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Abstract

Giardia lamblia is an intestinal protozoan parasite required to survive in the environment in order to be transmitted to a
new host. To ensure parasite survival, flagellated trophozoites colonizing the small intestine differentiate into non-motile
environmentally-resistant cysts which are then shed in the environment. This cell differentiation process called encystation
is characterized by significant morphological remodeling which includes secretion of large amounts of cyst wall material.
Although much is known about the transcriptional regulation of encystation and the synthesis and trafficking of cyst wall
material, the investigation of global changes in protein content and abundance during G. lamblia encystation is still
unaddressed. In this study, we report on the quantitative analysis of the G. lamblia proteome during encystation using
tandem mass spectrometry. Quantification of more than 1000 proteins revealed major changes in protein abundance in
early, mid and late encystation, notably in constitutive secretory protein trafficking. Early stages of encystation were marked
by a striking decrease of endoplasmic reticulum-targeted variant-specific surface proteins and significant increases in
cytoskeleton regulatory components, NEK protein kinases and proteins involved in protein folding and glycolysis. This was
in stark contrast to cells in the later stages of encystation which presented a surprisingly similar proteome composition to
non-encysting trophozoites. Altogether these data constitute the first quantitative atlas of the Giardia proteome covering
the whole process of encystation and point towards an important role for post-transcriptional control of gene expression in
Giardia differentiation. Furthermore, our data provide a valuable resource for the community-based annotation effort of the
G. lamblia genome, where almost 70% of all predicted gene models remains ‘‘hypothetical’’.

Citation: Faso C, Bischof S, Hehl AB (2013) The Proteome Landscape of Giardia lamblia Encystation. PLoS ONE 8(12): e83207. doi:10.1371/journal.pone.0083207

Editor: Yung-Fu Chang, Cornell University, United States of America

Received August 19, 2013; Accepted November 9, 2013; Published December 31, 2013

Copyright: � 2013 Faso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by Swiss National Science Foundation grant (#31003A_140803) to ABH. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: adrian.hehl@access.uzh.ch (ABH); carmen.faso@access.uzh.ch (CF)

. These authors contributed equally to this work.

¤ Current address: Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, United States of
America

Introduction

Some of the most widespread protozoan parasites rely on the

development of an environmentally resistant infectious form

(ERIF). ERIFs come in the form of cysts and, more specifically,

oocysts when they arise from a sexual stage in the parasite’s life

cycle. Environmental shedding of mature ERIFs allows for per

oral parasite transmission to a new host, thus achieving completion

of the infectious cycle.

Similarly to species such as Toxoplasma gondii [1], Eimeria tenella

[2], Entamoeba invadens [3] and most recently Dientamoeba fragilis [4],

the diplomonad Giardia lamblia (syn. G. duodenalis, G. intestinalis)

requires the formation of an environmentally-resistant cyst for

transmission to a new host [5]. Giardial cysts are shed in fecal

matter which may contaminate water sources. Following ingestion,

they differentiate into flagellated excyzoites after passage through

the stomach. These intermediate cell stages rapidly undergo 2

rounds of cell division, giving rise to 4 fully developed trophozoites.

This infection usually develops into a full-fledged parasitic disease

known as giardiasis which accounts for the majority of non-

bacterial diarrheal waterborne illness [6].

Morphologically, encystation of giardial trophozoites is a

striking form of cell differentiation during which a flagellated

pear-shaped binucleate trophozoite becomes an oval tetranucleate

cyst. Recent work has contributed to the unraveling of key aspects

in the initiation and progression of encystation [7–9], including the

detailed characterization of encystation specific vesicle (ESV)

neogenesis [10]. These organelles are deputed to the accumulation

and maturation of stage-specific cyst wall material (CWM)

composed of at least 3 cyst wall proteins (CWP1-3) complexed

with b(1-3)-N-acetyl-d-galactosamine (GalNAc) polymer [11].

CWM is eventually deposited in juxtaposition to the plasma

membrane. ESVs possess several Golgi-like features such as their

dependence on active endoplasmic reticulum (ER) exit sites [10],

their association to known Golgi-specific protein trafficking

components [12,13], their sensitivity to brefeldin A [14] and their

ability to delay, chemically modify and partition cyst wall cargo

during secretory transport [15]. Trafficking of mature CWM from

ESVs to the cell surface, where it forms the cyst wall is tightly

regulated and rapid, occurring alongside profound changes in the

morphology of the trophozoite 20–24 h after induction of

encystation. During cyst formation, trophozoites appear progres-

sively rounded; major cytoskeletal components such as the flagella,

the adhesive disk and the median body are almost entirely

disassembled [16] while other subcellular compartments such as

the ER are profoundly re-organized (Faso and Hehl, unpublished

material). This process is accompanied by 1 and 2 rounds of

nuclear and DNA replication, respectively, yielding a cyst with

16N ploidy and 4 nuclei [17,18].
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We hypothesized that the proteome of Giardia trophozoites

progressing through distinct stages of encystation [15] is marked

by the differential regulation of specific metabolic pathways and

structurally-important proteins. Comparative microarray analysis

revealed only 18 up-regulated and 10 down-regulated genes

during the first 7 hours of encystation, suggesting that differenti-

ating parasites experience only minor changes in their transcrip-

tome [7]. In addition, a transcriptome study using serial analysis of

gene expression (SAGE) of the Giardia life cycle identified 42

genes as encystation markers [19]. Further information on the

Giardia trophozoite transcriptome was recently provided by two

studies using microarray and RNA-seq methodologies which also

uncover lineage-specific genome-wide expression differences in

four genetically distinct Giardia genotypes [20,21]. Complement-

ing transcript studies, mass spectrometry (MS)-based proteomics

has successfully been used not only to investigate metabolic

changes occurring at defined stages of encystation but also to

dissect intracellular protein localization in mitosomes and the basal

body [22–24].

In this study, we report on the large-scale quantitative analysis

of the G. lamblia proteome covering the whole process of

encystation, from CWP accumulation at the ER through to

selective condensation in mature ESVs. We applied label-free

shotgun proteomics [25,26] and quantified more than 1000

proteins in non-encysting trophozoites and cells induced to encyst

in vitro over a 14 hour time period. This work serves multiple

purposes: It sheds light on the strong regulation of protein

abundance that characterizes early stages of encystation, providing

evidence for a re-organization of intracellular trafficking routes

and cytoskeletal components. Furthermore, it effectively comple-

ments existing data on the transcriptional regulation of Giardia

encystation [7,19], thus providing a more complete picture of this

key cell differentiation process. Finally, this quantitative data

provides a valuable resource to all future encystation-related

Figure 1. Proteome profile of G. lamblia trophozoites analyzed at 0, 2, 4, 6, 8, 10, 12 and 14hpie. (A) Upper row: Wide-field
immunofluorescence microscopy analysis of CWP1 (red) localization in representative G. lamblia trophozoites induced to encyst over a 14 hr time
period using the 2-step encystation method [29]. Between 2 and 4hpie, CWP1 is mainly localized to the ER. From 6 to 8hpie, ESVs emerge and
develop, reaching the partitioning phase for CWPs between 10 and 12hpie. At 14hpie, cyst production is already under way within a population of
late-encysting cells. Lower row and far right: corresponding bright-field images. Condensed-core ESVs become visible at 8hpie (white arrow). hpie:
hours post induction of encystation. Scale bars: 1 mm. (B) Regulation of protein abundance within 2-hour transitions during the 14 hour encystation
time-course experiment. Based on relative quantitative information by nSpC for each identified protein (further information in Table S1), protein
abundance across each transition was either up-regulated (up), down-regulated (down) or did not change. The total number of proteins for each
dataset is indicated above each bar. Transitions between 0-2-4 and 4-6-8hpie showed a trend for increased and decreased protein abundances
respectively while the last 4 hours of encystation were marked by a slight tendency of increased abundances. The associated table reports the exact
number of proteins in each category. hpie: hours post induction of encystation.
doi:10.1371/journal.pone.0083207.g001
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investigations and contributes significantly to ongoing community-

based annotation efforts of the G. lamblia genome.

