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Summary

In the present paper, we describe a new simple stereological method of estimating

volume tensors in 3D from vertical sections. The volume tensors provide information

about particle shape in 3D. In a model-based setting, the method requires that the

particle distribution is invariant under rotations around the vertical axis. In a design-

based approach, where the vertical section is uniformly rotated around the vertical

axis, the method provides information about an index of elongation of the particles

in the direction of the vertical axis. The method has been implemented on human

brain tissue for the analysis of neurons in layer III of the medial frontal gyrus of
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Brodmann Area 46. In the actual implementation, the new estimator shows similar

precision as an earlier estimator, based on an optical rotator design, but it is a

factor 3 faster to collect the measurements for the new estimator. Furthermore, the

calculations needed for determining the new estimator are much simpler.

Keywords: Particle processes, rotational invariance, shape, stereology, vertical sec-

tions, volume tensors.

1 Introduction

Recently, stereological methods of estimating particle shape in 3D have been devel-

oped for arbitrarily shaped particles (??). The methods use volume tensors of rank

0, 1 and 2, from which ellipsoidal approximations to the particles can be constructed.

Earlier methods provided information about shape of 2D particle sections (????).

In particular, 2D analogues of volume tensors were used to describe shape of cell

sections (???).

In ? and ?, the volume tensors in 3D are estimated from observations in several

optical planes through a sample of particles. The design is called the optical rotator

and has earlier been used for estimating particle volume and surface area (?).

As shown in the recent book chapter ?, a much simpler alternative method,

which is a generalization of the planar vertical rotator (?), can be constructed. This

method uses measurements in a single optical plane, passing through a reference

point of each sampled particle. As for the classical local stereological methods, a

basic assumption for applying the method is thus that a unique reference point can

be associated to each particle.

The purpose of our paper is to present this new and simple method to scientists

working in optical light microscopy. In a model-based setting, the method requires

that the particle distribution is invariant under rotations around the vertical axis.

As a new contribution, we show in this paper that the estimators may also be used
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in a design-based setting where the vertical section is uniformly rotated around the

vertical axis. In this design-based approach, we do not need to assume rotational

invariance and the method provides information about an index of elongation of the

particles in the direction of the vertical axis.

The method has been implemented on human brain tissue for the analysis of

neurons in layer III of the medial frontal gyrus of Brodmann Area 46. This area

was chosen, since it has been the subject of studies related to schizophrenia and

depression (??????). Methods of assessing the precision of the new estimator, based

on a bootstrap procedure, are also provided.

The paper is organized as follows. First, we introduce the volume tensors. Then,

we discuss inference for particle populations and show how the mean particle volume

tensors can be estimated, using the planar vertical rotator design. Finally, volume

tensor data collected on neurons from a human brain in layer III of the medial

frontal gyrus of Brodmann Area 46 are analyzed. Data, using the planar rotator

as well as the optical rotator, are available on the same set of neurons. Finally, we

discuss our results and further research questions. Some derivations are deferred to

two Appendices.

2 Volume tensors

In this section, we introduce the volume tensors in R3 and show how they can be

used for obtaining information about size, position, shape and orientation of a spatial

particle.

Let k be a non-negative integer. The volume tensor of rank k associated with a

particle X (compact subset of R3) is given by

Tk(X) =
1

k!

∫
X

xk dx, (1)

where xk is the symmetric tensor of rank k, determined by x = (x1, x2, x3) ∈ R3, and
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the integration is with respect to volume (Lebesgue) measure in R3. Here, x0 = 1

and x1 = x, while x2 is the symmetric 3 × 3 matrix with elements (x2)i,j = xixj,

i, j = 1, 2, 3. For general k, the tensor xk can be represented as a k-dimensional

array. The integration in (??) is to be understood elementwise.

