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Abstract  

Lake Lugano is one of several deep lakes in Switzerland that have not yet recovered from 

eutrophication after large reductions of external phosphorus (P) loadings. Persistent 

eutrophication has been attributed mainly to internal P loadings from sediments. To achieve 

the restoration goals, it is critically important to evaluate the sediment P availability and release 

risk in this lake. In this study, we combined sequential P extraction (four fractions) with enzyme 

hydrolysis to assess distribution characteristics of P forms and potential bioavailability of 

organic P in an anoxic sediment profile from the Ponte Tresa basin of Lake Lugano, southern 

Switzerland. Labile P forms, i.e. mostly redox-sensitive iron bound P and metal oxides bound 

P (Al/Fe-P), comprised ~70% of total P in the sediment profile (1959-2017 CE), suggesting a 

high potential for P release from the anoxic sediment. Potentially bioavailable organic P forms 

(determined by addition of substrate specific enzymes) were considerably higher in the surface 

sediments (top 5 cm), which is very likely to release P in the near future with early diagenesis. 

The net burial rates (NBR) of redox sensitive Fe-P fraction and total P in sediments both 

showed significant decreasing trends from 1959 to 2017 CE, when trophic levels of the lake 
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increased from mesotrophic to hypertrophic status. We suggest that, in the Ponte Tresa basin, 

higher eutrophication conditions led to enhanced sediment P release (mainly from redox 

sensitive Fe-P fraction), thus reducing P-NBR in sediments. This study highlights the concern 

that in deep monomictic lakes, eutrophication restoration might be hindered by extensive 

internal P cycling and reduced capacity of sediment P-trapping. 

 

Keywords: Lake sediments; Deep lakes; Organic phosphorus; Labile phosphorus; Internal 

phosphorus loading. 

 

1. Introduction 

Eutrophication of aquatic ecosystems has been a global environmental concern for 

decades, especially in freshwater lakes (Cao et al., 2016; Hu et al., 2007; Smith et al., 1999). 

Excessive phosphorus (P) loading is recognized as one of the main causes of eutrophication 

as P is the limiting element for primary productivity in many freshwater lakes (Rothe et al., 

2014; Worsfold et al., 2016). In many cases, however, management efforts focusing on 

reducing external P loads have resulted in delayed or even failed lake-system recovery from 

eutrophication (Søndergaard et al., 2001). The main cause for this was found to be the 

development of internal P loadings (P release from sediments), which recycles P back to the 

overlying water, thereby enhancing lake primary productivity and adversely affecting the lake 

trophic status (Gächter, 1987; Horppila et al., 2017; Tammeorg et al., 2016). 

Phosphorus accumulated in lake sediments as a potential source of lake eutrophication 

has received considerable attention over the last decades. Numerous studies have applied 

sediment P fractionation to evaluate potential P availability and P release risks into lake water 

(Cavalcante et al., 2018; Jin et al., 2006; Kaiserli et al., 2002; Kangur et al., 2013; Ruttenberg, 

1992). The rational of these fractionation procedures is that different P forms in sediments 

have different labilities and, thus, potentials to release P back into lake water. For example, 

apatite-P is considered a relatively stable P fraction contributing to permanent P burial in 
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sediments of most lakes (Zhang et al., 2013), whereas P bound to redox-sensitive Fe and 

Al/Fe (oxyhydr) oxides can potentially be released under anoxic or varying redox conditions 

(Burley et al., 2001; Lai and Lam, 2008). While inorganic P (Pi) forms in lake sediments were 

the focus of most previous studies, organic P (Po) speciation has been relatively under-studied 

(Mitchell, 2005). However, in recent years, Po has been demonstrated to be a significant 

component in lake sediments and might play the dominant role in sediment P release in some 

eutrophic lakes (Ahlgren et al., 2005; Torres et al., 2014; Zhang et al., 2008). To estimate 

potentially bioavailable Po in lake sediments, enzymatic hydrolysis has been commonly 

considered as a useful approach (Zhu et al., 2018; Zhu et al., 2013). 

In general, the distribution of P fractions in lake-sediment profiles is affected by various 

factors, such as external P inputs, sedimentation rates, sediment P release, sediment 

composition, early diagenetic processes, redox conditions, and other environmental conditions 

in lakes (Carey and Rydin, 2011; Kaiserli et al., 2002; Søndergaard et al., 1996; Trolle et al., 

2010). Sedimentary P species also largely depend on the lake trophic status (Carey and Rydin, 

2011; Torres et al., 2014; Torres et al., 2016; Wang et al., 2006). Eutrophication is usually 

associated with changes in physicochemical conditions such as higher pH in lake water and 

lower redox potentials in the water-sediment interface, which can prompt P mobility and 

change P forms in sediments (Cao et al., 2016; Zhang et al., 2009). Heretofore, studies mainly 

have focused on the relationships between surface sediment P-fraction concentrations and 

various trophic status in different lakes (Carey and Rydin, 2011; Gonsiorczyk et al., 1998; Huo 

et al., 2011; Jin et al., 2006; Zhang et al., 2009). To our knowledge, few studies have reported 

P-fraction net burial rates (NBR) in short sediment cores and their temporal responses to the 

eutrophication history of the lake. Moreover, most of the sediment P-fractionation studies were 

conducted in rather shallow polymictic eutrophic lakes (Gao et al., 2005; Søndergaard et al., 

2003). By comparison, sedimentary P fractions in deep, eutrophic monomictic or even 

meromictic lakes remain poorly understood, in particular regarding the time series of P-fraction 

NBR. 
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In the present study, we examined a short sediment core from the Ponte Tresa basin (Lake 

Lugano). We have selected this basin because it is a deep, warm monomictic subalpine lake 

and its eutrophication history since the mid-last century is well documented. Importantly, Lake 

Lugano is suffering from a delay of eutrophication recovery despite the reduction of external P 

loads since the 1980s (Lepori and Roberts, 2017). This delay is mainly reflected by presently 

still enhanced primary productivity as well as phytoplankton assemblage typically found in 

eutrophic waters (Bechtel and Schubert, 2009; Simona, 2003). The recovery from 

anthropogenic eutrophication in Lake Lugano has been hindered by sediment P release 

(Lepori and Roberts, 2017) which is further reinforced by some symptoms of eutrophication 

(e.g. longer stratification and anoxic periods of up to one year) (Lepori et al., 2018). However, 

little is known about the P composition and availability in the sediment profiles of the lake, and 

the question how P fractions NBR in sediments changed with different trophic conditions 

through time. 

