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THE VARIABLE-ORDER DISCONTINUOUS GALERKIN TIME
STEPPING SCHEME FOR PARABOLIC EVOLUTION PROBLEMS

IS UNIFORMLY \bfitL \infty -STABLE\ast 

LARS SCHMUTZ\dagger AND THOMAS P. WIHLER\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper we investigate the L\infty -stability of fully discrete approximations of
abstract linear parabolic partial differential equations (PDEs). The method under consideration is
based on an hp-type discontinuous Galerkin time stepping scheme in combination with general con-
forming Galerkin discretizations in space. Our main result shows that the global-in-time maximum
norm of the discrete solution is bounded by the data of the PDE, with a constant that is robust with
respect to the discretization parameters (in particular, it is uniformly bounded with respect to the
local time steps and approximation orders).

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . discontinuous Galerkin time stepping, Galerkin discretizations, parabolic evolution
problems, stability, hp-methods
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1. Introduction. Let \BbbH and \BbbX be two (real) Hilbert spaces, equipped with the
inner products (\cdot , \cdot )\BbbH and (\cdot , \cdot )\BbbX , respectively, as well as with the corresponding induced
norms \| \cdot \| \BbbH and \| \cdot \| \BbbX . The respective dual spaces are denoted by \BbbH  \star and \BbbX  \star . Suppose
that \BbbX is densely embedded in \BbbH , and consider the Gelfand triple

(1.1) \BbbX \lhook \rightarrow \BbbH \sim = \BbbH  \star \lhook \rightarrow \BbbX  \star .

In this paper, based on a variable-order discontinuous Galerkin (dG) time stepping
method in conjunction with a conforming Galerkin approximation in space, we will
study the stability of the fully discrete numerical approximation of the linear parabolic
problem

u\prime (t) + \sansA u(t) = f(t), t \in (0, T ],

u(0) = u0.
(1.2)

Here, \sansA : \BbbX \rightarrow \BbbX  \star is a linear, self-adjoint, and time-independent elliptic operator that
is coercive and bounded in the sense that there are two constants \alpha 1.3, \beta 1.3 > 0 such
that

\langle \sansA v, v\rangle \BbbX  \star \times \BbbX \geq \alpha 1.3 \| v\| 2\BbbX \forall v \in \BbbX ,\bigm| \bigm| \langle \sansA v, w\rangle \BbbX  \star \times \BbbX 
\bigm| \bigm| \leq \beta 1.3 \| v\| \BbbX \| w\| \BbbX \forall v, w \in \BbbX .

(1.3)

Furthermore, we let f \in L2((0, T );\BbbH ) and u0 \in \BbbH be a given source term and
prescribed initial value, respectively. Applying standard notation for Sobolev and
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Bochner spaces (cf., e.g., [19, section 1.5]), a classical weak formulation of (1.2) is to
find u \in L2((0, T );\BbbX ) \cap W1,2((0, T );\BbbX  \star ) such that, for every v \in \BbbX , it holds that

\langle u\prime , v\rangle \BbbX  \star \times \BbbX + \langle \sansA u, v\rangle \BbbX  \star \times \BbbX = (f(t), v)\BbbH , t \in (0, T ],

u(0) = u0.
(1.4)

Here, we signify the duality pairing in \BbbX  \star \times \BbbX by \langle u, v\rangle \BbbX  \star \times \BbbX ; incidentally, this dual
product can be seen as an extension of the inner product in \BbbH , i.e.,

(1.5) (u, v)H = \langle u, v\rangle \BbbX  \star \times \BbbX \forall u \in \BbbH , v \in \BbbX ;

see, e.g., [19, section 7.2]. Recalling the continuous embedding

L2(0, T ;\BbbX ) \cap W1,2(0, T ;\BbbX  \star ) \lhook \rightarrow C0(0, T ;\BbbH )

(cf., e.g., [19, Lemma 7.3]), we conclude that the solution of (1.4) is continuous in
time, i.e., u \in C0(0, T ;\BbbH ). Furthermore, the following stability estimate holds:

(1.6) \| u\| L2(0,T ;\BbbX ) + \| u\prime \| L2(0,T ;\BbbX  \star ) + \| u\| C0(0,T ;\BbbH ) \leq C
\Bigl( 
\| u0\| \BbbH + \| f\| L2(0,T ;\BbbH )

\Bigr) 
;

see, e.g., [19, Theorem 8.9].
In the context of parabolic partial differential equations (PDEs), the dG time

stepping methodology was introduced a few decades ago in [12]. Since then a lot
of research has been conducted on this subject: we point the reader to the classical
works [4, 5, 6, 7, 8, 14, 25], as well as to the more recent articles [1, 2, 3, 13, 15, 16],
where a novel reconstruction technique for the purpose of a posteriori error estima-
tion has been proposed and analyzed. While these articles mainly focus on low-order
temporal Galerkin discretizations of fixed degree, the use of hp-type dG methods was
proposed in [21, 22]. The hp-framework permits us to employ locally different time
step sizes and arbitrary variations of the local approximation orders, and, thereby,
to attain high algebraic or even exponential rates of convergence in time. This fea-
ture is particularly powerful if local singularities appear (for instance, in the form
of a parabolic time layer due to incompatible initial data) [22, 23, 27] or if highly
nonlocal [17, 18] or high-dimensional [26] problems need to be solved.

The present paper centers on the stability of fully discrete hp-version dG time dis-
cretizations of abstract linear parabolic problems. More precisely, given the solution,
u, of (1.2), and its hp-dG approximation, U , our goal is to argue that the stability
estimate (1.6) holds true also on the discrete level. Indeed, using standard energy
arguments, it is fairly straightforward to show that U is bounded with respect to
the L2(\BbbX )-norm; indeed, this essentially follows from [22, eq. (2.18)] and the bound-

edness of the duality pairing. In addition, applying a suitable reconstruction \widehat U of U
(see, e.g., [16, section 2.1] or [10, section 3.6]) and applying an inf-sup stability result

(cf., e.g., [9]) shows that \widehat U \prime is also stable in the L2(\BbbX  \star )-norm.
In the current work our goal is to establish the stability of the discrete solution U

with respect to the L\infty (\BbbH )-norm. We particularly emphasize deriving an estimate
with a (known) constant that is uniformly bounded with respect to the discretization
parameters (i.e., in particular, the local time step lengths and approximation orders).
Since our focus is on a pointwise bound, energy arguments are not appropriate in
the discrete context; indeed, this is due to the fact that suitable test functions (such
as cut-off functions) typically do not belong to the underlying discrete test space.
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Furthermore, the application of inverse estimates usually involves constants that scale
suboptimally with respect to the local approximation orders and, thereby, lead to
nonuniform stability results. For these reasons we will pursue a completely different
and novel approach: More precisely, we will first derive a pointwise formulation of the
fully discrete scheme (section 2.2) using a lifting operator technique as in [24]; cf. also
the temporal reconstruction approach [9, 10, 16]. Then, we analyze the fully discrete
parabolic operator and show that its inverse operator is L\infty (\BbbH )-stable (section 4).
In order to proceed in this direction, in section 2 we will first investigate the special
case where \BbbH = \BbbX = \BbbR in (1.1), and we construct a representation formula (section
3.2) which is composed of two terms: The first term is based on the concept of a dG
fundamental solution (section 3.1) and relates to the initial value, u0, in (1.2). The
second term, analogously as in the classical Duhamel principle, is an integral that
involves the product of the right-hand side function, f , in (1.2), and an exponentially
decaying expression in time. Subsequently, using a spectral decomposition, we will
employ the scalar analysis on each time step in order to derive a stability bound for the
inverse parabolic operator in the abstract case (Proposition 4.1). Finally, inverting
the pointwise form of the dG scheme and applying the previous stability analysis
eventually implies the main result of this article, i.e., the uniform L\infty (\BbbH )-stability
of the dG method (Theorem 4.4). We emphasize that the discrete Duhamel formula
and the stability of the inverse of the fully discrete parabolic dG operator, which will
be developed in this work, have strong implications that reach far beyond the scope
of the present paper; these include, for instance, the analysis of nonlinear parabolic
PDE approximation schemes (see, e.g., [20, sections 5 and 7]).

2. Fully discrete discontinuous Galerkin time stepping.

2.1. Variable-order time partitions and discrete spaces. On an inter-
val I = [0, T ], T > 0, consider time nodes 0 = t0 < t1 < \cdot \cdot \cdot < tM - 1 < tM =
T , which introduce a time partition \scrM = \{ Im\} Mm=0 of I into M + 1 time inter-
vals Im = (tm - 1, tm], m = 1, . . . ,M , and I0 = \{ t0\} . The (possibly varying) length
km = tm - tm - 1 of a time interval is called the mth time step. We define the one-sided
limits of an \scrM -wise continuous function v at each time node tm, 0 \leq m \leq M  - 1, by

v+m := lim
s\searrow 0

v(tm + s), v - m := lim
s\searrow 0

v(tm  - s),

where v - 0 is considered to be a prescribed initial value. Then, the discontinuity jump
of v at tm, 0 \leq m \leq M  - 1, is defined by [[v]]m := v+m  - v - m.

Furthermore, to each interval we associate a polynomial degree rm \geq 0, which
takes the role of a local approximation order. Moreover, given any (real) Hilbert
(sub)space \BbbV \subset \BbbH , an integer r \in \BbbN 0, and an interval J \subset \BbbR , the set

\BbbP r(J ;\BbbV ) =

\Biggl\{ 
p \in C0( \=J ;\BbbV ) : p(t) =

r\sum 
i=0

vit
i, vi \in \BbbV 

\Biggr\} 
signifies the space of all polynomials of degree at most r on J with values in \BbbV .
If \BbbV = \BbbR , then we simply write \BbbP r(J).

A fully discrete framework for (1.4) is based on replacing the Hilbert space \BbbX 
from (1.1) by finite-dimensional subspaces \BbbX m \subset \BbbX , nm := dim(\BbbX m) < \infty , on each
interval Im, 0 \leq m \leq M . The \BbbH -orthogonal projection from \BbbH to \BbbX m, for 0 \leq m \leq M ,
is given by

\pi m : \BbbH \rightarrow \BbbX m, v \mapsto \rightarrow \pi mv : (v  - \pi mv, w)\BbbH = 0 \forall w \in \BbbX m.
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Notice the obvious stability property,

(2.1) \| \pi mv\| \BbbH \leq \| v\| \BbbH \forall v \in \BbbH .