We will focus on volume tensors of rank 0, 1 and 2. The volume tensor of rank 0

T0(X) =

∫
X

1 dx = V (X)

is simply the volume of X, while the volume tensor of rank 1 is the following point

in R3

T1(X) =

(∫
X

x1 dx,

∫
X

x2 dx,

∫
X

x3 dx

)
.

It follows that T1(X)/T0(X) is the centre of mass c(X) of X, indicating the position

of X in R3. The volume tensor of rank 2 can be represented as a 3× 3 matrix with

(i, j)’th entry

T2(X)i,j =
1

2

∫
X

xixj dx, i, j = 1, 2, 3.

Combining T0(X), T1(X) and T2(X), we can obtain information about the shape

and orientation ofX. Thus, these tensors can be used to construct a centred ellipsoid

e(X) of the same volume as X such that c(X)+e(X) is an ellipsoidal approximation

to X, cf. Figure ??. If X is an ellipsoid, then X = c(X) + e(X). The ellipsoid e(X)

can be determined from a spectral decomposition of T2(X − c(X)),

T2(X − c(X)) = T2(X)− T1(X)2

2T0(X)
= BΛBT ,

where B is an orthogonal matrix and Λ is a diagonal matrix with diagonal elements

λi, i = 1, 2, 3. The ellipsoid e(X) is determined by having directions of semi-axes

equal to the columns of B, lengths of semi-axes proportional to
√
λi, i = 1, 2, 3, and

volume equal to V (X).
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— Figure ?? here —

3 Inference for particle populations

In the present paper, we are interested in making inference for a particle population

at the population level. Parameters of interest are, for instance, mean particle volume

and mean particle shape.

We will assume that we can associate a reference point x(X) ∈ X to each

particle X. We let T̄k, k = 0, 1, 2, be the mean particle volume tensor of rank k,

where each particle X enters in the mean with its own reference point x(X) as

origin. For k = 0, we get the mean particle volume v̄ = T̄0, while c̄ = T̄1/T̄0 is the

so-called displacement vector (?, p. 232), containing information about the average

difference between the centre of mass and the reference point of the particles in the

population. See Figure ?? for an illustration.

Furthermore, a centred ellipsoid ē can be constructed that provides information

about average particle shape and orientation. The ellipsoid ē is called the Miles

ellipsoid after Roger Miles who was a pioneer in the development of stereological

methods for particle populations with arbitrarily shaped particles. The Miles ellip-

soid is determined from T̄0, T̄1 and T̄2, using exactly the same method as the one

used for determining e(X) from T0(X), T1(X) and T2(X). If the particles are trans-

lations of the same particle X0, then the Miles ellipsoid is simply the approximating

ellipsoid e(X0). The concept of the Miles ellipsoid is also illustrated in Figure ??.

Further illustrations of the displacement vector and the Miles ellipsoid may be found

in ?, Fig. 3.

— Figure ?? here —
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The estimates of the mean particle volume tensors will be based on a random

sample of particles. One possibility is to sample all particles with reference point in

a 3D sampling window W . In the case of disector sampling (?), W may be a set of

systematically placed sampling boxes. If we let S be the set of sampled particles, an

estimator of T̄k is the following

1

N(W )

∑
X∈S

Tk(X − x(X)), (2)

k = 0, 1, 2, where N(W ) is the number of sampled particles. The estimator (??)

is ratio-unbiased if W has a uniform random position (design-based approach) or

the particles can be modelled by a stationary point process model (model-based

approach, see Appendix A).

However, for the determination of the estimator (??), we need to be able to

determine the volume tensors Tk directly on the sampled spatial particles. For the

case where we do not have direct access to the particles in 3D, an estimator of Tk

based on observation in an optical rotator, consisting of several optical planes, has

been developed in ?. As we shall see in the next section, a much simpler alternative

method can be constructed based on observations in a planar vertical rotator.

4 Estimation using the planar vertical rotator

In this section, we present an estimator of T̄k that only uses measurements in vertical

planes passing through the reference points of the sampled particles.