The aims of this study were to (1) investigate P fractions and potential bioavailability of Po 

in sediment profiles of the Ponte Tresa basin, and (2) explore how the P-fraction NBR in 

sediments have varied with different trophic levels of the lake over the recent past decades. 

For these purposes, a sequential extraction scheme and enzyme addition assay were 

employed to characterize different P forms and potentially bioavailable Po in sediments. The 

temporal changes of P-fraction NBR were evaluated in relation to the reconstructed trophic 

history of the lake. 

 

2. Materials and methods 

2.1. Study site 

Lake Lugano is a tectonic-glacial lake situated on the border between Switzerland and 

Italy in the southern Alps (Fig.1a). The lake is fed by a large number of mountain streams and 

rivers (Cannata et al., 2018), with a total catchment area of 565.6 km2 (Fig.1a). The Ponte 
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Tresa basin (45°58'N, 8°52'E; Fig. 1b) is the smallest (surface area 1.1 km2) and most shallow 

(maximum water depth at ~51m) basin of Lake Lugano connected to  outlet river Tresa (Fig.1a) 

The direct watershed (land area, 5.6 km2) of this basin is mainly made up of calcareous rocks, 

gneiss, and porphyry, and mean water residence time is relatively short  (ca. 0.04 year; Simona, 

2003). A more detailed description on the morphological and hydrological characteristics of the 

Ponte Tresa basin is reported in Simona (2003). 

The climate in the Ponte Tresa catchment is classified as oceanic with warm summers 

and temperate winters. The basin water remains mostly ice-free during winter season 

(Franchini et al., 2017). The vegetation in the catchment is composed of oak (Quercus petraea 

and Q. robur) and chestnut (Castanea sativa) forests (colline belt) with agricultural fields in the 

lower parts. Residential and industrial buildings dominate on the Holocene alluvial fans to the 

north and west, and around the lake (Fig.1b). The Ponte Tresa basin has a warm monomictic 

mixing regime: it is seasonally stratified between early summer and mid-autumn (Premazzi 

and Marengo, 1982), and experiences typically one mixing event per year, usually in February 

or March (Lepori and Roberts, 2017). 

Lake Lugano has a long history of nutrient pollution starting as early as in the 1930s-1940s 

(Lehmann et al., 2004). In the Ponte Tresa basin, nutrient enrichments in the lake water started 

after the 1940s due to increasing urbanization and industrialization in the watershed, and the 

first massive algal bloom occurred in 1958 (Schneider et al., 2018). The basin was classified 

as eutrophic according to the measured water phosphate concentrations during 1972-1982 

(mostly between 45-160 μg·L-1 in the late summer months) (Premazzi and Marengo, 1982; 

Rimer, 2017). From ca. 1970 onwards, the basin has been eutrophic to hypertrophic as 

indicated by diatom-assemblages data (Lotter, 2001). The eutrophication in the Ponte Tresa 

basin has led to permanently or temporarily anoxic conditions on the surface of lake sediments 

(Züllig, 1982). In Lake Lugano, high productivity during summer also tends to cause an 

increase of pH and calcite preciptation in the surface waters (Bernasconi et al., 1997). 
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To manage eutrophication in Lake Lugano, several remediation measures were 

implemented to reduce external P loadings, such as the installation of wastewater treatment 

plants in 1976, and a ban on phosphates in detergents in Switzerland in 1986 (Barbieri and 

Simona, 2001; Span et al., 1994). These lake restoration endeavors have resulted in 

reductions of external P loads (from 77 to 36 tons per year) and lake-water P concentration 

during lake mixing (from 113 to 38 µg·L-1) in the southern basin of the lake from the early 1980s 

until the last decade (2006-2015) (IST-SUPSI, 2016). Nonetheless, primary productivity in the 

lake remains at high levels and, in the southern basin of Lake Lugano (connected to Ponte 

Tresa basin), annual primary production remained as high as > 400 g C· m−2·y−1 between 1983 

and 2014 (Franchini et al., 2017). 

 

2.2. Sediment coring and sampling 

In September 2017, several short sediment cores were collected from the depocenter  (i.e. 

the deepest point where the sediment surface is well preserved) of the Ponte Tresa basin using 

a UWITEC gravity corer (45°58’00.4’’N, 8°51’56.5’’E, Fig. 1b). After the cores were collected, 

they were tightly sealed, kept in a cooling box, and , within 5 hours , stored in a dark cold room 

(~4 °C).  

The sediment core selected for this study (PTRE 17-2) was 105 cm long. It was stored for 

two months before opening. After opening and splitting lengthwise, one-half core (PTRE 17-2-

A) was transferred immediately into a glove box with an anoxic atmosphere. Sampling in the 

glove box was done in a nitrogen (N2) atmosphere to protect sediment samples from oxidation 

and possible changes in P forms (Lukkari et al., 2007a; Lukkari et al., 2007b). The sediments 

were continuously sampled from top 0 to 37.5 cm in 2.5 cm intervals. The fresh sediments for 

each sample slice were homogenized. After sampling the sediment for sequential P extraction 

(Section 2.3), the remaining sediment was freeze-dried for water contents measurements and 

NaOH-EDTA extraction (Section 2.4). The other half core (PTRE 17-2-B) was stored in the 

cold (4°C) conditions. After the sediment surface became oxidized and  varves were more 
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visible, core pictures were taken with a Nikon D80 digital camera for visual stratigraphic 

correlation and chronology (Section 2.6). 