Moreover, \sansA m : \BbbX \rightarrow \BbbX m denotes the discretization of \sansA defined by

(2.2) (\sansA mu, v)\BbbH = \langle \sansA u, v\rangle \BbbX  \star \times \BbbX \forall v \in \BbbX m

for 1 \leq m \leq M . Recalling (1.3), we observe that \sansA m is invertible as an operator
from \BbbX m to \BbbX m.

2.2. Fully discrete dG time stepping. Based on the previous definitions, the
fully discrete dG-in-time/conforming-in-space scheme for (1.2) is given iteratively as
follows: Find U | Im \in \BbbP rm(Im;\BbbX m) through the weak formulation\int 

Im

(U \prime , V )\BbbH \sansd t+ ([[U ]]m - 1, V
+
m - 1)\BbbH +

\int 
Im

\langle \sansA U, V \rangle \BbbX  \star \times \BbbX \sansd t

=

\int 
Im

(f, V )\BbbH \sansd t \forall V \in \BbbP rm(Im;\BbbX m)

(2.3)

for any 1 \leq m \leq M . Here, for m = 1, we let

(2.4) U - 
0 := \pi 0u0,

where u0 \in \BbbH is the initial value from (1.2), and, thereby, [[U ]]0 = U+
0  - \pi 0u0.

In order to write (2.3) in pointwise form, we proceed along the lines of [24].
Specifically, for 1 \leq m \leq M , and any z \in \BbbX m, we define the (linear) lifting operator

\sansL rmm : \BbbX m \rightarrow \BbbP rm(Im;\BbbX m)

by \int 
Im

(\sansL rmm (z), V )\BbbH \sansd t = (z, V (tm - 1))\BbbH \forall V \in \BbbP rm(Im;\BbbX m).

Referring to [24, Lemma 6], the explicit representation formula

(2.5) \sansL rmm (z) =
z

km

rm\sum 
i=0

( - 1)i(2i+ 1)Km
i (t)

holds, where \{ Km
i \} i\geq 0 is the family of Legendre polynomials, affinely scaled from [ - 1, 1]

to Im, such that

(2.6) ( - 1)iKm
i (tm - 1) = Km

i (tm) = 1, i \geq 0,

and

(2.7)

\int 
Im

Km
i (t)Km

j (t) \sansd t =
km

2i+ 1
\delta ij \forall i, j \in \BbbN 0;

see [24, section 3.1] for details. For later purposes, we also introduce the endpoint
lifting operator

\widetilde \sansL rmm : \BbbX m \rightarrow \BbbP rm(Im;\BbbX m)
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by \int 
Im

\Bigl( \widetilde \sansL rmm (z), V
\Bigr) 
\BbbH 
\sansd t = (z, V (tm))\BbbH \forall V \in \BbbP rm(Im;\BbbX m).

Using (2.5) and (2.6), we may represent it as

(2.8) \widetilde \sansL rmm (z) =
z

km

rm\sum 
i=0

( - 1)i(2i+ 1)Km
i ( - t) = z

km

rm\sum 
i=0

(2i+ 1)Km
i (t).

For any w \in L2(Im;\BbbH ) we denote by \Pi rm
m (w) \in \BbbP rm(Im;\BbbX m) the fully discrete

L2(Im;\BbbH )-projection defined by\int 
Im

(\Pi rm
m (w), V )\BbbH \sansd t =

\int 
Im

(w, V )\BbbH \sansd t \forall V \in \BbbP rm(Im;\BbbX m).

Then, employing the spatial projection \pi m from (2.1) and the discrete elliptic opera-
tor \sansA m from (2.2), and using the lifting operator \sansL rmm , we transform (2.3) into\int 

Im

(U \prime + \sansL rmm (\pi m[[U ]]m - 1) + \sansA mU  - \Pi rm
m f, V )\BbbH \sansd t = 0 \forall V \in \BbbP rm(Im;\BbbX m).

This immediately implies the pointwise form

U \prime + \sansL rmm (\pi m[[U ]]m - 1) + \sansA mU = \Pi rm
m f, t \in Im.(2.9)

Following [11], for 1 \leq m \leq M , we consider the dG-time operator

\chi rm
m : \BbbP rm(Im;\BbbX m) \rightarrow \BbbP rm(Im;\BbbX m),

given by

(2.10) \chi rm
m (U) := U \prime + \sansL rmm (U+

m - 1), U \in \BbbP rm(Im;\BbbX m).

Consequently, introducing the operator

\Gamma rm
m : \BbbP rm(Im;\BbbX m) \rightarrow \BbbP rm(Im;\BbbX m)

given by

(2.11) \Gamma rm
m := \chi rm

m + \sansA m,

we can write (2.9) as

(2.12) \Gamma rm
m (U) = \Pi rm

m f + \sansL rmm (\pi mU
 - 
m - 1)

for 1 \leq m \leq M . Referring to [22, Proposition 2.6], we note that (2.3) is uniquely
solvable, and hence the operator \Gamma rm

m from (2.11) is an isomorphism on \BbbP rm(Im;\BbbX m).

3. Scalar problem. In order to derive a stability analysis for the fully discrete
scheme (2.12), we focus first on the case where \BbbH = \BbbX = \BbbR . Specifically, for 1 \leq m \leq 
M , consider the scalar problem of finding a function u : Im \rightarrow \BbbR such that

u\prime (t) + \lambda u(t) = f(t), t \in Im,

u(tm - 1) = um - 1.
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Here, \lambda > 0 is a fixed parameter, um - 1 \in \BbbR is a prescribed initial value, and f :
[0, T ] \rightarrow \BbbR is a given source function. The dG time discretization of this problem is
formulated in strong form as

(3.1) \Gamma rm
\lambda ,m(U) = \Pi rm

m f + \sansL rmm (um - 1), t \in Im,

where, in this simplified context, \Pi rm
m : L2(Im) \rightarrow \BbbP rm(Im) is the L2-projection

onto \BbbP rm(Im), and

(3.2) \Gamma rm
\lambda ,m : \BbbP rm(Im) \rightarrow \BbbP rm(Im), \Gamma rm

\lambda ,m(v) = \chi rm
m (v) + \lambda v

is the scalar version of (2.11). As mentioned earlier, \Gamma rm
\lambda ,m is an isomorphism on

the space \BbbP rm(Im). Hence, applying the inverse operator (\Gamma rm
\lambda ,m) - 1 to (3.1), the dG

solution U on Im can be represented as follows:

U = (\Gamma rm
\lambda ,m) - 1 [\sansL rmm (um - 1) + \Pi rm

m f ] on Im.(3.3)

Consequently, the stability of the inverse of \Gamma rm
m is crucial in our analysis. We will

attend to this matter by means of the classical scalar model problem

\psi \prime (t) + \lambda \psi (t) = 0, t \in Im,

\psi (tm - 1) = 1,
(3.4)

with the solution \psi (t) = e - \lambda (t - tm - 1).

3.1. dG fundamental solution. We denote the dG time stepping approxima-
tion of (3.4) by \psi rm

\lambda \in \BbbP rm(Im) and call it the dG fundamental solution of degree rm
on Im. Based on (3.1) and (3.3), with f \equiv 0 and um - 1 = 1, it holds that

(3.5) \Gamma rm
\lambda ,m(\psi rm

\lambda ) = \sansL rmm (1)

and

(3.6) \psi rm
\lambda = (\Gamma rm

\lambda ,m) - 1(\sansL rmm (1)),

respectively.
Our goal is to derive an explicit representation formula for (\Gamma rm

\lambda ,m) - 1. To this end,
we consider the subspace

\BbbP rm
0 (Im) := \{ v \in \BbbP rm(Im) : v(tm - 1) = 0\} 

as well as its image under \Gamma rm
\lambda ,m, i.e.,

\BbbW rm
\lambda (Im) := \Gamma rm

\lambda ,m(\BbbP rm
0 (Im)).

Lemma 3.1. Let \lambda \geq 0. It holds that dim\BbbW rm
\lambda (Im) = rm, and we have the direct

sum

\BbbW rm
\lambda (Im)\oplus span\{ \sansL rmm (1)\} = \BbbP rm(Im).

Proof. If \lambda = 0, then the result simply follows by observing that the derivative
operator maps the space \BbbP rm(Im) onto \BbbP rm - 1(Im) if rm > 0, and by noticing that the
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lifting operator is of exact degree rm. Hence, let us consider the case \lambda > 0. For i \geq 0
and 1 \leq m \leq M , consider the integrated Legendre polynomials

(3.7) Qm
i (t) :=

2

km

\int t

tm - 1

Km
i (s) \sansd s, t \in Im.

Evidently, the set \{ Qm
i \} rm - 1

i=0 is a basis of \BbbP rm
0 (Im). Furthermore, since the polynomial

degree of \Gamma rm
\lambda ,m(Qm

i ) is exactly i+1, for i \geq 0, it follows that \{ \Gamma rm
\lambda ,m(Qm

i )\} rm - 1
i=0 forms a

basis of \BbbW rm
\lambda (Im). It therefore remains to show that the intersection of span\{ \sansL rmm (1)\} 

and \BbbW rm
\lambda (Im) is trivial. Take any w \in \BbbW rm

\lambda (Im), and choose v \in \BbbP rm
0 (Im) such

that w = v\prime + \lambda v = \alpha \sansL rmm (1) for some \alpha \in \BbbR . Then, testing by v and integrating over
Im yields

0 = \alpha v(tm - 1) = \alpha 

\int 
Im

\sansL rmm (1)v \sansd t =

\int 
Im

(v\prime + \lambda v)v \sansd t =
1

2
v(tm)2 + \lambda \| v\| 2L2(Im) .

Hence, we conclude that v \equiv 0, and therefore w \equiv 0.

It is interesting and useful for the subsequent analysis to notice that the above
setup gives rise to the dG dual solution of degree rm on Im, which we denote by \phi rm\lambda \in 
\BbbP rm(Im). It is defined via the differential equation

(3.8) (\phi rm\lambda )\prime  - \lambda \phi rm\lambda  - \widetilde \sansL rmm (\phi rm\lambda (tm)) = \sansL rmm (1),

where the lifting operators \sansL rmm and \widetilde \sansL rmm are given in (2.5) and (2.8), respectively,
with \BbbX m being replaced by \BbbR .

Lemma 3.2. Suppose that \lambda \geq 0. There exists exactly one solution of (3.8)
in \BbbP rm(Im), i.e., the dG dual solution \phi rm\lambda is well defined in \BbbP rm(Im). Furthermore,
\phi rm\lambda is L2-orthogonal to \BbbW rm

\lambda (Im), i.e.,\int 
Im

\phi rm\lambda w \sansd t = 0 \forall w \in \BbbW rm
\lambda (Im).