The estimator is valid in a model-based setting if the particles can be modelled by

a stationary marked point process, satisfying the assumption of rotational invariance

with respect to a predetermined fixed axis, called the vertical axis. (We use this

terminology for the axis also in cases where it is not vertical.) For the use of the

estimator in a design-based set-up, see the next section.

The particle process is rotation invariant, if the particle distribution is invariant
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under rotations around the vertical axis. Under rotational invariance, the vertical

axis represents the average orientation of the particles in 3D and, as we shall see,

the mean particle shape in 3D can be estimated from observations in vertical planes.

The point process model is described in detail in Appendix A where also rotational

invariance is formally defined.

The design used for each sampled particle X is a new, innovative application

of the planar vertical rotator design (?), involving registration of 3D coordinates

of intersection points. The design consists of a plane, passing through the reference

point of the particle, taken here to be the origin O. The plane contains the vertical

axis, see Figure ??. The section is subsampled by a systematic set of alternating

half lines, perpendicular to the vertical axis.

— Figure ?? here —

In ?, p. 427–429, ratio-unbiased estimators of T̄k are derived under the rotational

invariance assumption. (In ?, ‘rotational invariance’ was called ‘restricted isotropy’.)

The estimators T̂k are of the following form

T̂k =
1

N(W )

∑
X∈S

T̃k([X − x(X)] ∩ L), (3)

where L is the notation used for the vertical plane. The ratio-unbiasedness relies

on the fact that under rotational invariance the distribution of size, orientation and

shape of the section profiles {[X − x(X)]∩L} does not depend on the rotation of L

around the vertical axis. An illustration of this property may be found in ?, Fig. 10.

In Appendix A, the explicit form of T̃k is derived for k = 0, 1, 2. Here, we explain

the measurements and calculations needed for determining T̃k. For a sampled particle

X with reference point O, T̃k(X ∩L) is a sum over half lines. We use the same type

of notation as for rotator measurements (?). We number the intersection points

between the i’th half line and the boundary of X according to decreasing distance
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to the vertical axis, using number 0 for the most distant intersection point. We let

lij be the distance from the j’th intersection point on the i’th half line to the vertical

axis, cf. Figure ??.

— Figure ?? here —

Define the so-called squared ray distance for the i’th half line by

l2i =
∑
j even

l2ij −
∑
j odd

l2ij.

Likewise, the power-4 ray distance is defined as

l4i =
∑
j even

l4ij −
∑
j odd

l4ij.

Let zi be the (signed) distance from O to the i’th half line. If we let t be the distance

between neighbour half lines and choose a coordinate system such that the vertical

plane L is the xz-plane and the vertical axis is the z-axis, then we have

T̃0(X ∩ L) = πt
∑
i

l2i , (4)

T̃1(X ∩ L) = (0, 0, πt
∑
i

zil
2
i ), (5)

T̃2(X ∩ L) =


π
8
t
∑

i l
4
i 0 0

0 π
8
t
∑

i l
4
i 0

0 0 π
2
t
∑

i z
2
i l

2
i

 . (6)

In Table ??, the calculations are illustrated for the profile shown in Figure ??.

— Table ?? here —

The estimator of volume already appeared in ?. Note that the calculations needed
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for determining (??)-(??) are much simpler than the ones appearing in ?, p. 231

where the optical rotator was used instead of the planar vertical rotator.

Under the assumption of rotational invariance, the mean particle volume is esti-

mated by v̂ = T̂0 and the displacement vector by ĉ = T̂1/T̂0. An estimator ê of the

Miles ellipsoid can be calculated from T̂0, T̂1 and T̂2, using the same procedure as

the one used for constructing e(X) from T0(X), T1(X) and T2(X).

Note that the estimated displacement vector ĉ is parallel to the vertical axis.