Results and Discussion

Proteome overview from trophozoites to encysted cells
To obtain first insights into the complexity of the Giardia

proteome and its dynamics during encystation, we performed a

single 2 hour-sampling time course. As a method for the induction

of encystation, we chose the 2-step induction protocol [27]

because, in contrast to the commonly-used high-bile method [28],

it is not selective and allows for a more reliable and reproducible

timing of CWM biosynthesis and ESV development [29].

Furthermore, the 2-step method was shown to be equally effective

as the lipid-depletion induction approach for the regulation of the

core set of encystation genes [7]. Cultured Giardia trophozoites

(ca. 40 million cells/time-point) were either grown and harvested

in standard TYI-S-33 culture medium (non-induced 0hpie control)

or first grown in pre-encysting medium for 44 hours, moved to

encysting medium and then harvested at 2 hr intervals, for

14 hours. To ensure correct induction of CWM biosynthesis and

trafficking to ESVs, we used immunofluorescence assays to

monitor CWP1 accumulation and translocation in aliquots of

non-encysting and encysting cells harvested during the time-

course; CWP1 is commonly used as a marker for CWM trafficking

and ESV neogenesis [27]. Wide-field microscopy observation of

fixed cells labeled with anti-CWP1 monoclonal antibody conju-

gated to the Texas-Red fluorophore demonstrated the timely

induction of CWP1 expression in 70–80% of the cells (Figure 1A)

and the progressive development of ESVs during their previously

documented stages of neogenesis and maturation [15]. Represen-

tative single cell examples of populations harvested at given time-

points are shown in Figure 1A. Although the 14hpie time-point

presented occasional cysts (Figure 1A, far right), these were

discarded and only attached cells were harvested.

Having confirmed the correct induction of encystation,

harvested cells were lysed in a SDS-containing buffer and proteins

were quantified using the biconchicinic acid (BCA) method.

Similar protein concentrations (,10 mg/ml) were obtained for all

samples and 40 mg of total protein/sample were resolved by SDS-

PAGE (Figure S1A). In-gel tryptic digestion was performed and

resulting peptides were measured by tandem mass spectrometry

(MS) using a high mass accuracy Orbitrap mass spectrometer.

Following database searches, we identified a total of 688 proteins

with at least two unique peptides (Table S1). Single hits were

discarded. Methods and criteria used for MS, protein identifica-

tion, and quantification are described in detail below. The number

of proteins identified at each time-point and the overlap between

these was comparable, suggesting that the Giardia proteome

remains overall robust during encystation (Table S1 and Figure

S1B).

To test whether our experimental approach could reliably

detect changes in the proteome of encysting cells, we searched our

protein datasets for known markers of encystation [7,30]. We

detected a time-dependent increase in the total number of

identified peptides for several proteins (Table 1) including CWP2

(GL50803_5435) and 5 enzymes belonging to the encystation-

regulated GalNAc biosynthesis pathway [30]: glucose-6-phosphate

isomerase (GL50803_9115), phosphoacetylglucosamine mutase

(GL50803_16069), UDP-glucose-4-epimerase (GL50803_7982),

UDP-N-acetylglucosamine pyrophosphorylase (GL50803_16217)

and glucosamine-6-phosphate deaminase (GL50803_8245), con-

sistent with their induction by encystation [30]. Furthermore,

transcript levels for open reading frames (ORF) GL50803_ 5435,

9115, 16069 and 8245 were previously shown to be significantly

up-regulated by at least 2 fold in trophozoites induced to encyst

using the 2-step method (protocol A in [7]); ORF GL50803_7982

and GL50803_16217 transcripts were also increased, albeit at less

than 2-fold. In addition, we identified 10 of the 42 proteins that

were shown to have increased transcript levels during encystation

induced by high bile concentrations [19]. The number of peptides

identified for 8 out of these 10 increased during the 14 hour time-

course (Table 1). We also identified 11 putative encystation

markers that were previously defined in a two-dimensional

polyacrylamide gel electrophoresis (2D-PAGE) -based analysis

comparing the proteome of non-encysting trophozoites to cysts

(Table 1; Protein up 2D PAGE) [22]. We observed a modest

increase for these previously defined encystation markers in the

later time-points of encystation. Overall, our data is consistent with

previous reports, thus validating our experimental strategy and

indicating that it is suitable to detect changes in the proteome of

encysting Giardia cells.

We next obtained relative quantitative information for each

identified protein by using normalized spectral counting (nSpC)

[25,26,31] (Table S1). Differentially abundant proteins between

two time-points were required to have a minimum twofold change

in abundance and to have been identified with at least 5 peptides

in one of the two time-points (Table S1). Proteins detected in only

one time point were also required to have at least 5 identified

peptides to be considered significantly more abundant. In the

14 hour encystation time-course, we observed that the abundance

of many proteins increased during the first 4 hours post induction

of encystation (hpie) (Figure 1B). In contrast, the transitions

between 4–6 and 6–8hpie showed a trend for decreased protein

abundances while the last 4 hours of encystation (8–12hpie) were

marked by a slight tendency of increased abundances. This

suggests that, in our experimental set-up, major changes in the

proteome of encysting cells appear to take place at the time-points

0, 4, 8 and 12hpie. Furthermore, when the 2-step encystation

method is employed, these time-points correlate with well-defined

stages of CWM trafficking and ESV neogenesis [15]. At 4hpie,

emerging ESVs become recognizable. Progression to 8hpie is

required for these organelles to transition from an accumulating to

a partitioning phase for CWPs 1–3 deposition [15], including

maturation of CWP2 by proteolytic cleavage [15,32]. Further-

more, induction to 12hpie is characterized by the sorting and

secretion of CWM to the outer layer of the nascent cyst wall. We

therefore selected these time-points for in-depth characterization.

In-depth analysis of the Giardia proteome during
encystation

To quantitatively assess the changes observed during the

14 hour time course, we profiled the proteome of Giardia cells

after 4, 8 and 12hpie in 3 biological replicates. We grew, encysted,

harvested and lysed cells and performed tandem MS as described

previously for each selected time-point of encystation in com-

pletely separate experiments.

In total, 960 proteins were detected with at least two unique

peptides (Figure 2A, Table S2). 585 proteins were identified both

in the 14 hour time course and the triplicate experiment while 103

and 375 were unique to the two datasets respectively. Altogether,

1063 proteins were identified providing the first large-scale

overview of the Giardia proteome. All datasets were deposited in

the PRIDE database (www.ebi.ac.uk/pride) [33] and are acces-

sible under the experiment numbers 26860–26879. 316 of the

1063 identified proteins were annotated as ‘‘hypothetical’’ in the

Giardia Genome Database (GGD; [34]) and none encoded by

‘‘deprecated’’ ORFs (Figure 2B). Based on its current release
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(GiardiaDB 3.0; 11th of March 2013), the G. lamblia assemblage A

WB strain genome [35] is predicted to contain a total of 5901

protein-encoding genes, although only 5237 have been assigned

gene identification numbers. 3557 of these genes are annotated as

coding for ‘‘hypothetical’’ proteins. This annotation is maintained

by the database curators for predicted proteins whose putative

function/homology has not (yet) been assigned. Comparison of the

abundances of annotated and ‘‘hypothetical’’ proteins at 0hpie

indicated that annotated proteins were overall more abundant

than ‘‘hypothetical’’ proteins (Figure S1C). This is consistent with

previously published RNA-seq data from different G. lamblia

assemblages (Figure S1C) [21].