Proof. Let us define an operator \sansPsi : \BbbP rm(Im) \rightarrow \BbbP rm(Im) by

(3.9) \sansPsi (v) := v\prime  - \lambda v  - \widetilde \sansL rmm (v(tm)).

We show that the kernel of \sansPsi is trivial, i.e., \sansPsi is an isomorphism. Suppose that v \in 
\BbbP rm(Im) and \sansPsi (v) \equiv 0. In the case when \lambda = 0, this implies that v\prime = \widetilde \sansL rmm (v(tm)).

Now, since \widetilde \sansL rmm (v(tm)) has degree exactly rm, unless v(tm) = 0, we conclude that v\prime \equiv 
0 as well as v(tm) = 0. This, in turn, leads to v \equiv 0. Otherwise, if \lambda > 0, we test (3.9)
by v \in \BbbP rm(Im) and integrate over Im. Then,

0 =

\int 
Im

\sansPsi (v)v \sansd t =

\int 
Im

\Bigl( 
v\prime  - \lambda v  - \widetilde \sansL rmm (v(tm))

\Bigr) 
v \sansd t

=
1

2

\bigl( 
v(tm)2  - v(tm - 1)

2
\bigr) 
 - \lambda \| v\| 2L2(Im)  - v(tm)2

=  - 1

2
(v(tm)2 + v(tm - 1)

2) - \lambda \| v\| 2L2(Im) .

This immediately results in v \equiv 0. Hence, there exists exactly one \phi rm\lambda \in \BbbP rm(Im)
such that \sansPsi (\phi rm\lambda ) = \sansL rmm (1).
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In order to prove the second assertion, we let w \in \BbbW rm
\lambda (Im) and choose v \in 

\BbbP rm
0 (Im) such that w = v\prime + \lambda v. Then, integrating by parts, it holds that\int 

Im

\phi rm\lambda w \sansd t =

\int 
Im

\phi rm\lambda (v\prime + \lambda v) \sansd t

=

\int 
Im

( - (\phi rm\lambda )\prime + \lambda \phi rm\lambda )v \sansd t+ \phi rm\lambda (tm)v(tm)

=

\int 
Im

( - (\phi rm\lambda )\prime + \lambda \phi rm\lambda + \widetilde \sansL rmm (\phi rm\lambda (tm)))v \sansd t.

Invoking (3.8), we obtain\int 
Im

\phi rm\lambda w \sansd t =

\int 
Im

 - \sansL rmm (1)v =  - v(tm - 1) = 0.

Therefore, \phi rm\lambda is in the orthogonal complement of \BbbW rm
\lambda (Im).

Lemma 3.3. Let \lambda \geq 0. The initial values of the dG fundamental solution \psi rm
\lambda 

and the dG dual solution \phi rm\lambda satisfy

(3.10) \phi rm\lambda (tm - 1) =  - \psi rm
\lambda (tm - 1).

Proof. Testing (3.8) by \psi rm
\lambda and integrating over Im by parts, we obtain

0 =

\int 
Im

\Bigl( 
(\phi rm\lambda )\prime  - \lambda \phi rm\lambda  - \widetilde \sansL rmm (\phi rm\lambda (tm)) - \sansL rmm (1)

\Bigr) 
\psi rm
\lambda \sansd t

=  - 
\int 
Im

\phi rm\lambda (\psi rm
\lambda )\prime \sansd t+ \phi rm\lambda (tm)\psi rm

\lambda (tm) - \phi rm\lambda (tm - 1)\psi 
rm
\lambda (tm - 1)

 - \lambda 

\int 
Im

\phi rm\lambda \psi rm
\lambda \sansd t - \phi rm\lambda (tm)\psi rm

\lambda (tm) - \psi rm
\lambda (tm - 1)

=  - 
\int 
Im

\phi rm\lambda \{ (\psi rm
\lambda )\prime + \lambda \psi rm

\lambda + \sansL rmm (\psi rm
\lambda (tm - 1))\} \sansd t - \psi rm

\lambda (tm - 1).

Implementing the definition (3.5) of the dG fundamental solution yields

0 =  - 
\int 
Im

\phi rm\lambda \sansL rmm (1) \sansd t - \psi rm
\lambda (tm - 1) =  - \phi rm\lambda (tm - 1) - \psi rm

\lambda (tm - 1),

which is (3.10).

Our next step is to prove that the dG dual solution takes the value of its maximum
norm at tm - 1.

Proposition 3.4 (stability of \phi rm\lambda ). Suppose that \lambda > 0. It holds that

(3.11) \| \phi rm\lambda \| 
L\infty (Im)

= | \phi rm\lambda (tm - 1)| 

and

(3.12)  - 1 < \phi rm\lambda (tm - 1) < 0.

The proof of the above proposition, to be presented later, is based on some prop-
erties of the Legendre expansion of the dG dual solution. More precisely, write

(3.13) \phi rm\lambda =

rm\sum 
i=0

aiK
m
i ,

with the Legendre polynomials \{ Km
i \} i\geq 0 from (2.6) and (2.7).
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Lemma 3.5. Let \lambda > 0. Then, for the coefficients a0, . . . , arm in the Legendre
expansion (3.13), the following recursion formulas hold:

a0 =  - 
1 + \phi rm\lambda (tm - 1)

km\lambda 
,(3.14)

a1 =  - 3

\lambda 

\biggl( 
2

km
+ \lambda 

\biggr) 
a0,(3.15)

ai = (2i+ 1)

\biggl( 
ai - 2

2i - 3
 - 2ai - 1

km\lambda 

\biggr) 
for 2 \leq i \leq rm.(3.16)

Furthermore, we have that ai \not = 0 as well as that

(3.17) sign(ai) = ( - 1)i+1

for any i = 0, . . . , rm.

Proof. We begin by integrating (3.8) over Im, which yields

\lambda 

\int 
Im

\phi rm\lambda (t) \sansd t =  - 1 - \phi rm\lambda (tm - 1).

Then, making use of the expansion (3.13) as well as of the fact that\int 
Im

Km
i \sansd t = 0 \forall i \geq 1,

we see that \lambda kma0 =  - 1 - \phi rm\lambda (tm - 1), and hence

a0 =  - 
1 + \phi rm\lambda (tm - 1)

km\lambda 
,

which proves (3.14). Next, we employ again the integrated Legendre polynomials
defined in (3.7) and notice the following properties (see, e.g., [24, eq. (9)]):

Qm
0 = Km

0 +Km
1 , Qm

i =
1

2i+ 1
(Km

i+1  - Km
i - 1), i \geq 1.(3.18)

Due to Lemma 3.2, we note that

0 =

\int 
Im

\phi rm\lambda (v\prime + \lambda v) \sansd t \forall v \in \BbbP rm
0 (Im).

Thus, applying the expansion (3.13) and choosing v := Qm
j , we obtain

0 =

rm\sum 
i=0

ai

\int 
Im

Km
i

\biggl( 
2

km
Km

j + \lambda Qm
j

\biggr) 
\sansd t, j = 0, . . . , rm - 1.

Involving (3.18) and using the orthogonality property (2.7) of the Legendre polyno-
mials, we arrive at

0 =

\biggl( 
2

km
+ \lambda 

\biggr) 
a0 +

\lambda 

3
a1,

0 =  - \lambda 

2j  - 1
aj - 1 +

2

km
aj +

\lambda 

2j + 3
aj+1, 1 \leq j \leq rm - 1.

(3.19)
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Rewriting these equalities yields the asserted recursion relations (3.15) and (3.16).
Here, we note that a0 \not = 0 since otherwise all coefficients would be zero, which, in
turn, would lead to \phi rm\lambda \equiv 0. Moreover, the recursion formulas (3.19) immediately
show that the coefficients aj , j = 1, . . . , rm, never vanish, and they have alternating
signs.

It remains to show the sign alternation property (3.17). To this end, we test (3.8)
by the Legendre polynomialKm

rm and integrate over Im. Then, observing that (\phi rm\lambda )\prime is
L2-orthogonal to Km

rm (because it has degree rm - 1) and applying the properties (2.6)
and (2.7) leads to

0 =  - km\lambda 

2rm + 1
arm  - \phi rm\lambda (tm) - ( - 1)rm ,

and therefore,

(3.20) arm =  - 2rm + 1

km\lambda 
(\phi rm\lambda (tm) + ( - 1)rm) .

Next, we test (3.8) by \phi rm\lambda and integrate over Im. A brief calculation reveals that

(3.21) 2\lambda \| \phi rm\lambda \| 2
L2(Im)

+ | \phi rm\lambda (tm)| 2 =  - \phi rm\lambda (tm - 1)(2 + \phi rm\lambda (tm - 1)).

Since the left-hand side of (3.21) consists only of nonnegative terms, it follows that
\phi rm\lambda (tm - 1) \in [ - 2, 0]. In addition, we note that maxx\in [ - 2,0] [ - x(2 + x)] = 1. Hence,
the right-hand side of (3.21) and thereby also the left-hand side are both bounded
by 1. This implies, in particular, that | \phi rm\lambda (tm)| \leq 1. Therefore, from (3.20) and
because arm \not = 0, we infer that sign(arm) = ( - 1)rm+1. Since the sign of the coeffi-
cients aj are alternating, we necessarily arrive at

sign(aj) = sign(arm)( - 1)rm - j = ( - 1)2rm+1 - j = ( - 1)j+1

for 0 \leq j \leq rm.

Proof of Proposition 3.4. We apply the Legendre expansion (3.13) of \phi rm\lambda . Then,
recalling (3.17) and invoking (2.6), we deduce that

(3.22) \phi rm\lambda (tm - 1) =  - 
rm\sum 
i=0

| ai| < 0.

This is the upper bound in (3.12). In addition, noticing that

(3.23) \| Km
i \| L\infty (Im) = 1,

we infer

\| \phi rm\lambda \| 
L\infty (Im)

\leq 
rm\sum 
i=0

| ai| \| Km
i \| L\infty (Im) =

rm\sum 
i=0

| ai| .(3.24)

Combining (3.22) and (3.24), we arrive at (3.11). Finally, the lower bound in (3.12)
follows from the fact that a0 < 0 (cf. (3.17)) and from (3.14).

The ensuing lemma provides further properties of the dG dual solution which will
be crucial in the stability analysis below.
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Lemma 3.6. For \lambda > 0, the coefficient arm in the Legendre expansion of \phi rm\lambda 
(cf. (3.13)) satisfies the bound

| arm | \leq 
\biggl( 
1 +

\lambda km
2(2rm + 1)

\biggr)  - 1

.

