Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations

Gottschalk, Julia; Battaglia, Gianna; Fischer, Hubertus; Frölicher, Thomas; Jaccard, Samuel; Jeltsch-Thömmes, Aurich Tuure Don; Joos, Fortunat; Köhler, Peter; Meissner, Katrin; Nehrbass-Ahles, Christoph; Schmitt, Jochen; Schmittner, Andreas; Skinner, Luke; Stocker, Thomas (2019). Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quaternary science reviews, 220, pp. 30-74. Elsevier 10.1016/j.quascirev.2019.05.013

[img]
Preview
Text
Gottschalk et al., 19.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND).

Download (10MB) | Preview

Numerical models are important tools for understanding the processes and feedbacks in the Earth system, including those involving changes in atmospheric CO₂ (CO₂,atm) concentrations. Here, we compile 55 published model studies (consisting of 778 individual simulations) that assess the impact of six forcing mechanisms on millennial-scale CO₂,atm variations: changes in freshwater supply to the North Atlantic and Southern Ocean, the strength and position of the southern-hemisphere westerlies, Antarctic sea ice extent, and aeolian dust fluxes. We generally find agreement on the direction of simulated CO₂,atm change across simulations, but the amplitude of change is inconsistent, primarily due to the different complexities of the model representation of Earth system processes. When freshwater is added to the North Atlantic, a reduced Atlantic Meridional Overturning Circulation (AMOC) is generally accompanied by an increase in Southern Ocean- and Pacific overturning, reduced Antarctic sea ice extent, spatially varying export production, and changes in carbon storage in the Atlantic (rising), in other ocean basins (generally decreasing) and on land (more varied). Positive or negative CO₂,atm changes are simulated during AMOC minima due to a spatially and temporally varying dominance of individual terrestrial and oceanic drivers (and compensating effects between them) across the different models. In contrast, AMOC recoveries are often accompanied by rising CO₂,atm levels, which are mostly driven by ocean carbon release (albeit from different regions). The magnitude of simulated CO₂,atm rise broadly scales with the duration of the AMOC perturbation (i.e., the stadial length). When freshwater is added to the Southern Ocean, reduced deep-ocean ventilation drives a CO₂,atm drop via reduced carbon release from the Southern Ocean. Although the impacts of shifted southern-hemisphere westerlies are inconsistent across model simulations, their intensification raises CO₂,atm via enhanced Southern Ocean Ekman pumping. Increased supply of aeolian dust to the ocean, and thus iron fertilisation of marine productivity, consistently lowers modelled CO₂,atm concentrations via more efficient nutrient utilisation. The magnitude of CO₂,atm change in response to dust flux variations, however, largely depends on the complexity of models' marine ecosystem and iron cycle. This especially applies to simulations forced by Antarctic sea ice changes, in which the direction of simulated CO₂,atm change varies greatly across model hierarchies. Our compilation highlights that no single (forcing) mechanism can explain observed past millennial-scale CO₂,atm variability, and identifies important future needs in coupled carbon cycle-climate modelling to better understand the mechanisms governing CO₂,atm changes in the past.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Physics Institute > Climate and Environmental Physics
10 Strategic Research Centers > Oeschger Centre for Climate Change Research (OCCR)
08 Faculty of Science > Institute of Geological Sciences

UniBE Contributor:

Gottschalk, Julia; Battaglia, Gianna; Fischer, Hubertus; Frölicher, Thomas; Jaccard, Samuel; Jeltsch-Thömmes, Aurich Tuure Don; Joos, Fortunat; Nehrbass-Ahles, Christoph; Schmitt, Jochen and Stocker, Thomas

Subjects:

500 Science > 530 Physics
500 Science > 550 Earth sciences & geology

ISSN:

0277-3791

Publisher:

Elsevier

Language:

English

Submitter:

Samuel Jaccard

Date Deposited:

31 Jul 2019 10:28

Last Modified:

23 Oct 2019 01:56

Publisher DOI:

10.1016/j.quascirev.2019.05.013

BORIS DOI:

10.7892/boris.132159

URI:

https://boris.unibe.ch/id/eprint/132159

Actions (login required)

Edit item Edit item
Provide Feedback