The total number of proteins identified in each of the 4 time-

points was comparable and 353 proteins overlapped between all

datasets, indicating good reproducibility of the chosen experimen-

tal approach (Figure 2A). As also observed in the 14 hour time

course, the comparable number of proteins identified at each time-

point suggested that the Giardia proteome remains overall robust

during encystation (Table S1 and Figure S1B). In support of this

view, a previous comparative microarray analysis revealed only 28

differentially regulated genes during the first 7 hours of encystation

[7]. Mean Spearman rank correlation coefficients indicated that

the 4hpie differed the most with respect to the other 3 time-points

(Figure 2A, numbers in italics). This is consistent with the 14 hour

time-course experiment and suggests that most of the changes in

protein abundance during in Giardia encystation occur early in

the process. We next used the quantitative information obtained

using nSpC in each biological triplicate to define proteins that

were significantly more abundant in each time-point (Table S2).

These proteins have a minimum twofold change in abundance

(mean nSpC), a P value ,0.05, and were identified with at least 5

peptides in one biological replicate. Proteins detected in a single

time-point were also required to have at least 5 identified peptides

to be considered significantly more abundant. In total, the

abundance of 342 and 303 proteins, respectively, was significantly

increased or decreased between two different time-points

(Figure 3A).

In our experimental conditions, the 4hpie time-point presented

the highest number of both detected and significantly regulated

proteins, while only few changes were recorded at 12hpie

compared to 8hpie (Figure 3A). This was consistently shown in

all 3 biological replicates (Table S2) and in the 14 hour time-

course experiment (Figure 1B). The analysis of the 100 most

abundant proteins identified at 0, 4, 8 and 12hpie showed that

their abundances vary between the 4 different time points,

especially at 4 hpie (Figure S2). Variations in the quantity of

highly abundant proteins in a complex extract can impact the

detection by mass-spectrometry of low abundance proteins,

possibly leading to an increased detection at 4hpie. Altogether,

these data show how the early stages of encystation present the

strongest degree of regulation at protein level. Furthermore, we

and others (Staffan Svard, personal communication) have system-

atically observed how Giardia cultures progressing through

encystation show lower counts for attached trophozoites at ca.

4hpie compared to non-encysting cultures. Interestingly, G. lamblia

was shown to differentiate in the G2 stage of the cell cycle and

encystation frequency was shown to depend on the number of cells

that were arrested in G2 [18]. It is therefore possible that cells in

early encystation experience a bottleneck in attachment efficiency

which depends on the stage of the cell cycle they are in upon

induction.

Interestingly, proteins identified at 0 and 8hpie presented close

to 80% overlap (Table S2), reaching almost 88% when the same

comparison was done between 8hpie and 12hpie. In contrast, only

58% and 56% of all proteins found at 4hpie were also found at

8hpie and at 0hpie, respectively. Altogether, this suggests that in

our experimental conditions, 4 hr-encysting trophozoites differed

the most with respect to either non-induced cells or to trophozoites

in late encystation. Although we detected more proteins at 4hpie

compared to the other time-points, this does not interfere with

accurate quantification using nSpC. This method takes into

Figure 2. Venn diagrams depicting proteome profiles of G. lamblia trophozoites analyzed at 0, 4, 8 and 12hpie. (A) The proteomic
analysis done in triplicates of G. lamblia trophozoites after 4, 8 and 12hpie yielded a total of 960 proteins with at least two unique peptides (further
information in Table S2). Although the total number of proteins identified in each of the 4 time-points (in bold) was comparable, mean Spearman
rank correlation coefficients (in italics) indicated that the 4hpie time-point differed the most with respect to the other 3 time-points. hpie: hours post
induction of encystation. (B) In this study, we identified a total of 1063 proteins, 316 of which were annotated as ‘‘hypothetical’’ in the Giardia
Genome Database. Based on its current release (GiardiaDB 3.0; 11th of March 2013), the G. lamblia assemblage A WB strain genome was assigned
5237 protein-encoding genes, with 3557 genes awaiting annotation.
doi:10.1371/journal.pone.0083207.g002
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Figure 3. Protein abundance and predicted subcellular distribution of G. lamblia trophozoites analyzed at 0, 4, 8 and 12hpie. (A)
Comparison of changes in protein abundance between 0 and 4hpie (0–4), 4 and 8hpie (4–8) and 8 and 12hpie (8–12). Based on relative quantitative
information by nSpC for each identified protein (further information in Table S2), protein abundance across each 4 hour interval was either up-
regulated (up), down-regulated (down) or did not change. The total number of proteins for each dataset is indicated above each bar. In total, the
abundance of 342 and 303 proteins was significantly increased or decreased between two different time-points. The 4hpie time-point presented the
highest number of both detected and significantly regulated proteins, while only few changes were recorded at 12hpie compared to 8hpie. The
associated table reports the exact number of proteins in each category. hpie: hours post induction of encystation. (B) Target P and NucPred
predictions for the subcellular distribution of all proteins detected at each time-point. The predicted contribution of mitochondrion (mitosome),
nucleus and cytosol localized proteins was similar across time-points. In contrast, the number of proteins predicted to traffic to or through the ER was
reduced by ca. 50% at the 4hpie time-point (black arrow). The number of proteins which satisfied both algorithm thresholds for reliability is indicated
beneath the respective pie-chart; in brackets, the overall number of proteins for each dataset is indicated. hpie: hours post induction of encystation.
(C) Target P and NucPred predictions for the subcellular distribution of significantly regulated proteins between 0 and 4 and 4 and 8hpie. Proteins
more abundant at 4hpie compared to 0 and 8hpie (4.0hpie and 4.8hpie) were significantly depleted for predicted ER-targeted hits and enriched
for putative nuclear targeted proteins. This view was almost reversed for proteins with higher abundance at 0 and 8hpie compared to 4hpie
(0.4hpie and 8.4hpie). The number of proteins which satisfied both algorithm thresholds for reliability is indicated beneath the respective pie-
chart; in brackets, the overall number of proteins for each dataset is indicated. hpie: hours post induction of encystation.
doi:10.1371/journal.pone.0083207.g003
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account the size of each dataset (i.e. the total number of identified

peptides, and proteins) and generates normalized protein abun-

dances separately for each protein in all datasets. Furthermore,

aside from proteins which were significantly more abundant at

4hpie compared to 0 and 8hpie (272 and 228 proteins; Figure 3A),

we also found 68 and 62 proteins that were significantly more

abundant at 0 and 8hpie compared to 4hpie, respectively

(Figure 3A). This suggests that the higher number of detected

proteins at 4hpie had only a minor impact on the accuracy of

protein quantification by nSpC.