 

2.3. Sequential P extraction   

The P-fractionation extraction protocol was slightly modified from the method described 

by Lukkari et al. (2007a). In our procedure (Fig. 2), P in fresh sediments (corresponding to ~0.4 

g dry weight) was sequentially extracted by 50 mL extractants into four different fractions (F1 

to F4). The first two steps (F1 and F2) were performed in the absence of oxygen (N2 

atmosphere). Fraction 1 was extracted with 0.46M sodium cloride (NaCl) (ACS grade, Carl 

Roth GmbH&Co.), fraction 2 with 0.11 M sodium dithionite (Na2S2O4) (assay (iodometric) 

≥87 %, Merck KGaA) in 0.11 M sodium bicarbonate (NaHCO3) (ACS grade, Merck KGaA) 

buffer (pH 7.0) which is referred to later as NaBD, fraction 3 with 0.1 M sodium hydroxide 

(NaOH) (R.G. grade, Hänseler AG), and fraction 4 with 0.5 M hydrochloric acid (HCl) (ACS 

grade). Extractant solutions were all prepared using deionized and filtered water (Merck MilliQ-

water). All extractions were performed in triplicates for each sediment slice. All extraction steps 

described in Fig. 2 were carried out in Corning® 50 mL centrifuge tubes at room temperature 

using an orbital shaker table (400 rpm). The extraction time depended on the extractants (from 

1 to 18 h, Fig. 2), and all rinse steps were 15 min. After each extraction and rinsing step, 

supernatant was seperated by centrifugation at 4000 rpm for 15 min at room temperature. We 

made the following adjustments compared to the originally published extraction method 

(Lukkari et al., 2007a). Firstly, the extraction procedure was ended after the F4 fraction 

because, in our study, we are not interested in the residuals after F4 fraction, which is mostly 

refractory organic P accoring to Lukkari et al. (2007a); Secondly, we did not aerate the 

supernatants of NaBD-extracted samples prior to colorimetric quantification of soluble reactive 

P, as recommended in the original method. The aeration procedure was skipped because we 

used the malachite green method (Ohno and Zibilske, 1991) instead of the molybdenum blue 

method to determine the soluble reactive P concentrations in all extracts (Lukkari et al., 2007a). 
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Tests showed that sample aeration between 0 to 4 hours had no effect on the quantified P 

concentrations in NaBD extracts (Fig. S1a-c in Supplementary data). In the malachite green 

method, decomposition products of dithionite in aerobic aqueous solutions have no effect on 

malachite green and the phosphomolybdate complex and thus, no interference with 

spectrophotometric analysis of soluble reactive P (Barberis et al.,1998). Lastly, P quantification 

in all obtained extracts (F1 to F4) was perfomed in the unfiltered samples. Pre-tests comparing 

colorimetrically determined P concentrations in both unfiltered and filtered samples (0.45 μm 

nitrocellulose membrane) from F1 to F3 fractions showed an average difference of 1.3% (data 

not shown), suggesting that particulate P (undissolved P) in the extracts was minor. This 

appears to agree with previous findings in the Ponte Tresa basin that a great part of particulate 

P is mineralized at the water-sediment interface (Premazzi and Marengo, 1982). 

We assigned the four obtained P fraction (F1 to F4) to different P forms, according to the 

literature. NaCl-Ptot (F1) represents loosely adsorbed P on particle surfaces of sediments and 

in pore water. This P fraction can easily be released from the interstitial water to overlaying 

waters, and thus be available for algae growth (Jin et al., 2006; Ribeiro et al., 2008). NaBD-

Ptot (F2) includes redox-sensitive fractions of P bound to hydrated oxides, mainly those of Fe. 

It has been confirmed that, under anoxic conditions, this fraction is highly labile and can be 

released from sediments to the lake water where it is available for algae growth (Ding et al., 

2016; Rydin, 2000). NaOH-Ptot (F3) is partly inorganic P (NaOH-Pi) bound to metal oxides 

(mainly Al, Fe) and partly organic P compounds (NaOH-Po). NaOH-Pi is potentially labile and 

may release P under anoxic or high pH environments (Rydin, 2000). NaOH-Po contains 

moderately labile Po in fulvic acids and refractory Po bound with humic acids (Zhu et al., 2013). 

The NaOH-Po fraction could also be bioavailable when labile parts of Po are released and 

subjected to enzymatic hydrolysis (Monbet et al., 2007). HCl-Ptot (F4) is usually referred to as 

apatite-P and P bound to carbonates sourced from either co-precipitation with endogenic 

carbonates or from allochthonous lithogenic material (Gonsiorczyk et al., 1998; Kaiserli et al., 

2002). This fraction is mostly considered as non-bioavailable and “permanently” buried P pool 

in lake sediments but it can dissolve in acidic environments (Wang and Liang, 2015). 
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We chose the described procedure because it highlights the redox sensitive Fe-bound P 

and organic P fractions (Lukkari et al., 2007a) which are crucial P pools in deep lakes with 

seasonally anoxic conditions in the hypolimnion (Gu et al., 2016). Sediments for extraction 

were shielded from oxygen until the start of step F3 of the procedure (Fig. 2) to avoid alterations 

in P and Fe fractionations due to oxidation artifacts (Lukkari et al., 2007a). However, this 

method only provides information about total Po in sediments. It is unclear to what extent the 

total Po in sediments is potentially bioavailable. Thus, enzymatic hydrolysis (see Section 2.4) 

was performed to estimate hydrolyzable and, thus, potentially bioavailable Po in sediment 

samples. 