Proof. We use the formulas for the Legendre coefficients a0, . . . , arm of \phi rm\lambda from
Lemma 3.5. Specifically, from (3.14) and (3.17) it follows that

(3.25) \lambda km| a0| = 1 + \phi rm\lambda (tm - 1).

Moreover, taking moduli in (3.15), we deduce that

(3.26) | a1| =
3(2 + \lambda km)

\lambda km
| a0| .

In addition, rearranging (3.16), we have

ai =
\lambda km
2

\biggl( 
ai - 1

2i - 1
 - ai+1

2i+ 3

\biggr) 
, 1 \leq i \leq rm  - 1,

which, involving again (3.17), leads to

(3.27) | ai| =
\lambda km
2

\biggl( 
| ai+1| 
2i+ 3

 - | ai - 1| 
2i - 1

\biggr) 
, 1 \leq i \leq rm  - 1.

Inserting (3.27) into (3.22) implies

 - \phi rm\lambda (tm - 1) = | a0| + | arm | + \lambda km
2

rm - 1\sum 
i=1

\biggl( 
| ai+1| 
2i+ 3

 - | ai - 1| 
2i - 1

\biggr) 
.

Observing the telescope sum on the right-hand side results in

 - \phi rm\lambda (tm - 1)

=

\biggl( 
1 - \lambda km

2

\biggr) 
| a0|  - 

\lambda km
6

| a1| +
\lambda km

2(2rm  - 1)
| arm - 1| +

\biggl( 
1 +

\lambda km
2(2rm + 1)

\biggr) 
| arm | .

Applying (3.26), we note that

 - \phi rm\lambda (tm - 1) =  - \lambda km| a0| +
\lambda km

2(2rm  - 1)
| arm - 1| +

\biggl( 
1 +

\lambda km
2(2rm + 1)

\biggr) 
| arm | .

Making use of (3.25), we arrive at

1 =
\lambda km

2(2rm  - 1)
| arm - 1| +

\biggl( 
1 +

\lambda km
2(2rm + 1)

\biggr) 
| arm | ,

which yields the bound

1 \geq 
\biggl( 
1 +

\lambda km
2(2rm + 1)

\biggr) 
| arm | .

This completes the proof.
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Lemma 3.7. Let \lambda > 0. For the dG dual solution from (3.8) it holds that

\| \phi rm\lambda \| 
L2(Im)

\leq \Upsilon 3.28(rm, km\lambda )k
1/2
m ,

where, for r \in \BbbN 0 and \varrho > 0, we let

(3.28) \Upsilon 3.28(r, \varrho ) :=

\biggl( 
3

2(2r + 1) + \varrho 

\biggr) 1/2

.

In particular, \| \phi rm\lambda \| 
L2(Im)

\rightarrow 0, as rm \rightarrow \infty , uniformly with respect to \lambda .

Proof. Recalling (3.20), we have that

(3.29)
\bigm| \bigm| \phi rm\lambda (tm) - ( - 1)rm+1

\bigm| \bigm| = km\lambda 

2rm + 1
| arm | .

Moreover, due to Proposition 3.4 we notice that

0 < 1 + \phi rm\lambda (tm - 1) = 1 - \| \phi rm\lambda \| 
L\infty (Im)

\leq 1 - | \phi rm\lambda (tm)| \leq 
\bigm| \bigm| ( - 1)rm+1  - \phi rm\lambda (tm)

\bigm| \bigm| .
Hence,

(3.30) 0 < 1 + \phi rm\lambda (tm - 1) \leq 
km\lambda 

2rm + 1
| arm | .

From (3.21), we recall that

(3.31) 2\lambda \| \phi rm\lambda \| 2
L2(Im)

=  - | \phi rm\lambda (tm)| 2  - \phi rm\lambda (tm - 1)(2 + \phi rm\lambda (tm - 1)).

We estimate the terms on the right-hand side of the above identity separately. First,

| \phi rm\lambda (tm)| 2 =
\bigm| \bigm| \phi rm\lambda (tm) - ( - 1)rm+1

\bigm| \bigm| 2 + 2( - 1)rm+1\phi rm\lambda (tm) - 1

\geq 1 + 2( - 1)rm+1
\bigl( 
 - ( - 1)rm+1 + \phi rm\lambda (tm)

\bigr) 
\geq 1 - 2

\bigm| \bigm| \phi rm\lambda (tm) - ( - 1)rm+1
\bigm| \bigm| ,

and thus, upon exploiting (3.29),

 - | \phi rm\lambda (tm)| 2 \leq  - 1 +
2km\lambda 

2rm + 1
| arm | .

Next, with (3.30), it follows that

2 + \phi rm\lambda (tm - 1) \leq 1 +
km\lambda 

2rm + 1
| arm | .

Inserting these estimates into (3.31) and recalling the fact that 0 <  - \phi rm\lambda (tm - 1) < 1
(cf. (3.12)), we conclude that

2\lambda \| \phi rm\lambda \| 2
L2(Im)

\leq 3km\lambda 

2rm + 1
| arm | .

Finally, employing Lemma 3.6 results in

2\lambda \| \phi rm\lambda \| 2
L2(Im)

\leq 6km\lambda 

2(2rm + 1) + km\lambda 
,

and dividing by 2\lambda completes the proof.
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Remark 3.8. For \lambda = 0 it is fairly elementary to verify that

(3.32) \phi rm0 = ( - 1)rm+1Km
rm

in (3.8), where Km
rm is the Legendre polynomial of degree rm on Im. Therefore,

revisiting (2.7), we observe that

\| \phi rm0 \| L2(Im) =

\biggl( 
km

2rm + 1

\biggr) 1/2

,

which slightly improves the estimate from Lemma 3.7 above.

The following result is the analogue of Proposition 3.4 for the dG fundamental
solution.

Proposition 3.9 (stability of \psi rm
\lambda ). Let \lambda > 0 and 1 \leq m \leq M . For the dG

fundamental solution from (3.8) the identities

(3.33) \| \psi rm
\lambda \| 

L\infty (Im)
= \psi rm

\lambda (tm - 1)

and

(3.34) \| (\psi rm
\lambda )\prime \| 

L\infty (Im)
=  - (\psi rm

\lambda )\prime (tm - 1)

hold true.

Proof. For simplicity of presentation, we suppose that rm \geq 4 (the cases 0 \leq 
rm \leq 3 can be verified directly). We show (3.34) first. For this purpose, let us
expand (\psi rm

\lambda )\prime in a Legendre series, i.e.,

(3.35) (\psi rm
\lambda )\prime =

rm - 1\sum 
i=0

biK
m
i ,

with coefficients b0, . . . , brm - 1. Recalling (3.7) and using (3.18), for t \in Im, we have

\psi rm
\lambda (t) = \psi rm

\lambda (tm - 1) +

\int t

tm - 1

(\psi rm
\lambda )\prime \sansd s

= \psi rm
\lambda (tm - 1) +

km
2

rm - 1\sum 
i=0

biQ
m
i (s) \sansd s

= \psi rm
\lambda (tm - 1) +

km
2

\Biggl( 
b0(K

m
0 +Km

1 ) +

rm - 1\sum 
i=1

bi
2i+ 1

(Km
i+1  - Km

i - 1)

\Biggr) 
.(3.36)

Note that Km
0 \equiv 1. Then, inserting (3.35) and (3.36) into (3.5), using the represen-
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tation (2.5) of the lifting operator, and comparing coefficients leads to the equations

\lambda \psi rm
\lambda (tm - 1) +

\biggl( 
1 +

\lambda km
2

\biggr) 
b0  - 

\lambda km
6
b1 =

1

km
\sanse +\lambda ,m,

\lambda km
2
b0 + b1  - 

\lambda km
10

b2 =  - 3

km
\sanse +\lambda ,m,

\lambda km
2(2i - 1)

bi - 1 + bi  - 
\lambda km

2(2i+ 3)
bi+1 =

1

km
( - 1)i(2i+ 1)\sanse +\lambda ,m (2 \leq i \leq rm  - 2),

\lambda km
2(2rm  - 3)

brm - 2 + brm - 1 =
1

km
( - 1)rm - 1(2rm  - 1)\sanse +\lambda ,m,

\lambda km
2(2rm  - 1)

brm - 1 =
1

km
( - 1)rm(2rm + 1)\sanse +\lambda ,m.

(3.37)

Here, we denote by \sanse +\lambda ,m = 1  - \psi rm
\lambda (tm - 1) the error between the initial values of \psi 

from (3.4) and its dG approximation \psi rm
\lambda . In order to show (3.34), we first illustrate

that the signs of the coefficients b0, . . . , brm - 1 are alternating. We focus on the case
where rm is even. Let us first observe, by (3.10) and (3.12), that

(3.38) 0 < \psi rm
\lambda (tm - 1) < 1.

Rewriting the last equation in (3.37), we have

brm - 1 =
( - 1)rm

2\lambda k2m
(4r2m  - 1)\sanse +\lambda ,m.

Using (3.38), we notice that

(3.39) \sanse +\lambda ,m > 0,

and because rm is even, we arrive at brm - 1 > 0. Then, from the second-to-last
equation in (3.37), we infer

brm - 2 =  - 2

\lambda km
(2rm  - 3)brm - 1 +

2( - 1)rm - 1

\lambda k2m
(2rm  - 3)(2rm  - 1)\sanse +\lambda ,m < 0.

Analogously, the third equation in (3.37), with i = rm  - 2, implies that

brm - 3 =  - 2

\lambda km
(2rm  - 5)brm - 2

+
2rm  - 5

2rm  - 1
brm - 1 +

2( - 1)rm - 2

\lambda k2m
(2rm  - 5)(2rm  - 3)\sanse +\lambda ,m > 0.

We continue in the same way to conclude that sign(bi) = ( - 1)i+1 for 1 \leq i < rm  - 1.
Finally, applying the second equation in (3.37), it holds that

b0 =
2

\lambda km

\biggl( 
 - b1 +

\lambda km
10

b2  - 
3

km
\sanse +\lambda ,m

\biggr) 
< 0.

Then, from (2.6) and (3.23), we obtain

 - (\psi rm
\lambda )\prime (tm - 1) =  - 

rm - 1\sum 
i=0

( - 1)ibi =

rm - 1\sum 
i=0

| bi| =
rm - 1\sum 
i=0

| bi| \| Km
i \| L\infty (Im)

\geq \| (\psi rm
\lambda )\prime \| 

L\infty (Im)
,
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which gives (3.34). For rm odd we may proceed similarly.
In order to complete the proof, we show (3.33). To this end, we evaluate (3.5) at

t = tm - 1:

(\psi rm
\lambda )\prime (tm - 1) + \lambda \psi rm

\lambda (tm - 1) - \sanse +\lambda ,m\sansL rmm (tm - 1) = 0.