Constitutive secretion is remodeled in early encystation
We next asked whether protein regulation during encystation is

accompanied by changes in subcellular protein distribution. Given

the compartments present in the giardial cell [36], we applied the

widely-used algorithms Target P [37] and NucPred [38] to predict

the subcellular distribution of all proteins detected at every time-

point (Table S2). In all 4 profiled time-points, subcellular

localization distribution showed an overall similar contribution

for mitochondria/mitosomes, nucleus and cytosol localized

proteins (Figure 3B). However, the number of proteins predicted

to traffic to or through the ER at 4hpie was reduced by ca. 50%

(Figure 3B; black arrow). The decreased representation of

predicted secreted proteins was even more pronounced when the

subcellular localization analysis was performed for proteins

significantly more abundant at one time-point (Figure 3C). We

noticed that more than one third of the predicted secreted proteins

at 0, 8 and 12hpie were variant-specific surface proteins (VSPs).

VSPs are secreted in large numbers to the surface of Giardia

trophozoites, forming protein coats hypothesized to play a role in

immune evasion and establishment of chronic infection in

parasitized hosts [5]. Although only one VSP from a repertoire

of ,200 VSP gene members in the Giardia genome is expressed

on the surface of individual Giardia cells at any time, in the

absence of immunological selection, cultured populations typically

contain a mixture of parasites presenting different VSPs [21].

Antigenic switching to a different type of VSP occurs spontane-

ously, both in culture and in vivo [39] and its regulation appears to

depend on post-transcriptional phenomena including an RNAi-

related pathway [40] and/or microRNAs [41]. The large number

of VSPs suggests this protein family may constitute the bulk of ER-

targeted proteins in Giardia trophozoites.

We detected a total of 47 VSPs across all time-points (Table S3).

The regulation of transcript levels in encysting trophozoites for 22

of these VSPs is similar to the data we present for the

corresponding protein products [7].The 0hpie dataset includes

the highest number of detected VSPs with 45 family members, of

which 29 presented significant differential expression (Table S3).

36 and 35 VSP family members were identified at 8hpie and

12hpie, respectively. Strikingly, only 13 VSPs were identified in

the 4hpie dataset, indicating that the diversity of the repertoire of

expressed VSPs in early encysting trophozoites was significantly

reduced (Table S3). The reduced VSP variety at 4hpie was

consistent with the observed drop in predicted ER-targeted

proteins. Except for VSP GL50803_9276, 12 of the 13 VSPs

detected at 4hpie were present across all time-points. VSPs

GL50803_ 103992, 111933, 113304, 134710, 14331 and 40591,

were only detected in non-encysting trophozoites. In contrast to

this, VSPs GL50803_137606 and 9276 were only detected in

encysting trophozoites. Taken together, this data indicates that

induction of encystation affects VSP diversity in trophozoites early

during encystation. There are at least two interpretations for the

striking bottleneck in VSP diversity uncovered by our data may be

interpreted in at least 2 ways. On the one hand, a reduction in

detected VSP variants in the population may be due to a loss of

trophozoite subpopulations carrying specific VSPs. These popu-

lations would lose ground in favor of subpopulations carrying

other VSP antigens which, for reasons yet unknown, could be

more compatible with survival and proliferation in the media

conditions used to induce encystation. In support of this

hypothesis, our data records an overall decrease in VSP diversity,

from 45 at 0hpie to 36 and 35 at 8 and 12hpie, respectively. VSPs

GL50803_ 103992, 111933, 113304, 134710, 14331 and 40591,

were only detected in non-encysting trophozoites and, except for

ORFs GL50803_111933 and 40591, this is consistent with

previously measured transcript levels in the early stages of

encystation [7]. On the other hand, out of the 13 VSPs detected

throughout the 4 hour time-course, 11 VSPs were significantly

more abundant at 0 and 8hpie compared to 4hpie, suggesting that

these VSPs may correspond to a core subset of surface antigens

whose abundance is specifically down-regulated at 4hpie. This

could play a role in accommodating for the imminent trafficking of

large amounts of CWM, by reducing constitutive secretion of

VSPs and of other surface antigens. In support of this idea,

secretory trafficking-related proteins such as the signal recognition

particle (SRP 68 kDa; ORF GL50803_8916), COPII component

Sec31 (GL50803_2562) and coatomer subunits alpha

(GL50803_11953) and gamma (GL50803_5603) were found to

be significantly more abundant at 4hpie compared to both 0 and

8hpie (Table S2). Therefore, early encysting cells may promote

stage-specific expression and trafficking of CWPs by reducing

overall constitutive secretion and increasing abundance of SRP

and of other trafficking machinery. Coatomer subunits in other

eukaryotes are known to mediate retrograde protein trafficking

from the Golgi apparatus to the ER and to be involved in Golgi

cisternal maintenance [42]. The absence of a stable Golgi

compartment in G. lamblia, supplanted by de novo generated ESVs

which were previously shown to be associated to coatomer [12],

raises the question of the presence of retrograde transport routes

involving nascent ESVs.

Another class of secretory proteins which also appeared to be

significantly less abundant at 4hpie with respect to 0hpie and 8hpie

are the poorly-characterized high cysteine membrane proteins

(HCMps). We detected a total of 14 up-regulated HCMps at 0hpie

and at 8hpie with respect to 4hpie. Except for 3 of these

(GL50803_91099, 16716 and 9620), corresponding transcript

levels reportedly increased at 3–7hpie compared to a vegetative

state, albeit less than 2-fold [7]. Similarly to VSPs, HCMps are

rich in cysteine (.10%) and usually contain more than 20 repeats

of the CXXC and/or the CXC motif. The latter motif

distinguishes them from VSPs, as these very rarely exhibit the

CXC motif [43]. Furthermore, HCMPs lack the C-terminal

CRGKA epitope which is a hallmark of VSPs. One member of the

HCMP family (HCNp; GL50803_40376) was shown to be

increasingly expressed at 21 and 42hpie and in water-resistant

cysts [44]. Furthermore, HCNp localized to nuclei in non-

encysting trophozoites and to ESVs and to the cyst’s wall and cell

body [44]. It is noteworthy that, similarly to VSPs, more HCMps

were differentially abundant at 8hpie than at 0hpie, suggesting a

common regulatory mechanism during encystation for constitu-

tively-secreted proteins such as VSPs and HCMps.

Functional annotation analysis defines clusters of
differentially regulated metabolic functions

To determine changes in the Giardia metabolic network during

encystation, we applied the DAVID algorithm suite [45] for

parsing the datasets using functional categories. Following the

conversion of the detected G. lamblia ORFs to DAVID-compatible
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identification numbers, we subjected the resulting gene lists to the

DAVID web-interface tool for functional annotation clustering,

based, amongst other parameters, on available gene ontology

(GO) terms, protein-protein interaction data, protein functional

domains and bio-pathways. We performed this analysis for all

proteins identified at all 4 time-points and detected 17 functional

clusters with an enrichment score (ES) of $1 (Figure 4A, Table

S4). These clusters showed enrichment, depletion or modest

changes at 0, 4, 8 and 12hpie (Figure 4A). We performed a similar

analysis for all significantly regulated proteins between 0 and

4hpie, and between 4 and 8hpie (Figure 4B, Table S4). Due to the

insufficient number of significantly regulated proteins between 8

and 12hpie, we were unable to run a similar analysis.