 

2.4. NaOH-EDTA extraction and enzymatic hydrolysis  

The extraction with 0.25M NaOH and 0.05M ethylenediamine tetraacetic acid (EDTA) was 

used for total Po extraction on bulk sediments (Bowman and Moir, 1993; Turner et al., 2005; 

Zhang et al., 2009). For that, 30 ml NaOH-EDTA (0.25 M-0.05 M) solution was used for total 

Po extraction on freeze-dried and homogenized bulk samples (~3 g). Total Po (NaOH-EDTA 

Po) was quantified as the difference between total P and inorganic P in NaOH-EDTA extracts. 

The Po in NaOH-EDTA extracts was further characterised into potentially bioavailable (i.e. 

enzyme-labile) and potentionally non-bioavailable (i.e. enzyme stabile) Po. In principle, the 

NaOH-EDTA extract is treated with a combination of different Po hydrolysing phosphatase 

enzymes (Jarosch et al., 2015). The increase in Pi in the extract is indicative on the amount of 

Po hydrolysed by the substrate specific enzymes. By using a combination of different 

phosphatases the potential bioavailabilty of Po can be estimated. Three different enzymes (an 

acid phosphatase (Sigma P1146), a phosphodiesterase (nuclease, Sigma N8630), and a 

phytase (Ronozyme ® HiPhos (M)) were used in combination to determine enzyme-labile Po 

in the NaOH-EDTA extract. Enyzme dillutions were chosen to ensure full hydrolysis of added 

model compounds (glycerol phosphoate (Sigma G6501), deoxyribonucleic acid (Sigma D3159) 
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and phytic acid (Simga P8810)) during incubation at 37°C for 24h. Incubations were performed 

on 96-well plates with eight analytical replicates per sediment sample under sterile conditions. 

 

2.5. Extracts and sediment sample analysis  

Phosphorus extracted in each fraction (F1-F4, Section 2.3) and NaOH-EDTA extracts 

(Section 2.4) was divided into inorganic P (Pi) and organic P (Po). The Pi concentrations were 

measured in the unfiltered samples colorimetrically by the malachite green method (Ohno and 

Zibilske, 1991) which quantifies the same Pi as the traditional molybdenum blue mothed 

(Murphy et al., 1962), yet with a higher accuracy at lower Pi concentrations (Uemura et al., 

2010). We used 4 mL polystyrene macro-cuvettes with a 10 mm light path, and determined the 

absorbance at 610 nm using a UV-1800 UV-VIS spectrophotometer (Shimadzu Europe GmbH, 

Germany). Calibration curves for all colorimetrial analyes were made including the respective 

extract matrixes. Total P in extract samples was measured by inductively coupled plasma mass 

spectroscopy (7700x ICP-MS) (Agilent Technologies, Germany) after the dilution with nitric 

acid (HNO3) to reach a final concentration of 1% v/v HNO3 in Corning® 15 mL centrifuge tubes. 

The Po in extracts was determined by the difference between total P and Pi. Total P in 

sediments was obtained from the sum of total P of the four fractions (F1-F4) in Section 2.3. In 

the same way, total Pi and total Po in sediments were calculated by the sum of Pi and Po of the 

four fractions, respectively. 

Water contents (%), dry bulk density (g·cm-3), and sediment mass accumulation rates 

(MAR; g ·cm-2·· y-1) were determined according to the method of Håkanson and Jansson (1983). 

The concentrations and net burial rates NBR (fluxes) of P fractions in sediments (Section 2.3-

2.4) are expressed as mg·kg-1 DW (dry weight) and μg·cm-2·yr-1, respectively. We calculated 

NBR of all P fractions by multiplying sediment MAR and P-fraction concentrations in sediments. 

 

2.6. Sample dating  
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The sample ages of Core PTRE 17-2 were based on careful visual stratigraphic correlation 

(layer by layer) with the chronology of Core PTRE 15-3 (Schneider et al., 2018) which was 

dated with varve counting and historically documented flood-layer markers. Characteristic 

marker layers (e.g. flood layers, algae bloom layers, conspicuously thick varves) were 

identified in Core PTRE 17-2 and used for precise correlation between the two cores (Fig. 3). 

The mean age of each sample was obtained by averaging the ages of the top and bottom 

depth of the sample. 

 

2.7. Data analysis  

Statistical analysis was performed using R statistical computing (R Development Core 

Team, 2017). Significant trends in time series of NBR of different P fractions and TP in 

sediments were tested using univariate Mann-Kendall's trend test at the 5% significance level 

(R-package ‘‘Kendall’’; McLeod, 2005). 

 

3. Results  

3.1. Sample ages 

The sediment core of PTRE 17-2 correlated well with the core PTRE 15-3-A from 

Schneider et al. (2018) but was less compacted (Fig. 3). The mean age of each sample with 

the age uncertainty is shown in the right table of Fig. 3. The average resolution of each sample 

is approximately 4 years and the sediment sample in the lowest part analyzed (35-37.5 cm) 

dates back to 1959 CE (Common Era). 

 

3.2. Sequentially extracted P fractions in sediment profiles 
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Total P concentrations of all P fractions (F1-F4), and Pi and Po concentrations of each 

fraction in sediment profiles (0-37.5 cm) are shown in Fig. 4. Total P (TP) concentration in 

sediments ranged from 972 to 5143 mg·kg-1 (Fig. 4a). Sedimentary P was mainly present in 

the inorganic form (Fig. 4b-e), with total Pi concentrations ranging from 739 to 4527 mg·kg-1 

(average ~79% of TP in sediments). In the NaBD-Ptot and HCl-Ptot fractions, most of the P was 

present as Pi (average 83% and 80%, respectively), whereas in the NaCl-Ptot and NaOH-Ptot 

fractions, the proportions of Pi were relatively lower (average 70% and 52%, respectively). 