Since the coefficients of the lifting operator \sansL rmm are alternating, and because of prop-
erty (2.6), it is straightforward to see that \| \sansL rmm \| L\infty (Im) = \sansL rmm (tm - 1) > 0. Hence,

with \sanse +\lambda ,m > 0 and by means of (3.34), we see that

\lambda \psi rm
\lambda (tm - 1) = \| (\psi rm

\lambda )\prime \| 
L\infty (Im)

+ \sanse +\lambda ,m \| \sansL rmm \| L\infty (Im) .

Thus, in view of (3.5), which implies that

\lambda \| \psi rm
\lambda \| 

L\infty (Im)
\leq \| (\psi rm

\lambda )\prime \| 
L\infty (Im)

+ \sanse +\lambda ,m \| \sansL rmm \| L\infty (Im) ,

we conclude that \psi rm
\lambda takes its maximum at t = tm - 1.

3.2. Representation formulas. In this section we derive explicit representa-
tion formulas for the operator (\Gamma rm

\lambda ,m) - 1 defined in (3.2). Observing (3.5) and Lemma

3.1, it is sufficient to investigate how (\Gamma rm
\lambda ,m) - 1 acts on \BbbW rm

\lambda (Im).

Lemma 3.10. Let w \in \BbbW rm
\lambda (Im), then it holds that

(\Gamma rm
\lambda ,m) - 1(w) =

\int t

tm - 1

e\lambda (s - t)w(s) \sansd s.

Proof. Let w \in \BbbW rm
\lambda (Im), and choose v \in \BbbP rm

0 (Im) with w = v\prime + \lambda v. Then, we
have the following equation:

w(s) = \Gamma rm
\lambda ,m(v)(s) = v\prime (s) + \lambda v(s) = e - \lambda (s - tm - 1)

\sansd 

\sansd s

\Bigl( 
e\lambda (s - tm - 1)v(s)

\Bigr) 
, s \in Im.

Hence, it follows that \sansd 
\sansd s

\bigl( 
e\lambda (s - tm - 1)v(s)

\bigr) 
= e\lambda (s - tm - 1)w(s). Integrating with respect

to s over (tm - 1, t) and using v(tm - 1) = 0, we obtain

e\lambda (t - tm - 1)v(t) =

\int t

tm - 1

e\lambda (s - tm - 1)w(s) \sansd s,

and therefore,

(\Gamma rm
\lambda ,m) - 1(w)(t) = v(t) =

\int t

tm - 1

e\lambda (s - t)w(s) \sansd s.

This completes the proof.

Proposition 3.11. For any w \in \BbbP rm(Im) it holds that

(\Gamma rm
\lambda ,m) - 1(w) =  - e - \lambda (t - tm - 1)

\biggl( \int 
Im

w\phi rm\lambda \sansd s

\biggr) 
\eta rm\lambda ,m(t) +

\int t

tm - 1

e\lambda (s - t)w \sansd s,

where

(3.40) \eta rm\lambda ,m(t) := 1 - 
\int t

tm - 1

e\lambda (s - tm - 1)\sansL rmm (1) \sansd s.
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Proof. Consider any w \in \BbbP rm(Im). Then, Lemma 3.1 implies that there exist
\alpha \in \BbbR and w0 \in \BbbW rm

\lambda (Im) such that w = w0+\alpha \sansL 
rm
m (1). Hence, applying Lemma 3.10

and recalling (3.5) yields

(\Gamma rm
\lambda ,m) - 1(w) = (\Gamma rm

\lambda ,m) - 1(w0) + \alpha (\Gamma rm
\lambda ,m) - 1(\sansL rmm (1))

=

\int t

tm - 1

e\lambda (s - t)w0 \sansd s+ \alpha \psi rm
\lambda 

=

\int t

tm - 1

e\lambda (s - t) (w  - \alpha \sansL rmm (1)) \sansd s+ \alpha \psi rm
\lambda 

= \alpha 

\Biggl( 
\psi rm
\lambda  - 

\int t

tm - 1

e\lambda (s - t)\sansL rmm (1) \sansd s

\Biggr) 
+

\int t

tm - 1

e\lambda (s - t)w \sansd s.

Setting

\Theta rm
\lambda ,m := \psi rm

\lambda  - 
\int t

tm - 1

e\lambda (s - t)\sansL rmm (1) \sansd s

and using the fact that \psi rm
\lambda is the solution of (3.5), an elementary calculation reveals

that

(\Theta rm
\lambda ,m)\prime + \lambda \Theta rm

\lambda ,m =  - \psi rm
\lambda (tm - 1)\sansL 

rm
m (1).

Integrating this identity, we arrive at

\Theta rm
\lambda ,m(t) = e - \lambda (t - tm - 1)\psi rm

\lambda (tm - 1)\eta 
rm
\lambda ,m(t).

Therefore,

(\Gamma rm
\lambda ,m) - 1(w) = \alpha e - \lambda (t - tm - 1)\psi rm

\lambda (tm - 1)\eta 
rm
\lambda ,m(t) +

\int t

tm - 1

e\lambda (s - t)w \sansd s.

In order to determine the value of \alpha , we employ Lemmas 3.2 and 3.3. This yields\int 
Im

w\phi rm\lambda \sansd t = \alpha 

\int 
Im

\sansL rmm (1)\phi rm\lambda \sansd t = \alpha \phi rm\lambda (tm - 1) =  - \alpha \psi rm
\lambda (tm - 1),

which directly leads to the desired formula.

The following lemma gives an interesting interpretation of \eta rm\lambda ,m defined in (3.40).
Let us denote by

(3.41) \sanse \lambda ,m := e - \lambda (t - tm - 1)  - \psi rm
\lambda (t), t \in Im,

the pointwise error between the solution \psi of (3.4) and the dG fundamental solu-
tion \psi rm

\lambda from (3.6).

Lemma 3.12. We have the identity

e - \lambda (t - tm - 1)\eta rm\lambda ,m(t) =
\sanse \lambda ,m(t)

\sanse \lambda ,m(tm - 1)
, t \in Im.
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Proof. Due to (3.39), let us first note that the right-hand side in the above identity
is well defined. Recalling (3.6) and applying Proposition 3.11 with w = \sansL rmm (1), we
note that

\psi rm
\lambda (t) =  - e - \lambda (t - tm - 1)

\biggl( \int 
Im

\sansL rmm (1)\phi rm\lambda \sansd s

\biggr) 
\eta rm\lambda ,m(t) +

\int t

tm - 1

e\lambda (s - t)\sansL rmm (1) \sansd s

=  - \phi rm\lambda (tm - 1)e
 - \lambda (t - tm - 1)\eta rm\lambda ,m(t) +

\int t

tm - 1

e\lambda (s - t)\sansL rmm (1) \sansd s.

By virtue of Lemma 3.3, this leads to

\psi rm
\lambda (t) = \psi rm

\lambda (tm - 1)e
 - \lambda (t - tm - 1) + (1 - \psi rm

\lambda (tm - 1))

\int t

tm - 1

e\lambda (s - t)\sansL rmm (1) \sansd s,

and thus,

 - \sanse \lambda ,m(t) =  - \sanse \lambda ,m(tm - 1)e
 - \lambda (t - tm - 1) + \sanse \lambda ,m(tm - 1)

\int t

tm - 1

e\lambda (s - t)\sansL rmm (1) \sansd s

=  - \sanse \lambda ,m(tm - 1)e
 - \lambda (t - tm - 1)\eta rm\lambda ,m(t).

This proves the lemma.

Summarizing the above results, we obtain the following representation expression.

Corollary 3.13. For any w \in \BbbP rm(Im), the identity

(3.42) (\Gamma rm
\lambda ,m) - 1(w) =  - \sanse \lambda ,m(t)

\sanse \lambda ,m(tm - 1)

\int 
Im

w\phi rm\lambda (t) \sansd t+

\int t

tm - 1

e\lambda (s - t)w \sansd s

holds true.

3.3. Stability. We are now in a position to derive stability bounds for (\Gamma rm
\lambda ,m) - 1

as well as for the scalar dG time stepping solution from (3.3). In this section, let us
suppose that \lambda > 0.

Proposition 3.14 (L\infty -L2-stability of (\Gamma rm
\lambda ,m) - 1). Let w \in \BbbP rm(Im), 1 \leq m \leq 

M . Then the stability estimate

(3.43)
\bigm\| \bigm\| \bigm\| (\Gamma rm

\lambda ,m) - 1(w)
\bigm\| \bigm\| \bigm\| 
L\infty (Im)

\leq CL2

\lambda ,rmk
1/2
m \| w\| L2(Im)

holds, where

(3.44) CL2

\lambda ,rm := \Upsilon 3.28(rm, km\lambda )

\bigm\| \bigm\| \bigm\| \bigm\| \sanse \lambda ,m
\sanse \lambda ,m(tm - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (Im)

+min
\Bigl( 
1, (2\lambda km) - 

1/2
\Bigr) 
.

Proof. We separately bound the two terms on the right-hand side of (3.42). By
means of the Cauchy--Schwarz inequality and Lemma 3.7, we have\bigm| \bigm| \bigm| \bigm| \int 

Im

w\phi rm\lambda \sansd t

\bigm| \bigm| \bigm| \bigm| \leq \| w\| L2(Im) \| \phi 
rm
\lambda \| 

L2(Im)
\leq k

1/2
m \Upsilon 3.28(rm, km\lambda ) \| w\| L2(Im) .

Therefore, we infer that
(3.45)\bigm| \bigm| \bigm| \bigm| \sanse \lambda ,m(t)

\sanse \lambda ,m(tm - 1)

\int 
Im

w\phi rm\lambda \sansd t

\bigm| \bigm| \bigm| \bigm| \leq k
1/2
m \Upsilon 3.28(rm, km\lambda )

\bigm\| \bigm\| \bigm\| \bigm\| \sanse \lambda ,m(t)

\sanse \lambda ,m(tm - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (Im)

\| w\| L2(Im).
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Similarly, it holds that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int t

tm - 1

e\lambda (s - t)w(s) \sansd s

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (Im)

\leq sup
t\in Im

\Biggl( \int t

tm - 1

e2\lambda (s - t) \sansd s

\Biggr) 1/2

\| w\| L2(Im)

\leq min
\Bigl( 
k

1/2
m , (2\lambda ) - 

1/2
\Bigr) 
\| w\| L2(Im) .