Four metabolic clusters, ‘‘ATPase’’, ‘‘Intracellular protein

transport’’, ‘‘Energy production and conversion’’ and ‘‘FAD

coenzyme binding’’, were overrepresented in the 0hpie dataset

(Figure 4A, Table S4). The ‘‘Intracellular protein transport’’

cluster contains the clathrin heavy chain and 5 adaptins which

were previously shown to localize to peripheral vesicles [46],

including 2 vacuolar protein sorting components. Furthermore,

the two proteins Sec61 translocon (GL50803_5744) and coatomer

b subunit (GL50803_88082) are related to the early secretory

pathway. Interestingly, this cluster also includes a hypothetical

protein (GL50803_93278) which carries a conserved importin b-

related nuclear transport receptor domain (NCBI Conserved

domain search, 1.62e211) responsible for nuclear cargo interac-

tions with the nuclear pore complex [47]. We observed that the

abundance of proteins involved in intracellular trafficking were

generally higher at 4, 8 and 12hpie compared to 0hpie, supporting

the earlier observation of a remodeling of intracellular protein

transport during encystation (Table S2). In addition, 3 functional

clusters associated to surface antigens (‘‘VSP/Furin-like’’, EGF-

like’’ and ‘‘EGF-like/laminin’’) were underrepresented at 4hpie

(Figure 4A, Table S4). This is consistent with our observations on

the loss of VSP diversity in the early stages of encystation (Table

S3). This trend was further highlighted in the functional

annotation of proteins significantly more abundant at 0hpie and

8hpie with respect to 4hpie (0.4 and 8.4, Figure 4B and Table

S4).

Several metabolic functions are differentially regulated in
early encystation

Many changes in protein abundances took place at 4hpie

(Figure 3A). Proteins identified at 4hpie or significantly more

abundant at 4hpie belonged to several metabolic functional

clusters (Figure 4A and 4B, and Table S4).The functional clusters

‘‘Nucleotide binding’’, ‘‘Ribonucleoprotein complex’’, ‘‘Protein

biosynthesis’’ and ‘‘Aminoacyl tRNA synthetase’’ were overrepre-

sented at 4hpie (Figure 4A, Table S4), with the first category

enriched exclusively at 4hpie (Figure 4A, Table S4). These clusters

are likely linked to a general increase in metabolic activity

including transcription and translation early during encystation.

The ‘‘Thioredoxin’’ cluster is enriched at 4hpie and 8hpie

(Figure 4A, Table S4) and it includes 3 protein disulfide isomerases

(PDI) and 2 members of the peroxiredoxin (PRX) family. The G.

lamblia genome has 5 genes coding for PDIs, 3 of which have been

localized to the ER [48] and likely aid in correct protein folding.

The abundance of the three PDIs identified here increased at

4hpie, suggesting that enhanced protein folding is accompanying

increased secretion during encystation. In contrast, identified

PRXs were less abundant at 4hpie. PRXs play an important role

in relieving cells from oxidative stress caused by hydrogen

peroxide [49]. Although it is unlikely that in vitro O2 concentration

would change significantly, in vivo encysting parasites may

encounter local variations in O2 levels while moving towards

and through the large intestine [50]. This change in environment

may require an adjustment of PRX activity.

Ten metabolic clusters were enriched for proteins significantly

more abundant at 4hpie compared to either 0hpie (4.0hpie,

Figure 4B) or 8hpie (4.8hpie, Figure 4B). The surge in metabolic

regulation at 4hpie is mirrored by an enrichment for protein

kinases, several of which were significantly more abundant at

4hpie than at 0 or 8hpie (Figure 4B). Despite Giardia’s ‘‘reduced

kinome’’ [51], the NIMA-related serine/threonine kinases (NEK)

kinase family has seen a massive expansion in this lineage, with up

to 71% of all kinase-related ORFs predicted to encode for NEK

kinases [51]. Interestingly, ca. 70% of these lacks key residues

required for substrate phosphorylation, raising the question of

their actual catalytic activity [51]. Interestingly, the rhoptry kinase

family in T. gondii includes several pseudokinases involved in

assisting active kinases in exerting their function [52]. It is

therefore possible that the majority of NEK kinases in G. lamblia

may in fact be pseudokinases. The majority (40%, N = 16) of all

up-regulated kinases at 4hpie compared to 0hpie were NEK and

NEK-like kinases (Table S4). Although regulated less than 2-fold,

transcript levels for six of these (ORFs GL50803_ 5489, 17231,

11390, 113553 and 16824) were shown to be higher at 3hpie

compared to 0hpie [7]. Further in line with our data, NEK kinase

GL50803_15409 was found to be up-regulated early in encysta-

tion on both transcript and protein levels [22]. We furthermore

identified two kinases, NEK1 and NEK2 (GL50803_92498 and

GL50803_5375), that were shown to regulate cell cycle progres-

sion, growth and cytokinesis [53]. NEK2 was significantly more

abundant at 4hpie while the abundance of NEK1 remained

unchanged during encystation (Table S2). The B’ regulatory

subunit of the highly conserved serine/threonine protein phos-

phatase 2A (PP2A; GL50803_16443) was also specifically

upregulated at 4hpie (Table S2). Importantly, PP2A was

previously implicated in G. lamblia encystation and was proposed

to be also involved in Trypanosoma cruzi and Plasmodium falciparum

differentiation [54].

Several proteins significantly more abundant at 4hpie were

involved in glycolysis (Figure 4B). A notable member of this

‘‘Glycolysis’’ cluster is enolase (GL50803_11118) (table S4). This

enzyme is unconventionally secreted from trophozoites during

colonization and proliferation in the small intestine [55],

suggesting a role in Giardia virulence and pathogenicity [56].

An increase in intracellular levels of enolase is consistent with the

decrease in unconventional enolase secretion observed in encysting

trophozoites [56]. Although not involved in glycolysis, arginine

deiminase (ADI; GL50803_112103) is another example of

unconventional protein secretion in Giardia trophozoites [55]

which is also significantly upregulated at 4hpie compared to all

other tested time-points. Aside from enolase, phosphoglycerate

kinase (GL50803_90872), pyruvate kinase (GL50803_3206 and

GL50803_17143), fructose-bisphosphate aldolase

(GL50803_11043), glucokinase (GL50803_8826), glucose-6-phos-

phate isomerase (GL50803_9115) and pyrophosphate-fructose 6-

phosphate 1-phosphotransferase alpha subunit (GL50803_14993)

were all consistently more abundant at 4hpie (Table S2), thus

demonstrating a distinct regulation of the glycolytic pathway [57].

We observed that all subunits of the chaperonin T-complex 1

(TCP-1) included in the ‘‘Unfolded protein binding’’ cluster were

significantly more abundant at 4hpie (Figure 3B and Table S4).

The TCP-1 heteromer is essential in yeast and is postulated to be

the cytosol-resident eukaryotic equivalent of the prokaryotic groEL

system [58]. TCP-1 aids in the ATP-dependent folding of several

proteins, including actin and tubulin [59]. Although these data

Proteomics of Giardia lamblia Encystation
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could be interpreted in the context of a stress response to an

increased demand for protein folding (see above), our group has

recently shown how the regulation of gene expression in encysting

trophozoites is clearly distinct from that of cells subjected to

stresses which typically induce the unfolded protein response

(UPR) [7,60]. Interestingly, TCP-1 was shown to be necessary for

histone deacetylase 3 (HDAC3) activity by promoting HDAC

interaction with its nuclear receptor co-repressor SMRT [61].

Giardia presents a single HDAC (GL50803_3281) whose chemical

inhibition was shown to inhibit encystation and expression of

CWP genes, indicating that de-acetylation plays an important role

in stage-conversion [8]. Although giardial HDAC was never

detected in our experiment, the higher abundance of TCP-1

components at 4hpie could be linked to increasing HDAC de-

acetylating activity which regulates expression of encystation-

related genes in the early stages of this process [8].