The rank order of P fractions in the whole sediment profile was NaBD-Ptot (472-2677 

mg·kg-1, 36-60% of TP in sediments) > NaOH-Ptot (325-2000 mg·kg-1, 20-39% of TP) > HCl-

Ptot (134-613 mg·kg-1, 7-38% of TP) > NaCl-Ptot (34-209 mg·kg-1, 2-10% of TP), as seen in Fig. 

4b-e (relative proportions are given in Fig. S2 in Supplementary data). 

The vertical variation of TP and P-fraction concentrations in sediment profiles show that 

TP, NaBD-Ptot and NaOH-Ptot fractions exhibited a generally similar pattern (Fig. 4a, c, and d). 

The concentrations of TP, NaBD-Ptot and NaOH-Ptot sharply increased from the bottom (35-

37.5 cm, 1959 CE) to a maximum value at 27.5-30 cm (1969 CE). They had a generally 

decreasing trend towards the topmost sediments, except for a short but distinct peak at a depth 

of 5-7.5 cm (2004 CE). In contrast, NaCl-Ptot and HCl-Ptot showed a different structure (Fig. 4b 

and 4e). NaCl-Ptot increased from the bottom depth to a peak at 17.5-20 cm (1987 CE), and 

then declined towards the surface sediments. HCl-Ptot decreased from the bottom until a depth 

of 15-17.5 cm (1990 CE) and then, after a sharp peak at 10-12.5 cm (ca. 1998 CE), declined 

towards the surface sediments. 

 

3.3. Organic P and enzymatic hydrolysis of Po from NaOH-EDTA extraction on bulk 

sediments  

The average recovery of NaOH-EDTA Po in all sediment samples was 124%, compared 

with the sum of Po from the sequential P extraction (F1-F4, Section 2.3; Table S1 in 
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Supplementary data), suggesting that a large proportion of sediment Po was extracted with the 

NaOH-EDTA procedure. NaOH-EDTA Po concentrations in sediments ranged from 162 mg·kg-

1 to 991 mg·kg-1, which contributed to 13-57% of NaOH-EDTA TP in sediments (Fig. 5a and 

Fig. S3b in Supplementary data). The vertical variations of NaOH-EDTA Po in sediments 

throughout the profile did not follow a discernable pattern (Fig. 5a). However, the sediments 

above the depth of 32.5 cm obviously contained more NaOH-EDTA Po than those in the bottom 

layers (32.5-37.5 cm). 

Enzyme labile Po concentrations varied between 56 and 730 mg·kg-1, with contributions of 

9-91% to NaOH-EDTA Po (Fig. 5b). In the sediment profile (Fig. 5a), enzyme labile Po also 

displayed higher contents above the depth of 32.5 cm. The concentrations of enzyme labile Po 

remained relatively constant in the middle-section sediments (7.5-27.5 cm), but then showed 

an increasing trend towards the topmost sediments (0-7.5 cm). 

 

3.4. Phosphorus fractions net burial rates (NBR) in sediments during 1959-2017 CE 

We define four stages in the time series of net burial rates (NBR) of all P fractions and 

sedimentary TP from 1959 to 2017 CE (Fig. 6b), based on the differences of the P data among 

different stages.  

In Stage I (1959-1963 CE; 37.5-32.5 cm), most of the P fractions and TP in sediments had 

high NBR, except for NaCl-Ptot, NaOH-Po, and enzyme labile Po with low NBR values. This 

stage was marked with multiple flood layers in sediments and considerably high mass 

accumulation rates (MAR) with values exceeding 0.08 g·cm-2·yr-1. 

In Stage II (1963-1973 CE; 32.5-25 cm), NBR of NaBD-Ptot, NaOH-Pi, enzyme labile Po 

and TP of sediments remained high, whereas NaCl-Ptot, NaOH-Po, and HCl-Ptot had generally 

low NBR values. The MAR values declined from Stage I, remaining at ~ 0.07 g·cm-2·yr-1. 

In Stage III (1973-2004 CE; 25-7.5 cm), compared with Stage II, NBR of labile P fractions, 

enzyme labile Po and TP of sediments decreased. At the same time, NaCl-Ptot and NaOH-Po 
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NBR increased. HCl-Ptot and enzyme stabile Po NBR remained mostly at the same levels as in 

Stage II. After 1994 until 2004 CE, all the P fractions and TP NBR increased, except for enzyme 

stabile Po with a decrease at ~ 2000 CE. The MAR in this section was mostly constant except 

for a sharp increase after 1994 CE. 

In Stage IV (2004-2017 CE; 7.5-0 cm), enzyme labile Po and NaOH-Po showed enhanced 

NBR values, whereas NBR of other P fractions and TP of sediments decreased to the lowest 

levels. The MAR firstly declined but increased again after ~ 2010 CE. 

The results from the univariate Mann-Kendall trend test are shown in Table S2 (in 

Supplementary data). From 1959 to 2017 CE, we observe significantly decreasing trends in 

the NBR of sediment TP and NaBD-Ptot fraction (TP: Kendall Score (S) = −37, p-value = 0.04; 

NaBD-Ptot: S = −38, p-value = 0.04). For other P fractions, no significant trends in NBR were 

found (p-values > 0.05). 

 

4. Discussion 

4.1. Phosphorus composition in sediments of the Ponte Tresa basin (1959-2017 CE) 

NaBD-Ptot is the overall largest P-fraction in sediments of the Ponte Tresa basin (since 

1959 CE). According to Ribeiro et al. (2008) and Ding et al. (2016), this is the most important 

fraction for sediment P release to lake water under anoxic conditions. Indeed, the recent 

sediments in the Ponte Tresa basin are anoxic (Schneider et al., 2018; Züllig, 1982), implying 

that there is still a high potential for sediment NaBD-Ptot release back to the lake water 

supporting continuing eutrophication. 

