10.1091/mbc.E02-08-0467 PMID: 12686599

90. McArthur AG, Morrison HG, Nixon JE, Passamaneck NQ, Kim U, et al. (2000) The Giardia genome proj-

ect database. FEMS Microbiol Lett 189: 271–273. PMID: 10930750

91. Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM (1998) A human dynamin-related protein

controls the distribution of mitochondria. The Journal of cell biology 143: 351–358. PMID: 9786947

92. Miyagishima SY, Nishida K, Mori T, Matsuzaki M, Higashiyama T, et al. (2003) A plant-specific dyna-

min-related protein forms a ring at the chloroplast division site. Plant Cell 15: 655–665. doi: 10.1105/

tpc.009373 PMID: 12615939

93. Nishida K, Takahara M, Miyagishima SY, Kuroiwa H, Matsuzaki M, et al. (2003) Dynamic recruitment of

dynamin for final mitochondrial severance in a primitive red alga. Proc Natl Acad Sci U S A 100: 2146–

2151. doi: 10.1073/pnas.0436886100 PMID: 12566569

94. Pan R, Hu J (2011) The conserved fission complex on peroxisomes and mitochondria. Plant Signal

Behav 6: 870–872. doi: 10.4161/psb.6.6.15241 PMID: 21617372

95. Otera H, Mihara K (2011) Discovery of the membrane receptor for mitochondrial fission GTPase Drp1.

Small GTPases 2: 167–172. doi: 10.4161/sgtp.2.3.16486 PMID: 21776419

96. Lee H, Yoon Y (2014) Mitochondrial fission: regulation and ER connection. Molecules and cells 37: 89–

94. doi: 10.14348/molcells.2014.2329 PMID: 24598992

Mitosomes in Giardia lamblia

PLOS Pathogens | DOI:10.1371/journal.ppat.1006036 December 7, 2016 32 / 32

http://dx.doi.org/10.1007/s00018-012-1066-6
http://dx.doi.org/10.1007/s00018-012-1066-6
http://www.ncbi.nlm.nih.gov/pubmed/22806564
http://dx.doi.org/10.1146/annurev.genet.38.072902.093019
http://www.ncbi.nlm.nih.gov/pubmed/16285870
http://dx.doi.org/10.1016/j.bbamcr.2012.05.002
http://www.ncbi.nlm.nih.gov/pubmed/22580041
http://dx.doi.org/10.1091/mbc.E02-08-0467
http://www.ncbi.nlm.nih.gov/pubmed/12686599
http://www.ncbi.nlm.nih.gov/pubmed/10930750
http://www.ncbi.nlm.nih.gov/pubmed/9786947
http://dx.doi.org/10.1105/tpc.009373
http://dx.doi.org/10.1105/tpc.009373
http://www.ncbi.nlm.nih.gov/pubmed/12615939
http://dx.doi.org/10.1073/pnas.0436886100
http://www.ncbi.nlm.nih.gov/pubmed/12566569
http://dx.doi.org/10.4161/psb.6.6.15241
http://www.ncbi.nlm.nih.gov/pubmed/21617372
http://dx.doi.org/10.4161/sgtp.2.3.16486
http://www.ncbi.nlm.nih.gov/pubmed/21776419
http://dx.doi.org/10.14348/molcells.2014.2329
http://www.ncbi.nlm.nih.gov/pubmed/24598992

	1