Importantly, components of the cytoskeleton were specifically

enriched at 4hpie with respect to 0hpie (Figure 4B, Table S4). The

majority of these significantly regulated proteins were either

dyneins or kinesins. These proteins act as molecular motors to

Figure 4. Functional annotation for the proteome of G. lamblia trophozoites at 0, 4, 8 and 12hpie. (A) Proteins identified at 0, 4, 8 or
12hpie were assigned to a total of 17 functional annotation clusters using DAVID. Only clusters with enrichment scores of at least 1 were included in
the graph and were further discussed. The number of proteins in each cluster dataset is indicated, followed by the total number of proteins
submitted to DAVID (in brackets). Functional clusters that were up-regulated at 0hpie (up 0hpie) and that were either up- or down-regulated at 4hpie
(up 4hpie and down 4hpie, respectively) are indicated on the graph. hpie: hours post induction of encystation. (B) Significantly regulated proteins
between 0 and 4hpie (0.4hpie and 4.0hpie) and 4 and 8hpie (4.8hpie and 8.4hpie) were assigned to functional annotation clusters using DAVID.
The number of proteins in each cluster dataset is indicated, followed by the total number of proteins submitted to DAVID (in brackets). Only clusters
with enrichment scores of at least 1 were included in the graph and were further discussed. hpie: hours post induction of encystation.
doi:10.1371/journal.pone.0083207.g004
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mediate ATP-dependent cellular cargo transport along microtu-

bules [62], dyneins towards the minus end of a microtubule

(MTOC), kinesins towards the plus end. Both protein types are

implicated in organellar transport within the cell including

mitochondria, lysosomes and the ER [63]. Aside from suggesting

a general re-organization of subcellular structures in early

encystation, the higher abundance of motor proteins at 4hpie

may be linked to the transport and distribution of newly-formed

ESVs which are generally independent of the ER at 5–6hpie [10].

In line with remodeling and internalization of the flagellar

apparatus in encysting cells [16], we also identified 14 out of 25

basal body proteins (Tables S1 and S2) whose confident

localization was reported in a recent study integrating genomic

predictions, proteomics and immuno-localization data [23]. Five

of these (GL50803_ 9030, 16745, 16532, 16220, 13766) were also

significantly more abundant at 4hpie (Table S2). A striking feature

of Giardia encystation is disassembly of the adhesive disk [16]. We

detected 22 of 38 previously published adhesive disk candidates

[64,65], 3 of which (GL50803_101291, 103676 and 13584) were

at most 2-fold more abundant at 4hpie (Table S2). This is

consistent with previous reports of 2D PAGE analyses showing

little change in adhesive disk protein abundance during encysta-

tion [16]. Furthermore, we detected 7 putative giardial ankyrins

containing coiled-coil domains which were localized to flagellar

elements and have been proposed to play a role in flagellar activity

[66]. In mammalian cells, ankyrins were identified as a family of

adaptor proteins that mediate the attachment of integral

membrane proteins to the spectrin-actin based membrane

cytoskeleton [67]. Although ankyrin function in the giardial cell

awaits a more detailed characterization, specific induction of this

protein family in the early stages of encystation may serve as a

novel marker for this process. Overall, our data indicates how cells

in early encystation undergo significant metabolic changes which

include (sub)cellular structure remodeling.

The Giardia proteome undergoes only modest changes
in the later stages of encysation

Only few functional clusters were enriched at later stages of

encystation (Figures 4A and 4B, Table S4). Notably, the 8hpie

dataset presented an exclusive enrichment for the ‘‘Exopeptidase

activity’’ cluster which includes 2 metallo-proteases of the

insulinase family (GL50803_93551 and GL50803_9508). Consis-

tent with their significantly increased protein abundances at 4hpie,

transcripts for these 2 metallo-proteases were previously found to

be positively regulated during encystation, generally at 3hpie [7].

Proteins involved in ‘‘Proteolysis’’ were also found to be enriched

at 0hpie and 8hpie compared to 4hpie (Figure 4B, Table S4).

Interestingly, the giardial serpin 1 homologue (ORF

GL50803_4653) was also significantly more abundant at 0 and

8hpie with respect to 4hpie. Serpins constitute a superfamily of

irreversible serine protease inhibitors, present in all living

organisms and in Poxviruses [68]. A decrease in serpin-dependent

inhibitory activity in the early stages of encystation could promote

protein turnover by serine proteases, thereby contributing to the

metabolic and cellular remodeling of early encysting trophozoites.

Further experimental data is therefore required to determine

whether an important aspect of G. lamblia encystation is perhaps

regulation of serine protease activity [69]. In line with this

hypothesis, 1 of only 7 significantly up-regulated proteins at 12hpie

with respect to 8hpie was a putative furin precursor serine protease

(GL50803_2897), also referred to as SPC for subtilisin-like

preprotein convertase [70]. Our data is in agreement with

previous reports on the overexpression of both the protein and

the corresponding transcript in late encystation [7,70]. The

canonical catalytic triad for this class of peptidases was not found

in the giardial homologue and its substrate(s) remain uncharacter-

ized [70]. Further work is therefore required to establish whether

this ‘‘atypical’’ preprotein convertase may function as a pseudo-

enzyme involved in the regulation of specific proteolytic events

occurring in the later stages of encystation [71].

Our last time-point at 12hpie presented just 1 enriched cluster

for ‘‘Carbohydrate biosynthesis’’ (Figure 4A). Interestingly, only

one protein in this cluster, glucose-6-phosphate isomerase

(GL50803_9115), has so far been implicated in encystation-

dependent GalNAc biosynthesis [30] (Table S4). Other cluster

members include a putative glycogen synthase (GL50803_104031)

and the glycogen debranching enzyme 4-alpha-glucanotransfer-

ase-amylo-alpha-1,6-glucosidase (GL50803_10885), although a

role for glycogen metabolism in the later stages of encystation

has not been described so far.

An interesting observation was the significant increase of

giardial H2A histone (GL50803_14256) at 12hpie. The entire

core histone repertoire in G. lamblia is composed of histones H2A

and H2B, H3 and H4 [72]. No H1 histone-encoding ORF has yet

been identified in the giardial genome sequence, suggesting that

condensation of DNA in this organism may involve non-

conventional nucleosome assembly [73]. The overexpression of

H2A in the later stages of encystation could be explained with

ensuing rounds of DNA replication required to obtain a

tetranucleate 16N cyst from a binucleate 4N trophozoite, although

we did not detect a parallel increase in the protein levels for other

core histones. In line with our data, transcript levels for H2A

histone did not change significantly in the earlier stages of

encystation and at 7hpie [7], suggesting that the overexpression we

observed is indeed limited to the later stages of encystation. None

of the transcripts for the other core histones were regulated more

than 2 fold during encystation [7]. SAGE data obtained using an

alternative encystation protocol showed less than 2-fold increase of

H2B expression during encystation (GL50803_121045,

GL50803_121046) while the abundance of H3 mRNA

(GL50803_3367, GL50803_14212 and GL50803_135231) re-

mained unchanged or very slightly decreased [19]. Interestingly,

the H2A-encoding mRNA was found to be a target of miRNA 3

([74]; user comment by A. Saraiya on www.giardiadb.org). There

is currently no information on the regulation of miRNA 3 during

encystation, thus the biological interpretation and significance of

this observation awaits further investigation.