NaOH-Ptot  is the second largest P form in our sediments. The inorganic part of this fraction 

(i.e. NaOH-Pi) also constitutes a relatively large part of sediment TP (~24%). The anoxic 

sediment conditions of the Ponte Tresa basin could also prompt P release from NaOH-Pi. 

However, P release from NaOH-Po is more related to organic matter degradation in sediments 

(Huo et al., 2011; Zhu et al., 2013). When the mineralization process of organic matter in 
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sediments of Ponte Tresa increases due to a higher trophic level of Lake Lugano (Barbieri and 

Mosello, 1992), NaOH-Po might be released from sediments. 

HCl-Ptot is the third largest P form with generally constant contributions to sedimentary TP 

(Fig. 4a and Fig. S2 in Supplementary data), which are within the range of HCl-Ptot  proportions 

of TP for calcareous lake sediments (Gonsiorczyk et al., 1998; Jin et al., 2006; Kaiserli et al., 

2002; Zhang et al., 2013). The calcareous rocks in the watershed (Harloff, 1926; Salmaso et 

al., 2007) and endogenic Ca-P formation during CaCO3 precipitation in the lake are possibly 

responsible for the high contents of sediment HCl-Ptot in this basin. Nevertheless, this fraction 

is minor and relatively stable in sediments compared with NaBD-Ptot and NaOH-Ptot. HCl-Ptot is 

thought to be released only in low pH environments (pH < 6) (Jin et al., 2006). In Lake Lugano, 

pH in the surface waters was observed to vary from 7 to 9 during the annual cycle (Bernasconi 

et al., 1997). The pH in the hypolimnion was measured between 6 and 7 during summer 

stratification of the Ponte Tresa basin (Rimer, 2017), which is unlikely to favor sediment Ca-P 

release at the water-sediment interface. 

NaCl-Ptot is the smallest P fraction in the sediments under investigation. NaCl-Ptot, NaBD-

Ptot, and NaOH-Pi fractions are generally considered as potentially reactive or labile P forms in 

lake sediments and, therefore, critically important P sources for internal P loadings (Cavalcante 

et al., 2018). As the concentrations of NaCl-Ptot were very low (Fig. 4a), NaBD-Ptot and NaOH-

Pi represent the major labile-P fractions in the present study. Therefore, our results imply that 

under anoxic conditions, there is still a large proportion of labile P present in the sediments 

(~70% of TP, 1959-2017 CE) which might, potentially, be released as internal P loads to the 

overlying water. 

 

4.2. Distribution and potential bioavailability of Po in sediment profiles 

Organic P (Po) production within Lake Lugano is predominantly derived from 

autochthonous organic matter (Bechtel and Schubert, 2009; Bernasconi et al., 1997) and 
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increases, in principle, with higher primary productivity. However, Po preserved in sediment 

profiles is, instead, the net balance of Po sedimentation, which is the result of Po deposition to 

the sediment-water interface and Po recycling back to lake water or diffusion into deeper layers 

after early diagenesis and Po degradation over time (Matisoff et al., 2016; Zhu et al., 2018). 

Microbial phosphatase enzymes have been found in sediments of numerous reported lakes 

and may play an important role in the P release from anoxic breakdown of sedimentary Po 

(Torres et al., 2016; Zhang et al., 2007; Zhu et al., 2018). Additionally, the decomposition of 

organic matters can alter the pH-redox conditions within the sediments facilitating the P release 

to pore water (Yuan, 2017). 

Because of the natural degradation of Po during diagenesis (Ahlgren et al., 2006; Zhang 

et al., 2013), declines of Po with increasing sediment depth have been widely observed in 

mesotrophic-eutrophic lakes, such as Lake Erken (Ahlgren et al., 2005; Reitzel et al., 2007), 

Lake Taihu (Ding et al., 2013), Lake Dianchi (Zhu et al., 2018), and also in the Baltic Sea 

(Ahlgren et al., 2006). In the Ponte Tresa basin, we observed no clear declines in 

concentrations of NaOH-EDTA Po with greater sediment depth (Fig. 5a) and total Po of 

sediments from sequential P extraction (Fig. S4 in Supplementary data; Section 2.3). This may 

suggest that no intense diagenetic changes occurred over time or the mineralization of Po was 

coincidently balanced by its sedimentation. Nevertheless, considerably higher Po 

concentrations in the top 0 to 32.5 cm sediments can be likely attributed to increased Po- and 

OM-sedimentation with eutrophication. 

In the Ponte Tresa basin, enzyme labile Po (i.e. potentially bioavailable Po) concentrations 

showed a strong decrease from the surface sediments to a depth of 5 cm (Fig. 5a), which 

might be associated with the early degradation of fresh organic matters. According to Torres 

et al. (2016) and Wobus et al. (2003), microbial phosphatase activity in surface sediments was 

higher than in deeper layers from many reported lakes in the USA and Europe. Therefore, it 

appears likely that the recently-sedimented labile Po in sediments of the Ponte Tresa basin 

would be degraded by microbes and, eventually, diffuse back to the lake water. The relatively 
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constant enzyme labile Po in the middle-section sediments (7.5-27.5 cm) is closely related to 

similarly stable NaOH-EDTA Po contents (Fig. 5a). This could be explained by the fact that at 

greater depth, microbial phosphatase activities and corresponding enzyme hydrolysis of Po 

have been stabilized in sediments (Reitzel et al., 2007). Interestingly, the maximum contents 

of enzyme labile Po existed at greater depths (27.5-32.5 cm). Several studies have suggested 

that Al/Fe (oxyhydr) oxide minerals in sediments can absorb and stabilize Po in-situ and, thus, 

protect Po from extracellular enzymes hydrolysis (Ruttenberg and Sulak, 2011; Zhu et al., 

2018). The high amounts of NaBD-Ptot and NaOH-Pi fractions in these layers (27.5-32.5 cm) 

(Fig. 4c and d) indicated high sedimentary Al/Fe contents, which might help stabilize and 

preserve labile Po in sediments. The high Al/Fe contents can possibly explain the high contents 

of enzyme labile Po in these deeper layers. 

