Mitochondrial DNA mutations and respiratory chain dysfunction in idiopathic and connective tissue disease-related lung fibrosis.

Jaeger, Veronika K; Lebrecht, Dirk; Nicholson, Andrew G; Wells, Athol; Bhayani, Harshil; Gazdhar, Amiq; Tamm, Michael; Venhoff, Nils; Geiser, Thomas; Walker, Ulrich A (2019). Mitochondrial DNA mutations and respiratory chain dysfunction in idiopathic and connective tissue disease-related lung fibrosis. Scientific Reports, 9(1), p. 5500. Nature Publishing Group 10.1038/s41598-019-41933-4

s41598-019-41933-4.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (2MB) | Preview

Reactive oxygen species (ROS) are implicated in the aetiology of interstitial lung disease (ILD). We investigated the role of large-scale somatically acquired mutations in mitochondrial DNA (mtDNA) and consecutive respiratory chain dysfunction as a trigger of ROS-formation and lung fibrosis. Mitochondria were analysed in lung biopsies from 30 patients with idiopathic or connective tissue disease (CTD)-related ILD and 13 controls. In 17 patients we had paired biopsies from upper and lower lobes. Control samples were taken from lung cancer resections without interstitial fibrosis. Malondialdehyde, a marker of ROS-formation, was elevated in ILD-biopsies (p = 0.044). The activity of the mitochondrial respiratory chain (cytochrome c-oxidase/succinate dehydrogenase [COX/SDH]-ratio) was depressed in ILD (median = 0.10,) compared with controls (0.12, p < 0.001), as was the expression of mtDNA-encoded COX-subunit-2 protein normalized for the nucleus-encoded COX-subunit-4 (COX2/COX4-ratio; ILD-median = 0.6; controls = 2.2; p < 0.001). Wild-type mtDNA copies were slightly elevated in ILD (p = 0.088). The common mtDNA deletion was only present at low levels in controls (median = 0%) and at high levels in ILD (median = 17%; p < 0.001). In ILD-lungs with paired biopsies, lower lobes contained more malondialdehyde and mtDNA deletions than upper lobes and had lower COX2/COX4-ratios and COX/SDH-ratios (all p < 0.001). Acquired mtDNA-mutations and consecutive respiratory chain dysfunction may both trigger and perpetuate ROS-formation in ILD.

Item Type:

Journal Article (Original Article)


04 Faculty of Medicine > Department of Gastro-intestinal, Liver and Lung Disorders (DMLL) > Clinic of Pneumology
04 Faculty of Medicine > Pre-clinic Human Medicine > BioMedical Research (DBMR) > Forschungsbereich Mu50 > Forschungsgruppe Pneumologie (Erwachsene)

UniBE Contributor:

Gazdhar, Amiq, Geiser, Thomas (A)


600 Technology > 610 Medicine & health




Nature Publishing Group




Heidi Lobsiger

Date Deposited:

07 Aug 2019 09:43

Last Modified:

29 Mar 2023 23:36

Publisher DOI:


PubMed ID:





Actions (login required)

Edit item Edit item
Provide Feedback