Conclusion

In this study, we present the first large-scale quantitative analysis

of the G. lamblia proteome and it’s regulation during in vitro

encystation. Widespread changes in protein abundance were

detected in the early stages of this differentiation process which

was marked by a remodeling of the cell’s surface through the

regulation of VSPs. Our findings raise important questions

regarding the role and regulation of antigenic switching in

encysting populations. In parallel, enrichment for motor proteins

such as dyneins and kinesins suggest a re-arrangement of

subcellular compartments prior to ESV neogenesis. Importantly,

our data confirms and expands several previous reports identifying

encystation markers and provides broad insight into novel protein

targets regulated during encystation.

Previous work reported on the absence of sweeping changes in

gene expression during encystation [7,19], leading to the

hypothesis that regulation in protein abundance may have

followed a similar trend. On the contrary, our data demonstrates

differential regulation of several hundred proteins, suggesting an
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important role for post-transcriptional control of gene expression

during parasite differentiation. A case in point is EGFCP1, a non-

CWP ESV component whose protein levels were shown to

increase during encystation, with no significant changes in

corresponding transcript abundance [75].

The wealth of presented data awaits further hypothesis-driven

mining, experimental validation and functional analysis. This is all

the more relevant when we consider that currently almost 70% of

the entire predicted proteome for G. lamblia WB assemblage A is

annotated as ‘‘hypothetical’’. Improving annotation for the G.

lamblia proteome will serve many purposes, including earmarking

of specific metabolic processes which may be also regulated during

ERIF formation in other parasitic protozoan species [76,77]. The

presented data has been submitted for integration in the GGD

platform and we believe that its release to the scientific community

will contribute to the further understanding of the striking process

of encystation, which is key to parasite survival based on

alternating between the trophozoite and the cyst stage.

Materials and Methods

Giardia cell culture and induction of in vitro encystation
Trophozoites of the G. lamblia strain WBC6 (ATCC catalog

number 50803) were grown under microaerophilic conditions in

11 ml culture tubes (Nunc, Roskilde, Denmark) containing TYI-S-

33 medium supplemented with 10% adult bovine serum and

bovine bile according to standard protocols [27]. Encystation was

induced using the 2-step method as described previously [27].

Briefly, cells were cultured for 44 hours to confluence in medium

without bile (pre-encysting medium) and subsequently in pre-

warmed encystation medium containing porcine bile (0.25 mg/ml;

Sigma) and lactic acid (0.545 mg/ml; Sigma) at pH 7.85. 40

million attached cells were harvested at given hours post induction

of encystation (hpie); cell debris, cysts and spontaneously-encysting

trophozoites were discarded with the medium.

Immuno-fluorescence analysis
Chemical fixation and preparation for fluorescence microscopy

was performed as described [14]. Briefly, cells were washed with

cold PBS after harvesting and fixed with 3% formaldehyde in PBS

for 40 min at 20uC, followed by 5 minutes incubation with 0.1 M

glycine in PBS. Cells were permeabilized with 0.2% triton X-100

in PBS for 20 min at room temperature and blocked overnight in

2% BSA in PBS. Incubations of all antibodies were done in 2%

BSA/0.2% Triton X-100 in PBS for 1 h at 4uC. The following

antibodies were used in this work: Texas Red-conjugated anti-

CWP1 (WaterborneTM, Inc., New Orleans, LA, USA; dilution

1:80). Post incubation washes were done with 1% BSA/0.1%

triton X-100 in PBS. Labeled cells were embedded for microscopy

with Vectashield (Vector Laboratories, Inc., Burlingame, CA,

USA) containing the DNA intercalating agent 49-6-Diamidino-2-

phenylindole (DAPI) for detection of nuclear DNA. Immuno-

fluorescence analysis was performed on a Leica DM IRBE

microscope (Leica Microsystems, Wetzlar, Germany) equipped

with an oil immersion objective (Leica, HCX PL FLUOTAR PH3

100X).

Protein extraction and mass-spectrometry based protein
identification

Protein extracts were prepared by lysing shock-frozen Giardia

cells in 0.3 ml of a Tris-based SDS buffer (40 mM Tris, pH 8.0,

40 mM DTT, 5 mM MgCl2, 4% SDS, and 16protease inhibitor

cocktail [Calbiochem]). Cell lysates were clarified by centrifuging

twice at 20,000 rcf for 20 min at room temperature; the

supernatant fraction only was retained for further processing.

Protein concentration was determined using a BCA protein assay

kit (Thermo Scientific-Pierce) before adding 40 mM DTT and

similar protein concentrations were obtained for all time points

(,10 mg/ml). 40 micrograms of total protein for each time-point

were subjected to SDS-PAGE on 12% resolving gels. After

electrophoresis, gels were stained with Coomassie Brilliant Blue

according to standard procedures and each sample lane was cut

into 10 sections. Each gel slice was then diced into smaller pieces.

In-gel digestion was performed according to previous reports [78].

After digestion, dried peptides were resuspended in 3% acetonitrile

and 0.2% trifluoretic acid and desalted using Sepak cartridges

(Waters).

Dried peptides were resuspended in 3% acetonitrile and 0.2%

formic acid and analyzed on a LTQ Orbitrap Discovery mass

spectrometer (Thermo Fischer Scientific, Bremen, Germany)

coupled to an Eksigent-Nano-HPLC system (Eksigent Technolo-

gies, Dublin (CA), USA). Peptide mixtures were loaded onto

laboratory-made capillary columns (75 mm inner diameter (BGB

Analytik, Böckten, Switzerland), 8 cm length, packed with Magic

C18 AQ beads, 3 mm, 100 Å (Michrom BioResources, Auburn,

CA, USA)). Peptides were eluted from the column by an increased

acetonitrile concentration in the mobile phase from 5% (v/v)

acetonitrile, 0.2% (v/v) formic acid to 40% (v/v) acetonitrile, 0.2%

(v/v) formic acid over 74 minutes, followed by a 10 minutes wash

step at 5% (v/v) acetonitrile, 0.2% (v/v) formic acid at a flow rate

of 200 nl/minute. Full-scan MS spectra (300–2000 m/z) were

acquired with a resolution of 60000 at 400 m/z after accumulation

to a target value of 500000. Collision induced dissociation (CID)

MS/MS spectra were recorded in data dependent manner in the

ion trap from the six most intense signals above a threshold of 500,

using a normalized collision energy of 35% and an activation time

of 30 ms. Charge state screening was enabled and singly charge

states were rejected. Precursor masses already selected for MS/MS

were excluded for further selection for 120 s and the exclusion

window was set to 20 ppm. The size of the exclusion list was set to

a maximum of 500 entries. The spectral output of all measured

samples was stored in a .raw file format from the software Xcalibur

used on the Thermo Fischer mass spectrometers (Thermo Fischer

Scientific, Bremen, Germany). These files were subsequently

transformed in a .mgf format using the Mascot software suite

(Matrix Science), allowing for database searches and protein

identification.

To identify measured peptides, we generated a proteome

database using the Giardia Genome release-1.2 (25-Jun-2009). We

used the file ‘‘GlambliaAnnotatedProteins_GiardiaDB-1.2.fasta’’

(17-Aug-2009) corresponding to the proteins, translated CDS

(AA). To the forward protein sequences, we added the respective

reverse sequences to be able to determine the false positive rate of

protein and peptide discovery. To allow for correct peptide and

protein identification we increased the size of the Giardia

proteomics database by adding protein sequences from Arabidopsis

thaliana (TAIR9). MS/MS spectra were searched with Mascot

version 2.2.04 against this database with a concatenated decoy

database supplemented with contaminants (67,079 entries). The

search parameters were as follows: requirement for semitryptic

ends, one missed cleavage allowed, mass tolerance = 65 ppm.