 

4.3. Relationship between P-fraction NBR in sediments and lake trophic state since 1959 

CE 

In the Ponte Tresa basin, the eutrophication history since the 1920s is very well 

documented by sedimentary green pigments data (Chl-a and Pheophytin-a) at almost annual 

resolution (Fig. 6a) (Schneider et al., 2018). In our study, the time-series of P-fraction NBR 

only focused on the period when lake mesotrophic conditions changed to eutrophic or even 

hypertrophic conditions around 1960 CE. Based on our results, during the last 50-60 years, 

we observed marked differences in the NBR of different P forms and TP in sediments among 

Stages I-IV (Fig. 6b), which generally coincided with different lake trophic conditions since 

1959 CE. 

In Stage I and Stage II (1959-1973 CE), overall increasing green pigments concentrations 

and fluxes (Fig. 6a) indicate that the lake was transitioning from mesotrophic to eutrophic 

conditions (i.e., the trophic level was lower than today but increasing). This is also supported 

by the study from Salmaso and Mosello (2010). During this period, NBR of TP in sediments 

and labile P fractions (here NaBD-Ptot, NaOH-Pi and enzyme labile Po) were clearly higher. 
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This might result from high external P loads and relatively less sediment P release. During this 

time period (1959-1973 CE), large external P-loadings were reported from Lake Lugano 

(Lehmann et al., 2004), which could have resulted in enhanced P sedimentation to surface 

sediments. Meanwhile, the Ponte Tresa basin had shorter summer stratification/anoxic periods 

(compared to Stage III) and oxic conditions in the hypolimnion persisted during winter (Züllig, 

1982). This should, in principle, have caused less P release from sediments to lake water, and 

resulted in less dissolved P accumulation in the hypolimnion. Consequently, more NaBD-Ptot 

and NaOH-Pi were preserved in sediments. Moreover, the high NBR of potentially bioavailable 

Po was likely related to Al, Fe oxides/minerals as discussed in Section 4.2. However, during 

Stage I (1959-1960 CE), high NBR of green pigments and some P fractions (e.g. NaBD-Ptot, 

NaOH-Pi) might be biased through the presence of flood layers and related sediment focusing 

(including erosion of littoral sediments), both giving rise to very high sediment mass 

accumulation rates (MAR). High values of MAR, in turn, would result in high NBR of sediment 

P and green pigments, although the concentrations of both were relatively low (Fig. 4 and Fig. 

6a). 

In Stage III (1973-2004 AD), the Ponte Tresa basin was in highly eutrophic to hypertrophic 

conditions, which is reflected by high levels of green pigments fluxes and several algal blooms 

(the peaks of green pigment fluxes; Fig. 6a). Similar conclusions were reported from studies 

of Lotter (2001) and Bechtel and Schubert (2009). It is noteworthy that, under severely 

eutrophic conditions, NBR of NaBD-Ptot, NaOH-Pi and TP in sediments were generally lower 

than before (Stage II). This result may be explained by a combined effect of enhanced P 

release from sediments due to ongoing eutrophication and progressing hypolimnetic anoxia. 

In seasonally anoxic lakes (e.g. the Ponte Tresa basin and the southern basin of Lake Lugano), 

and when lake productivity remains sufficiently high, it is very likely to engender prolonged 

stratification (up to one year) with more severe anoxia at the water-sediment interface (Lepori 

et al., 2018). Anoxic conditions favor sediment P release from NaBD-Ptot and NaOH-Pi fractions 

and, as a result, the NBR of these two fractions in sediments declined compared with  Stage 

II. Moreover, Al/Fe oxyhydroxides would have decreased in the sediments of this section 
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compared with Stage II, given the low amounts of Al/Fe bound P fractions (i.e. NaBD-Ptot and 

NaOH-Pi). Therefore, extracellular phosphatase activity in sediments has been possibly less 

affected by the protection of Po by Al/Fe oxyhydroxides. Consequentially, Po hydrolysis in the 

sediment layers of Stage III (maximum eutrophication) was likely enhanced. This might be the 

main reason for lower amounts of enzyme labile Po preserved in sediments during Stage III. 

The enhanced NBR of TP and most of the P fractions during the upper part of Stage III (1994 

to 2000 CE, 7.5-15 cm depth) is also noteworthy, but it seems to be influenced by increased 

MAR (possibly not all related with flood layers) whereas the concentrations of P fractions and 

TP in sediments changed with little variation (Fig. 4). 

       In Stage IV (2004-2017 CE), lake productivity slightly decreased until 2006 CE (see green 

pigment fluxes, Fig. 6a), but the basin became again more eutrophic up to the present. In the 

1980s until the last decade, external P loadings in the entire Lake Lugano have been reduced 

by ~ 50% (Barbieri and Simona, 2001; Lepori and Roberts, 2017). In the Ponte Tresa basin, 

the contrast between higher eutrophic status and low P NBR in sediments would suggest a 

substantial contribution of internal P loads from sediments under high eutrophic levels, which 

in turn sustained or augmented on-going eutrophication. This process was possibly further 

favored by complete mixing events after a long stratification period 2006-2009 CE (Schneider 

et al., 2018; Veronesi et al., 2002) when P from the hypolimnion was brought up to the photic 

zone. Such high internal P loads were also observed in the southern basin of Lake Lugano, 

where they were estimated to contribute about 40% to the turnover TP in the lake water during 

the last decade (Lepori and Roberts, 2017). 