(3.46)

The two estimates (3.45) and (3.46) immediately imply the asserted result.

Remark 3.15 (L\infty -L1-stability of (\Gamma rm
\lambda ,m) - 1). As in Proposition 3.14 above, for

w \in \BbbP rm(Im), 1 \leq m \leq M , we can derive the bound

(3.47)
\bigm\| \bigm\| \bigm\| (\Gamma rm

\lambda ,m) - 1(w)
\bigm\| \bigm\| \bigm\| 
L\infty (Im)

\leq CL1

\lambda ,rm \| w\| L1(Im) ,

where

(3.48) CL1

\lambda ,rm :=

\bigm\| \bigm\| \bigm\| \bigm\| \sanse \lambda ,m
\sanse \lambda ,m(tm - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (Im)

+ 1.

Indeed, to see this, for the first term on the right-hand side of (3.42) we employ
Proposition 3.4 to obtain\bigm| \bigm| \bigm| \bigm| \int 

Im

w\phi rm\lambda \sansd t

\bigm| \bigm| \bigm| \bigm| \leq \| w\| L1(Im) \| \phi 
rm
\lambda \| 

L\infty (Im)
= \| w\| L1(Im) | \phi 

rm
\lambda (tm - 1)| \leq \| w\| L1(Im) .

Therefore, we obtain the bound

(3.49)

\bigm| \bigm| \bigm| \bigm| \sanse \lambda ,m(t)

\sanse \lambda ,m(tm - 1)

\int 
Im

w\phi rm\lambda \sansd t

\bigm| \bigm| \bigm| \bigm| \leq \bigm\| \bigm\| \bigm\| \bigm\| \sanse \lambda ,m(t)

\sanse \lambda ,m(tm - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (Im)

\| w\| L1(Im).

As for the second term, we note that\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int t

tm - 1

e\lambda (s - t)w(s) \sansd s

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (Im)

\leq sup
t\in Im

\int t

tm - 1

e\lambda (s - t)| w(s)| \sansd s \leq \| w\| L1(Im) .(3.50)

Thence, combining (3.49) and (3.50) gives (3.47).

Remark 3.16. The term
\bigm\| \bigm\| \sanse \lambda ,m(tm - 1)

 - 1\sanse \lambda ,m
\bigm\| \bigm\| 
L\infty (Im)

arising in the two constants

CL2

\lambda ,rm
and CL1

\lambda ,rm
from (3.44) and (3.48), respectively, can be estimated uniformly with

respect to the time step km and the polynomial degree rm. In fact, performing an
integration by parts in (3.40), we note that

\eta rm\lambda ,m(t) = 1 - e\lambda (t - tm - 1)\rho rmm (t) + \lambda 

\int t

tm - 1

e\lambda (s - tm - 1)\rho rmm (s) \sansd s,

where we define

\rho rmm (t) :=

\int t

tm - 1

\sansL rmm (1) \sansd s, t \in Im.

Rearranging terms, we obtain

\eta rm\lambda ,m(t) = e\lambda (t - tm - 1)(1 - \rho rmm (t)) - \lambda 

\int t

tm - 1

e\lambda (s - tm - 1)(1 - \rho rmm (s)) \sansd s, t \in Im.
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Referring to [11, Lemma 1], it holds that

(3.51) \| 1 - \rho rmm \| L\infty (Im) = 1.

Consequently, we conclude that

| \eta rm\lambda ,m(t)| \leq e\lambda (t - tm - 1) + \lambda 

\int t

tm - 1

e\lambda (s - tm - 1) \sansd s = 2e\lambda (t - tm - 1)  - 1.

Recalling Lemma 3.12 results in

(3.52)

\bigm\| \bigm\| \bigm\| \bigm\| \sanse \lambda ,m
\sanse \lambda ,m(tm - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (Im)

\leq sup
t\in Im

\Bigl( 
2 - e - \lambda (t - tm - 1)

\Bigr) 
= 2 - e - \lambda km .

In particular,

CL2

\lambda ,rm \leq 
\bigl( 
2 - e - \lambda km

\bigr) 
\Upsilon 3.28(rm, km\lambda ) + min

\Bigl( 
1, (2\lambda km) - 

1/2
\Bigr) 

\leq 2

\biggl( 
3

2(2rm + 1) + km\lambda 

\biggr) 1/2

+ 1 \leq 
\surd 
6 + 1

(3.53)

in (3.44), and thus CL2

\lambda ,rm
is uniformly bounded with respect to the parameters km, rm,

and \lambda . Incidentally, a considerably more involved analysis in [20, section 4] reveals
that it even holds that

\bigm\| \bigm\| \sanse \lambda ,m(tm - 1)
 - 1\sanse \lambda ,m

\bigm\| \bigm\| 
L\infty (Im)

= 1; i.e., the above inequality

improves, for example, to CL2

\lambda ,rm
\leq 
\sqrt{} 

3/2 + 1.

Remark 3.17. For \lambda = 0, recalling (3.32), we see that Proposition 3.11 implies
the following representation formula for (\chi rm) - 1(cf. (2.10)):

(\chi rm
m ) - 1(w) = ( - 1)rm+1

\biggl( \int 
Im

wKm
rm \sansd t

\biggr) 
(1 - \rho rmm (t)) +

\int t

tm - 1

w \sansd s

for any w \in \BbbP rm(Im). Revisiting (3.51) and denoting by

wrm :=
2rm + 1

km

\int 
Im

wKm
rm \sansd t

the rmth Legendre coefficient of w (cf. (2.7)) leads to the stability estimate\bigm\| \bigm\| (\chi rm
m ) - 1(w)

\bigm\| \bigm\| 
L\infty (Im)

\leq | wrm | + \| w\| L1(Im) , w \in \BbbP rm(Im),

which is an improvement of [11, Proposition 1].

The above Proposition 3.14 immediately implies an L\infty (Im)-stability bound for
the dG time stepping solution U \in \BbbP rm(Im) from (3.3).

Theorem 3.18 (L\infty -stability of scalar dG solution). The dG solution U \in 
\BbbP rm(Im) from (3.3) satisfies

\| U\| L\infty (Im) \leq | um - 1| + CL2

\lambda ,rmk
1/2
m \| f\| L2(Im) ,

with CL2

\lambda ,rm
from (3.44).
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Proof. Employing the triangle inequality to (3.3), together with the linearity of
(\Gamma rm

\lambda ,m) - 1 and \sansL rmm , we have

\| U\| L\infty (Im) \leq | um - 1| 
\bigm\| \bigm\| \bigm\| (\Gamma rm

\lambda ,m) - 1(\sansL rmm (1))
\bigm\| \bigm\| \bigm\| 
L\infty (Im)

+
\bigm\| \bigm\| \bigm\| (\Gamma rm

\lambda ,m) - 1(\Pi rm
m f)

\bigm\| \bigm\| \bigm\| 
L\infty (Im)

.

Recalling (3.6), it follows that

\| U\| L\infty (Im) \leq | um - 1| \| \psi rm
m \| L\infty (Im) +

\bigm\| \bigm\| \bigm\| (\Gamma rm
\lambda ,m) - 1(\Pi rm

m f)
\bigm\| \bigm\| \bigm\| 
L\infty (Im)

.

Using (3.33) and (3.38) and estimating the second term on the right-hand side of the
above inequality by means of Proposition 3.14, we deduce that

\| U\| L\infty (Im) \leq | um - 1| + CL2

\lambda ,rmk
1/2
m \| \Pi rm

m f\| L2(Im) .

The proof now follows from applying the L2(Im)-stability of \Pi rm
m .

4. Linear parabolic equations. We now attend to the stability of the fully
discrete dG time discretization (2.9) for the linear parabolic evolution problem (1.2).
For this purpose, for 1 \leq m \leq M , we make use of the spectral decomposition of
the discrete elliptic operator \sansA m introduced in (2.2): Since \sansA m is self-adjoint and
positive definite, there exist orthonormal basis functions \{ \varphi i\} nm

i=1 \subset \BbbX m, \BbbX m =
span\{ \varphi 1, . . . , \varphi nm

\} , which are eigenfunctions of \sansA m:

(4.1) (\varphi i, \varphi j)\BbbH = \delta ij , \sansA m\varphi i = \lambda i\varphi i, i, j = 1, . . . , nm.

Here, for 1 \leq i \leq nm, we signify by \lambda i > 0 the (real) eigenvalue corresponding to \varphi i.
Then, any function w \in \BbbP rm(Im;\BbbX m) can be represented as

(4.2) w(t) =

nm\sum 
i=1

ai(t)\varphi i,

where ai \in \BbbP rm(Im) are time-dependent coefficients, and by Parseval's identity it
holds that

\| w(t)\| 2\BbbH =

nm\sum 
i=1

ai(t)
2, t \in Im.

Furthermore, for the purpose of Remark 4.6 below, we derive a lower bound on the
dual norm. Specifically, for w(t) \not = 0 as in (4.2), using (1.5), we have

\| w(t)\| 2\BbbX  \star = sup
0 \not =v\in \BbbX 

\langle w(t), v\rangle 2\BbbX  \star \times \BbbX 
\| v\| 2\BbbX 

\geq 
\bigl\langle 
w(t),\sansA  - 1

m w(t)
\bigr\rangle 2
\BbbX  \star \times \BbbX 

\| \sansA  - 1
m w(t)\| 2\BbbX 

=

\bigl( 
w(t),\sansA  - 1

m w(t)
\bigr) 2
\BbbH 

\| \sansA  - 1
m w(t)\| 2\BbbX 

.

Moreover, with the aid of (1.3) and (2.2), we deduce that

\alpha 1.3\| \sansA  - 1
m w(t)\| 2\BbbX \leq 

\bigl\langle 
\sansA \sansA  - 1

m w(t),\sansA  - 1
m w(t)

\bigr\rangle 
\BbbX  \star \times \BbbX =

\bigl( 
w(t),\sansA  - 1

m w(t)
\bigr) 
\BbbH .

Hence,

\| w(t)\| 2\BbbX  \star \geq \alpha 1.3

\bigl( 
w(t),\sansA  - 1

m w(t)
\bigr) 
\BbbH .
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Due to (4.1) we infer that

\sansA  - 1
m w(t) =

nm\sum 
i=1

ai(t)\lambda 
 - 1
i \varphi i,

and in conclusion,

(4.3) \| w(t)\| 2\BbbX  \star \geq \alpha 1.3

nm\sum 
i=1

ai(t)
2\lambda  - 1

i .