Besides carbamidomethylation of Cys residues as fixed modifica-

tion, oxidation of Met was included as a variable modification.

Identified peptides were accepted with a Mascot ion score higher

than 23 and a Mascot expectation value smaller than 0.05. To

increase protein identification confidence, a minimum of two

unique peptides for each identified protein was required. The

spectrum false discovery rate was calculated by dividing the
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number of decoy database spectrum assignments by the number of

spectrum assignments in the final dataset. The false positive rate

was below 1% for all measured biological replicates.

Protein quantification with nSpC was done according to [25]

and [26]. Briefly, the expected contribution of each individual

protein to the samples total peptide pool was calculated correcting

the values with a normalization factor, which balances for the

theoretical number of tryptic peptides per protein and sample

depth according to the following formula: nSpCK = Spec-

traK6((TTPK6MS)/MP)21 where nSpCK is the normalized

spectral count for protein K, TTPK is the theoretical tryptic

peptides of protein K, MS is the total number of measured spectra

in the dataset, and MP is the total number of theoretical tryptic

peptides of the identified proteins in the dataset.

For the determination of the number of TTPK, the whole

protein database was digested in silico according to Baerenfaller et

al., 2008. If Arg or Lys was followed by Pro (KP/RP site), the site

was both cut and not cut (resulting in 3 tryptic peptides). If several

of these sequence pairs followed each other, we only considered

cutting of one KP/RP site per time. Resulting peptides were

labeled as theoretical tryptic peptides, which were between 400

and 6000 Da, at least 6 amino acids long, and contained a tryptic

start and end.

Access to proteomics data on PRIDE
The measured data was exported to the PRIDE database (www.

ebi.ac.uk/pride; [33]) (login: review15038; password: j‘jHZtPD).

Accession numbers for the 14 hour time-course are 26860, 26861,

26866, 26868, 26869–71 and 26878. Accession numbers for the

in-depth analysis with biological triplicates are 26862–5, 26867,

26872–7 and 26879.

Web-based protein localization and functional prediction
tools

Protein hits in FASTA format were uploaded to the web-

interface of prediction algorithm Target P [37] at http://www.cbs.

dtu.dk/services/TargetP. Based on the indications on the

algorithm’s web-interface, reliability class 3 was set as the

threshold for statistically-significant in silico predictions, with RC

1 associated to the most robust predictions. Protein hits were

further analyzed for putative nuclear localization signals using the

web-based prediction algorithm NucPred [38] at http://www.sbc.

su.se/,maccallr/nucpred/. Based on the indications on the

algorithm’s web-interface, the prediction reliability score cut-off

was set to 0.7; nuclear localization predictions with a score of 0.7

and above were considered significant. The DAVID algorithm

suite [45] was used to detect specific functional clusters within the

protein datasets. Protein hits identified by giardial ORF codes such

as GL50803_XXXXX were copied to a .txt file and converted to

gene identification numbers (Gene IDs) by uploading the

corresponding .txt file and selecting ‘‘Gene’’ from the drop-down

menu on the NCBI Batch Entrez tool at http://www.ncbi.nlm.

nih.gov/sites/batchentrez. Not all G. lamblia ORFs could be

assigned a Gene ID number however, resulting in a reduction of

the original datasets to a shorter gene list. The resulting Gene IDs

were exported to a new file and pasted as gene lists on the DAVID

web-interface tool for functional annotation clustering at http://

david.abcc.ncifcrf.gov/summary.jsp. Following the conversion of

this gene list to DAVID identification numbers, the functional

clustering analysis was launched. When sufficient data is available,

the functional annotation clustering tool groups and displays

contents from the same or different resources into annotation

groups. Each group was then assigned an enrichment score (ES)

which indicates the prominence of a specific functional group

within a given list of genes. Only clusters with a ES$1 were

selected for further analysis [45].

Supporting Information

Figure S1 (A) 40 mg of total protein was extracted from G.

lamblia trophozoites sampled at 0, 2, 4, 6, 8, 10, 12 and 14hpie.

Following resolution by one-dimension SDS-PAGE, each gel lane

was cut to 10 pieces which were then separately subjected to in-gel

tryptic digestion. Resulting peptides were measured by tandem

mass spectrometry. Approximate protein molecular weights in

kDa are indicated on the left. hpie: hours post induction of

encystation. (B) Protein data overview across the 14 hour time-

course experiment, including the overall number of identified

proteins for each time-point and the number of proteins in

common across time-points. hpie: hours post induction of

encystation. (C) Distribution box-plots for the comparison of

label-free proteomics data at 0hpie from this study to RNA-seq

data reported in Franzén et al., 2013 [21]. Protein abundance in

the upper box-plot is expressed using normalized spectral counting

(nSpC) while RNA abundance in the lower box-plot is expressed

as fragments per kilobase per million fragments mapped (FPKM);

in brackets, the overall number of proteins for each dataset is

indicated. Lower and upper quartiles are shaded in dark and light

grey, respectively. Both datasets show how protein and transcript

products derived from annotated ORFs are more abundant than

products of hypothetical ORFs.

(TIF)

Figure S2 Distribution box-plots comparing the abun-
dance across time-points of the 100 most abundant
proteins identified at 0hpie (A), 4hpie (B), 8hpie (C) and
12hpie (D). Protein abundance is represented using normalized

spectral counting (nSpC) while lower and upper quartiles are

shaded in dark and light grey, respectively. The plots show how

the abundance of highly abundant proteins at 0hpie is reduced at

4hpie.

(TIF)

Table S1 All proteins identified at 0, 2, 4, 6, 8, 10, 12
and 14 hours post induction of encystation. The normal-

ized spectral counting (nSpC) and the total number of identified

peptides are given. Differentially abundant proteins between two

time-points were required to have a minimum twofold change in

abundance (Ratio nSpC) and to have been identified with at

least 5 peptides in one of the two time-points. Proteins only

detected in one time point were also required to have a number

of at least 5 total peptides to be considered significantly more

abundant.

(XLSX)

Table S2 All proteins identified at 0, 4, 8 and 12 hours
post induction of encystation. The normalized spectral

counting (nSpC) and the total number of identified peptides

(TniP) are given. The T-test was performed on the nSpC of three

biological replicates. Differentially abundant proteins between two

time-points were required to have a minimum twofold change in

abundance (Ratio mean nSpC) and to have been identified with at

least 5 peptides in one of the two time-points. Proteins detected in

just one time point were also required to have at least 5 peptides to

be considered significantly more abundant.

(XLSX)

Table S3 All 47 variant-specific surface proteins (VSPs)
proteins identified at 0, 4, 8 and 12 hours post induction
of encystation. The normalized spectral counting (nSpC) and

the total number of identified peptides (TniP) are given. The T-test
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was performed on the nSpC of three biological replicates.

Differentially abundant proteins between two time-points were

required to have a minimum twofold change in abundance (Ratio

mean nSpC) and to have been identified with at least of 5 peptides

in one of the two time-points. Proteins only detected in one time

point were also required to have at least 5 peptides to be

considered significantly more abundant.

(XLSX)

Table S4 Functional annotation clustering analysis
performed with DAVID for each time-point and for all
significantly regulated proteins between 0 and 4hpie
(0.4hpie and 4.0hpie) and 4 and 8hpie (4.8hpie and
8.4hpie). Only clusters with enrichment scores (ES) of at least 1

were considered for further discussion and included in this table.

Each entry in the table contains multiple ORF numbers assigned

to each cluster. hpie: hours post induction of encystation.

(XLSX)
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