Overall, we found significantly decreasing trends in NBR of sediment TP and NaBD-Ptot 

from 1959 to 2017 CE, the time with increasing eutrophic levels in the Ponte Tresa basin. Our 

results might indicate that, in such a deep seasonally-stratified lake as the Ponte Tresa basin, 

higher eutrophication levels would be associated with enhanced sediment P release (mainly 

from the Fe-P fraction). This can serve as a plausible explanation for the reduced sediment TP 

and NaBD-Ptot NBR in the past few decades. On the other hand, our study suggests an 
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importance of sediment P release (internal P loadings) for the delayed recovery of 

eutrophication in Lake Lugano, similarly to the conclusions in Lepori and Roberts (2017). 

Furthermore, during the last few decades climate warming has influenced Lake Lugano's 

restoration by affecting the surface water temperature and mixing regime of the lake (Lepori 

and Roberts, 2015). One implication of this study is that the warming scenario would very likely 

enhance stratification in the Ponte Tresa basin and more internal P loadings might be expected. 

 

5. Conclusions 

The P-fractionation results show that labile P fractions (mainly NaBD-Ptot and NaOH-Pi) 

were the dominant forms (~70% of TP) in sediments of the Ponte Tresa basin (1959-2017 CE). 

The anoxic sediment environment highlights high potentials for P-release from the labile P 

fractions sustaining continuing eutrophication of the lake. The potentially bioavailable Po in 

deeper layers seems to be stabilized, but high concentrations of enzyme labile Po in the top-

most sediments (0-5 cm) are very likely to degrade and release P in the future.To the best of 

our knowledge, this study is the first to investigate the relationship between P-fraction NBR in 

sediments and historical lake eutrophication of the last few decades in a deep, eutrophic lake. 

It is interesting to observe that NBR of sediment TP and the NaBD-Ptot fraction showed 

significantly decreasing trends under more eutrophic conditions since the 1960s. We further 

suggest that, in seasonally stratified deep lakes with hypolimnetic anoxia, of which the Ponte 

Tresa basin is an example, higher eutrophication levels could lead to enhanced sediment P 

release and, thus, reduce P NBR in sediments. This study calls for the concern that, under 

such conditions, the recovery from anthropogenic eutrophication might be slow and difficult 

because of extensive internal P cycling and reduced capacity of sediment P-trapping. This 

study reveals the importance to adopt effective measures to minimize internal P-fertilization in 

lake restoration programs. The labile-phosphorus data presented by this study supports the 

geochemical approaches to reduce P release from sediments by applying aluminum and iron 

as “capping” materials. 
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Figure captions: 

Figure 1. Study site. (a) An overview of the watershed of Lake Lugano, with the maps of Lake 

Lugano (in the dark blue color), the Ponte Tresa basin (red rectangle), and Switzerland 

(left inset). (b) Bathymetric map of the Ponte Tresa basin. The black asterisk indicates the 

coring site (color figure online); Grey areas around the lake indicate dwellings, and green 

areas forests. The figure was adapted from Schneider et al. (2018). 

 

Figure 2. Sequential P extraction protocol. Sodium dithionite (Na2S2O4) dissolved in 0.11 M 

sodium bicarbonate (NaHCO3) buffer (pH 7.0) henceforth is termed as NaBD. Extraction 
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steps inside the dashed rectangle were carried out in a nitrogen (N2) atmosphere (Color 

figure online). 

Figure 3. RGB (red, green and blue) contrast enhanced sediment core picture of Core PTRE-

15-3-A (Schneider et al., 2018), high-resolution true color picture of Core PTRE 17-2 

(oxidized sediment surface) and pictograph of the top 0-37.5 cm of Core PTRE 17-2. Red 

lines between two cores indicate the stratigraphic marker layers; yellow colors highlight 

the detrital layers from the visual comparison with Core PTRE-15-3-A (Color figure 

online). The table on the right side describes the mean age of each sample including the 

uncertainties (PTRE 17-2), derived from visual stratigraphic correlation (layer by layer) 

with the chronology of Core PTRE 15-3 (Schneider et al., 2018).  

Figure 4.  Vertical profiles of (a) the total phosphorus concentrations with stacked four P 

fractions, and (b-e) Pi (inorganic P) and Po (organic P) concentrations of the four P 

fractions in sediments. Error bars represent one standard deviations of three analysed 

replicates. The concentration is shown as the mean value of the three replicates in dry 

weight of sediments (DW); note the different scales for the x-axes (Color figure online). 

Figure 5. Vertical profiles of (a) enzyme labile Po and enzyme stabile Po concentrations and 

(b) their average proportions in NaOH-EDTA extracted total Po in sediments (Color figure 

online). Error bars show one standard deviation of eight analytical replicates.  

Figure 6. (a) Green pigments (Chl-a + Phe-a) concentrations (green color) and fluxes (blue 

color) recorded in sediments of the Ponte Tresa basin from 1920 to 2015 CE (Schneider 

et al., 2018); RABD590-730 represents the hyperspectral scanning image (HSI) inferred 

green pigments. (b) The sediment mass accumulation rates (MAR) and net burial rates 

(NBR) of all P fractions and total P (TP) in sediments of the Ponte Tresa basin between 

1959 and 2017 CE. All of the P fractions NBR data except the year of 1960 (flood layer at 

32.5-35 cm depth) were used. The light yellow shading highlights flood layers in the Core 

PTRE 17-2. Green horizontal lines separate the four stages (Stage I to IV) (Color figure 

online). 
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