4.1. Stability of dG solution operator. Following our approach in section 3.3
we now investigate the stability of the inverse of the discrete parabolic operator \Gamma rm

m

from (2.11).

Proposition 4.1. Given w \in \BbbP rm(Im;\BbbX m), with a spectral representation as in
(4.2), we have

(4.4) (\Gamma rm
m ) - 1(w) =

nm\sum 
i=1

(\Gamma rm
\lambda i,m

) - 1(ai)\varphi i,

where \Gamma rm
m and \Gamma rm

\lambda i,m
are the discrete operators defined in (2.11) and (3.2), respec-

tively. Moreover, the estimate

(4.5)
\bigm\| \bigm\| (\Gamma rm

m ) - 1(w)
\bigm\| \bigm\| 
L\infty (Im;\BbbH )

\leq Cmk
1/2
m \| w\| L2(Im;\BbbH )

holds true, with

(4.6) Cm := max
1\leq i\leq nm

CL2

\lambda i,rm ,

where CL2

\lambda i,rm
is defined in (3.44); cf. also (3.53).

Proof. Let w \in \BbbP rm(Im;\BbbX m). Since \Gamma rm
m is an isomorphism on \BbbP rm(Im;\BbbX m) there

exists a unique v \in \BbbP rm(Im;\BbbX m),

v =

nm\sum 
i=1

bi\varphi i, bi \in \BbbP rm(Im), 1 \leq i \leq nm,

such that w = \Gamma rm
m (v). Equivalently, by linearity of \Gamma rm

m ,

w =

nm\sum 
i=1

\Gamma rm
m (bi\varphi i) =

nm\sum 
i=1

\chi rm
m (bi)\varphi i + bi\sansA m\varphi i =

nm\sum 
i=1

(\chi rm
m (bi) + \lambda ibi)\varphi i

=

nm\sum 
i=1

\Gamma rm
\lambda i,m

(bi)\varphi i.

Comparing coefficients with (4.2), we infer that ai = \Gamma rm
\lambda i,m

(bi), and thus that bi =

(\Gamma rm
\lambda i,m

) - 1(ai), for any i = 1, . . . , nm. Therefore,

(\Gamma rm
m ) - 1(w) = v =

nm\sum 
i=1

(\Gamma rm
\lambda i,m

) - 1(ai)\varphi i,
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which is (4.4). Now, employing (4.1), we obtain

\bigm\| \bigm\| (\Gamma rm
m ) - 1(w)

\bigm\| \bigm\| 2
L\infty (Im;\BbbH )

= sup
Im

nm\sum 
i=1

\bigm| \bigm| \bigm| (\Gamma rm
\lambda i,m

) - 1(ai)
\bigm| \bigm| \bigm| 2 \leq 

nm\sum 
i=1

\bigm\| \bigm\| \bigm\| (\Gamma rm
\lambda i,m

) - 1(ai)
\bigm\| \bigm\| \bigm\| 2
L\infty (Im)

.

Applying Proposition 3.14, we arrive at

\bigm\| \bigm\| (\Gamma rm
m ) - 1(w)

\bigm\| \bigm\| 
L\infty (Im;\BbbH )

\leq Cmk
1/2
m

\Biggl( 
nm\sum 
i=1

\| ai\| 2L2(Im)

\Biggr) 1/2

= Cmk
1/2
m \| w\| L2(Im;\BbbH ) .

Recalling (3.53) completes the proof.

4.2. Stability of homogeneous problem. For 1 \leq m \leq M , denote by \Psi rm \in 
\BbbP rm(Im;\BbbX m) the solution of the discrete problem

(4.7)
\sansd 

\sansd t
\Psi rm + \sansA m\Psi rm + \sansL rmm (\Psi rm(tm - 1)) = \sansL rmm (\pi mU

 - 
m - 1),

where U - 
m - 1 \in \BbbH is a given value. Note that this is (2.9) with f \equiv 0.

Lemma 4.2. Let \Psi rm \in \BbbP rm(Im;\BbbX m) be the solution of (4.7). Then, we have the
stability estimate \| \Psi rm\| L\infty (Im;\BbbH ) \leq 

\bigm\| \bigm\| U - 
m - 1

\bigm\| \bigm\| 
\BbbH .

Proof. We use the spectral decomposition \pi mU
 - 
m - 1 =

\sum nm

j=1 aj\varphi j , with constant
coefficients a1, . . . , anm . Furthermore, exploiting the representation of the lifting op-
erator from (2.5) and involving (3.5), it holds that

\sansL rmm (\pi mU
 - 
m - 1) =

nm\sum 
j=1

aj\sansL 
rm
m (1)\varphi j =

nm\sum 
j=1

aj\Gamma 
rm
\lambda j ,m

(\psi rm
\lambda j

)\varphi j ,

where we slightly abuse notation by denoting the lifting operator on \BbbX m and on \BbbR in
the same way. Hence, by virtue of (2.12), with f \equiv 0, and due to (4.4), we observe
that

(4.8) \Psi rm = (\Gamma rm
m ) - 1(\sansL rmm (\pi mU

 - 
m - 1)) =

nm\sum 
j=1

aj\varphi j\psi 
rm
\lambda j
.

Using orthogonality and applying (3.33) and (3.38), leads to

\| \Psi rm\| 2L\infty (Im;\BbbH ) \leq 
nm\sum 
j=1

a2j

\bigm\| \bigm\| \bigm\| \psi rm
\lambda j

\bigm\| \bigm\| \bigm\| 2
L\infty (Im)

\leq 
nm\sum 
j=1

a2j = \| \pi mU - 
m - 1\| 2\BbbH .

Finally, applying the stability property (2.1) completes the proof.

Remark 4.3. We notice that \Psi rm defined in (4.7) is the fully discrete approx-
imation of the solution of the homogeneous parabolic equation (1.2), with f \equiv 0,
on the time interval Im. For t \in Im, the latter can be represented as \Psi (t) =
e - \sansA (t - tm - 1)u(tm - 1). Consequently, for t \in Im, the error satisfies the identity

\Psi (t) - \Psi rm(t) = e - \sansA (t - tm - 1)
\bigl( 
u(tm - 1) - \pi mU

 - 
m - 1

\bigr) 
+
\Bigl( 
e - \sansA (t - tm - 1)  - e - \sansA m(t - tm - 1)

\Bigr) 
\pi mU

 - 
m - 1

+
\Bigl( 
e - \sansA m(t - tm - 1)\pi mU

 - 
m - 1  - \Psi rm(t)

\Bigr) 
.

(4.9)
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Let us briefly discuss the three terms on the right-hand side of the above equality. By
stability, the first term in (4.9) may simply be estimated by

sup
t\in Im

\bigm\| \bigm\| \bigm\| e - \sansA (t - tm - 1)
\bigl( 
u(tm - 1) - \pi mU

 - 
m - 1

\bigr) \bigm\| \bigm\| \bigm\| 
\BbbH 

\leq 
\bigm\| \bigm\| u(tm - 1) - \pi mU

 - 
m - 1

\bigm\| \bigm\| 
\BbbH \leq 

\bigm\| \bigm\| u(tm - 1) - U - 
m - 1

\bigm\| \bigm\| 
\BbbH +

\bigm\| \bigm\| U - 
m - 1  - \pi mU

 - 
m - 1

\bigm\| \bigm\| 
\BbbH ,

which shows that this term is bounded by the error in the previous time step and by
a mesh change contribution. Moreover, the second term in (4.9) refers to a Galerkin
discretization error in space. Finally, using the spectral decomposition of \pi mU

 - 
m - 1 as

in the proof of Lemma 4.2, and recalling (4.8), the third term in (4.9) can be written
in the form

e - \sansA m(t - tm - 1)\pi mU
 - 
m - 1  - \Psi rm(t) =

nm\sum 
j=1

aj\varphi j

\Bigl( 
e - \lambda j(t - tm - 1)  - \psi rm

\lambda j

\Bigr) 
, t \in Im.

Thus,

sup
t\in Im

\bigm\| \bigm\| \bigm\| e - \sansA m(t - tm - 1)\pi mU
 - 
m - 1  - \Psi rm(t)

\bigm\| \bigm\| \bigm\| 2
\BbbH 
\leq 

nm\sum 
j=1

a2j
\bigm\| \bigm\| \sanse \lambda j ,m

\bigm\| \bigm\| 2
L\infty (Im)

,

where the scalar error \sanse \lambda ,m is defined in (3.41). Employing (3.52), we notice that\bigm\| \bigm\| \sanse \lambda j ,m

\bigm\| \bigm\| 
L\infty (Im)

\leq 2| \sanse \lambda j ,m(tm - 1)| and therefore obtain

sup
t\in Im

\bigm\| \bigm\| \bigm\| e - \sansA m(t - tm - 1)\pi mU
 - 
m - 1  - \Psi rm(t)

\bigm\| \bigm\| \bigm\| 
\BbbH 
\leq 2

\bigm\| \bigm\| \pi mU - 
m - 1

\bigm\| \bigm\| 
\BbbH sup

j

\bigm| \bigm| \bigm| 1 - \psi rm
\lambda j

(tm - 1)
\bigm| \bigm| \bigm| .

In particular, we see that the third term converges spectrally as rm \rightarrow \infty .

4.3. Stability of inhomogeneous problem. Let us now turn to the stability
of the fully discrete dG discretization (2.3)--(2.4) of the linear parabolic problem (1.2).

Theorem 4.4 (L\infty (\BbbH )-stability of the dG time stepping method). For any 1 \leq 
m \leq M, the fully discrete dG time stepping solution U \in 

\prod M
m=1 \BbbP rm(Im;\BbbX m) from

(2.3) fulfills the stability estimate

(4.10) \| U\| L\infty ((0,tm);\BbbH ) \leq \| \pi 0u0\| \BbbH + \gamma mt
1/2
m \| f\| L2((0,tm);\BbbH ) .

Here, we let \gamma m := max1\leq i\leq m Ci, where, for 1 \leq i \leq M , the constant Ci is defined
in (4.6).

Proof. For 1 \leq i \leq m, we invert (2.12) to infer the solution formula

(4.11) U | Ii = (\Gamma ri
i ) - 1(\sansL rii (\pi iU

 - 
i - 1)) + (\Gamma ri

i ) - 1(\Pi ri
i f) = \Psi ri + (\Gamma ri

i ) - 1(\Pi ri
i f),

where \Psi ri is the solution from (4.8). Then, Lemma 4.2 implies that

\| U\| L\infty (Ii;\BbbH ) \leq \| U - 
i - 1\| \BbbH +

\bigm\| \bigm\| (\Gamma ri
i ) - 1(\Pi ri

i f)
\bigm\| \bigm\| 
L\infty (Ii;\BbbH )

.