Furthermore, the estimated Miles ellipsoid ê is an ellipsoid of revolution around the

vertical axis, since

T̂2 −
(T̂1)

2

2T̂0

is a diagonal matrix with first and second diagonal elements equal. Under rotational

invariance, the same is true for the theoretical quantities c̄ and ē, see Appendix A.

5 Relaxing the rotational invariance assumption

When rotational invariance is satisfied, it is not needed to rotate the vertical planes

around the vertical axis. However, if rotational invariance is not a plausible model

assumption, one may instead adopt a design-based approach and use vertical planes

that are uniformly rotated around the vertical axis. More specifically, rotational

invariance may be introduced into the model by letting the vertical plane L, used

in the estimators T̂k in (??), have a uniform rotation around the vertical axis. An

equivalent description of the situation is that each centred particle X−x(X) is given

a random rotation and then sectioned by a fixed vertical plane L0, say. The induced

particle model satisfies the rotational invariance assumption.

Thus, in a design-based approach, we can use exactly the same measurements

and calculations as in the model-based approach. The resulting estimates v̂, ĉ and

ê, determined as explained in the previous section, now refer to the induced parti-

cle population where each centred particle is given a uniform rotation around the
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vertical axis.

Since a rotation does not change volume, v̂ is still an unbiased estimator of the

mean particle volume v̄. But, unless the original particle population satisfies the

rotational invariance assumption, the displacement vector and the Miles ellipsoid in

the induced model may differ from those of the original particle model. As explained

in Appendix A, the displacement vector in the induced model is equal to the pro-

jection onto the vertical axis of the displacement vector c̄ in the original particle

model, so ĉ becomes an estimator of the projection onto the vertical axis of the

displacement vector c̄.

In this design-based approach, the estimator ê of the Miles ellipsoid in the induced

model may be used to estimate an index I of elongation of the particles in the

direction of the vertical axis. The Miles ellipsoid in the induced model is an ellipsoid

of revolution around the vertical axis. If the lengths of the semi-axes of this ellipsoid,

parallel and perpendicular to the vertical axis, are denoted a and b, respectively, then

the elongation index I is

I = a/b.

Large values of I indicate elongation in the direction of the vertical axis. The index

I takes the value 1, if the original particle population is isotropic. More details about

this index may be found in Appendix A.

6 Practical implementation of tensors in

optical light microscopy

In this section and the next, we exemplify the estimation of volume tensors, using the

design-based approach with the planar vertical rotator, as explained in the previous

sections. The resulting estimator (??) of the volume tensor of rank k will here

be called the section estimator. We will compare the performance of the section

10



estimator with that of the estimator developed in ?, based on the optical rotator

design. The latter estimator will be called the slice estimator.

The two types of volume tensor estimation methods were used on the same set of

neurons from a 40 µm thick section from layer III of the medial frontal gyrus (MFG)

of Brodmann Area 46 (BA46) in the human cerebral cortex (??). One formalin-fixed

brain from a male patient with no history of neurological condition was selected from

the brain collection at Core Centre for Molecular Morphology, Section for Stereol-

ogy and Microscopy, Aarhus University Hospital, Aarhus, Denmark. The brain was

collected in accordance with Danish law and with permission from the local ethical

committee, see case no. 1-10-72-91-17. Data were obtained, using an Olympus BX51

light microscope with Olympus DP70 camera, an Olympus 60x oil lens (NA=1.35),

prior motorized stage and newCAST software (Visiopharm, Hørsholm, Denmark).

The sampling of tissue is illustrated in Figure ??. Initially, BA46 was identified

at the macroscopic level and the vertical axis was defined perpendicular to the

pial surface. The tissue block was rotated uniformly around the vertical axis and

placed in a container with 7% agar. After the agar was hardened, the block was

cut into 2.5 mm thick parallel vertical slabs. Each slab was subsequently embedded

in glycolmethacrylate (Technovit 7100) and cut into 40 µm sections, stained with

a Toluidinblue-Borax Solution (1.33 mL Toluidinblue-Borax in 98.67 mL distilled

water) for 30 min, submerged in distilled water for 2 min, air dired, mounted with

Eukitt and covered with 120 µm thick cover slips. The sample area was taken from

the central gyral part of BA46, marked as a yellow rectangle in Figure ?? and

was analyzed with a systematic set of disectors, resulting in 111 sampled neurons.