Furthermore, employing (4.5), together with the L2(Ii;\BbbH )-stability of \Pi ri
i , we have

(4.12)
\bigm\| \bigm\| (\Gamma ri

i ) - 1(\Pi ri
i f)

\bigm\| \bigm\| 
L\infty (Ii;\BbbH )

\leq Cik
1/2
i \| \Pi ri

i f\| L2(Ii;\BbbH ) \leq Cik
1/2
i \| f\| L2(Ii;\BbbH ) .
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This yields the bound

(4.13) \| U\| L\infty (Ii;\BbbH ) \leq \| U - 
i - 1\| \BbbH + Cik

1/2
i \| f\| L2(Ii;\BbbH ) .

Now select i \star \in \{ 1, . . . ,m\} such that \| U\| L\infty ((0,tm);\BbbH ) = \| U\| L\infty (Ii \star ;\BbbH ). Then,

with (4.13) it holds that

\| U\| L\infty ((0,tm);\BbbH ) \leq \| U - 
i \star  - 1\| \BbbH + Ci \star k

1/2
i \star \| f\| L2(Ii \star ;\BbbH ) .

In order to estimate the first term on the right-hand side of the above inequality, we
iterate the bound (4.13), thereby yielding

\| U\| L\infty ((0,tm);\BbbH ) \leq \| U\| L\infty (Ii \star  - 1;\BbbH ) + Ci \star k
1/2
i \star \| f\| L2(Ii \star ;\BbbH )

\leq \| U - 
i \star  - 2\| \BbbH +

i \star \sum 
i=i \star  - 1

Cik
1/2
i \| f\| L2(Ii;\BbbH )

...

\leq \| U - 
0 \| \BbbH +

i \star \sum 
i=1

Cik
1/2
i \| f\| L2(Ii;\BbbH ) .

(4.14)

Recalling (2.4) and applying the Cauchy--Schwarz inequality, we obtain

\| U\| L\infty ((0,tm);\BbbH ) \leq \| \pi 0u0\| \BbbH + \gamma m

\Biggl( 
m\sum 
i=1

ki

\Biggr) 1/2\Biggl( m\sum 
i=1

\| f\| 2L2(Ii;\BbbH )

\Biggr) 1/2

,

and the proof is complete.

Remark 4.5. Recalling (4.6) and exploiting (3.53), we infer a (rough) estimate
for \gamma m from (4.10), namely \gamma m \leq max1\leq i\leq m Ci \leq 

\surd 
6 + 1. In particular, \gamma m is

uniformly bounded with respect to any discretization parameters.

Remark 4.6. Revisiting (3.43) and invoking (3.53), for any w \in \BbbP rm(Im), we
deduce the bound

(4.15)
\bigm\| \bigm\| \bigm\| (\Gamma rm

\lambda ,m) - 1(w)
\bigm\| \bigm\| \bigm\| 
L\infty (Im)

\leq \widetilde CL2

\lambda ,rm\lambda 
 - 1/2 \| w\| L2(Im) ,

where \widetilde CL2

\lambda ,rm
:= (2 - e - \lambda km)(km\lambda )

1/2\Upsilon 3.28(rm, km\lambda )+2 - 1/2. Similarly as in (3.53) it is

immediately verified that \widetilde CL2

\lambda ,rm
is uniformly bounded with respect to km, rm, and \lambda .

Now, proceeding as in the proof of Proposition 4.1, and utilizing (4.15), we obtain

\bigm\| \bigm\| (\Gamma rm
m ) - 1(w)

\bigm\| \bigm\| 2
L\infty (Im;\BbbH )

\leq 
nm\sum 
i=1

\bigm\| \bigm\| \bigm\| (\Gamma rm
\lambda i,m

) - 1(ai)
\bigm\| \bigm\| \bigm\| 2
L\infty (Im)

\leq \widetilde C2
m

nm\sum 
i=1

\lambda  - 1
i \| ai\| 2L2(Im) ,

with \widetilde Cm := max1\leq i\leq nm
\widetilde CL2

\lambda i,rm
. Invoking (4.3), this transforms into\bigm\| \bigm\| (\Gamma rm

m ) - 1(w)
\bigm\| \bigm\| 
L\infty (Im;\BbbH )

\leq \widetilde Cm\alpha 
 - 1/2
1.3 \| w\| L2(Im;\BbbX  \star ).

Then, the bound (4.12) is modified to\bigm\| \bigm\| (\Gamma rm
m ) - 1(\Pi rm

m f)
\bigm\| \bigm\| 
L\infty (Im;\BbbH )

\leq \widetilde Cm\alpha 
 - 1/2
1.3 \| \Pi rm

m f\| L2(Im;\BbbX  \star ) \leq \widetilde Cm\alpha 
 - 1/2
1.3 \| f\| L2(Im;\BbbX  \star ) ,
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where the projection \Pi rm
m needs to be extended to L2(Im;\BbbX  \star ); cf. [24, eq. (10)].

Thereby, we obtain the following analogue to (4.13):

\| U\| L\infty (Ii;\BbbH ) \leq \| U - 
i - 1\| \BbbH + \widetilde Ci\alpha 

 - 1/2
1.3 \| f\| L2(Ii;\BbbX  \star ) .

Adding as in (4.14), we arrive at

\| U\| L\infty ((0,tm);\BbbH ) \leq \| U - 
0 \| \BbbH + \alpha 

 - 1/2
1.3

m\sum 
i=1

\widetilde Ci \| f\| L2(Ii;\BbbX  \star ) .

We emphasize that, in contrast to the bound derived in (4.14), there are no lo-

cal scaling factors k
1/2
i in the previous estimate. Consequently, when aiming at a

global L2((0, tm);\BbbX  \star ) norm of the data f , the application of the Cauchy--Schwarz in-
equality causes an unfavorable m-dependence (i.e., the number of time steps) in the
resulting bound:

(4.16) \| U\| L\infty ((0,tm);\BbbH ) \leq \| \pi 0u0\| \BbbH + \widetilde \gamma mm1/2 \| f\| L2((0,tm);\BbbX  \star ) ;

here, \widetilde \gamma m := max1\leq i\leq m
\widetilde Ci. We underline that (4.16) is relevant, for instance, in the

spectral context, where rm \rightarrow \infty , m = 1, . . . ,M , on a small number M of (possibly
large) time steps.

Remark 4.7. For t \in Im, the solution of the linear parabolic problem (1.2) is given
by

u(t) = e - \sansA (t - tm - 1)u(tm - 1) +

\int t

tm - 1

e - \sansA (t - s)f(s) \sansd s.

Hence, recalling the solution formula (4.11) for the discrete problem on Im, we have

u(t) - U(t) = \frakH (t) + \frakI (t), t \in Im,

where the terms \frakH (t) = e - \sansA (t - tm - 1)u(tm - 1) - \Psi rm(t), with \Psi rm from (4.8), and

\frakI (t) =

\int t

tm - 1

e - \sansA (t - s)f(s) \sansd s - (\Gamma rm
m ) - 1(\Pi rm

m f)(t)

correspond to the homogeneous and inhomogeneous part of the PDE, respectively.
Here, to bound the error \| u - U\| L\infty (Im;\BbbH ), we can employ our previous analysis from

Remark 4.3 to control \| \frakH \| L\infty (Im). Additionally, in order to estimate \| \frakI \| L\infty (Im), let

\Pi rm
m f =

\sum nm

i=1 fi(t)\varphi i be the spectral decomposition of \Pi rm
m f . By Proposition 4.1 and

Corollary 3.13 we have that (\Gamma rm
m ) - 1(\Pi rm

m f) =
\sum nm

i=1(\Gamma 
rm
\lambda i,m

) - 1(fi)\varphi i, and thus

(\Gamma rm
m ) - 1(\Pi rm

m f)

=

nm\sum 
i=1

 - \sanse \lambda i,m(t)

\sanse \lambda i,m(tm - 1)

\int 
Im

fi(s)\phi 
rm
\lambda i

(s) \sansd s+

\int t

tm - 1

nm\sum 
i=1

e - \lambda i(t - s)fi(s)\varphi i \sansd s

=

nm\sum 
i=1

 - \sanse \lambda i,m(t)

\sanse \lambda i,m(tm - 1)

\int 
Im

fi(s)\phi 
rm
\lambda i

(s) \sansd s+

\int t

tm - 1

e - \sansA m(t - s)\Pi rm
m f(s) \sansd s.
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Then,

\frakI (t) =

nm\sum 
i=1

\sanse \lambda i,m(t)

\sanse \lambda i,m(tm - 1)

\int 
Im

fi(s)\phi 
rm
\lambda i

(s) \sansd s+

\int t

tm - 1

e - \sansA (t - s) (f(s) - \Pi rm
m f(s)) \sansd s

+

\int t

tm - 1

\Bigl( 
e - \sansA (t - s)  - e - \sansA m(t - s)

\Bigr) 
\Pi rm

m f(s) \sansd s.

We notice that the second integral is a data approximation term (which, with the aid
of stability, can be estimated further), and the third integral relates to the spatial
Galerkin discretization. Incidentally, the second term in (4.9) and the third integral
above add to the semidiscrete error in space; cf. [25, section 6]. Moreover, recall-
ing (3.52), the first term can be estimated by\bigm| \bigm| \bigm| \bigm| \bigm| 

nm\sum 
i=1

\sanse \lambda i,m(t)

\sanse \lambda i,m(tm - 1)

\int 
Im

fi(s)\phi 
rm
\lambda i

(s) \sansd s

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 2

nm\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \int 
Im

fi(s)\phi 
rm
\lambda i

(s) \sansd s

\bigm| \bigm| \bigm| \bigm| .
Even though both sides of the the above inequality are computable, we could pro-
ceed as follows by means of the Cauchy--Schwarz inequality (which results in a more
pessimistic bound):

nm\sum 
i=1

\bigm| \bigm| \bigm| \bigm| \int 
Im

fi(s)\phi 
rm
\lambda i

(s) \sansd s

\bigm| \bigm| \bigm| \bigm| \leq 
\Biggl( 

nm\sum 
i=1

\| fi\| 2L2(Im)

\Biggr) 1/2\Biggl( nm\sum 
i=1

\bigm\| \bigm\| \phi rm\lambda i

\bigm\| \bigm\| 2
L2(Im)

\Biggr) 1/2

.

While the first term on the right-hand side of the above inequality can be bounded
by \| f\| L2(Im;\BbbH ) the second term can be estimated by means of Lemma 3.7.
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