The nucleolus of a neuron was used as reference point in the sampling. Figure ??

illustrates the collection of measurements for a sampled neuron, required for the

section estimator. In the actual implementation, n = 4 half lines were used. An

illustration of the measurements required for the slice estimator may be found in

?, Fig. 7. Three optical planes were used for analysis of a sampled neuron and
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each optical plane was analyzed by two full lines. Since the expected number of

intersection points is three times larger for the slice estimator than for the section

estimator, the expected workload associated with the slice estimator is three times

larger than that of the section estimator.

— Figure ?? here —

— Figure ?? here —

— Figure ?? here —

7 Tensor data analysis

In Table ??, we show the estimated mean particle volume v̂, the signed length of

the estimated displacement vector ĉ, the lengths of the semi-axes of the estimated

Miles ellipsoid ê and the estimated elongation index, based on the section and the

slice estimators, respectively. Recall that the elongation index is the ratio between

the lengths of the semi-axes parallel and perpendicular to the vertical axis. Since we

have taken a design-based approach and rotated the tissue block uniformly around

the vertical axis, we do not need to assume rotational invariance and, in this case, ĉ

estimates the average distance along the vertical axis from the nucleolus to the centre

of mass of a neuron. Likewise, as explained earlier, the estimate of the elongation

index is valid without rotational invariance.

— Table ?? here —
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The estimated mean particle volumes, based on the section and the slice esti-

mator, are quite similar and in fact equal to volumes of balls of radii 10.77 µm and

10.99 µm, respectively. As a further investigation, we plot in Figure ?? the estimated

particle volume, based on the slice estimator, against the estimated particle volume,

based on the section estimator, for each of the 111 sampled neurons separately.

— Figure ?? here —

It is of course important to know the precision of the estimates, presented in

Table ??. The variance of the volume estimators v̂ can be estimated by the em-

pirical variance. The displacement vector is estimated by a ratio so, using a Taylor

expansion of the ratio combined with empirical variances/covariances, we can ob-

tain an estimate of the variance of the signed length of the displacement estimator.

Estimation of the variances of the quantities relating to the Miles ellipsoid is more

complicated. However, for any of the estimators, we can use classical resampling

bootstrap to assess the variance, assuming that our sample is at least approximately

independent and identically distributed (?). The results are given in Table ??. The

alternative variance estimation methods mentioned above gave similar results, when

applicable.

— Table ?? here —

Part of the variance of the section estimator is due to the random positioning of

the half lines on the neuron profiles. For the slice estimator, the random positioning

of the three optical planes and the lines within the optical planes contribute to the

variance. In order to assess the magnitude of this design variance in relation to

the total estimator variance, we performed 5 repeated measurements of 20 sampled

neurons. Since the sampled neurons come from the same vertical slab, the remaining
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part of the total estimator variance includes variability due to the rotation of the

slab around the vertical axis.

We will focus on estimation of mean particle volume, displacement and elongation

index. The obtained estimates based on all data are shown in Table ??, together

with the average time spent collecting a single set of measurements on one sampled

neuron. Note that the estimated mean particle volumes, based on the section and

the slice estimator, equal volumes of balls of radii 11.4 µm and 11.7 µm, respectively.

Note also that the time is approximately a factor 3 larger for the slice estimator

than for the section estimator.

— Table ?? here —

In Tables ??–??, we assess the precision of the estimator of volume, displacement

and elongation index in the case when a single set of measurements is available for

20 neurons. A bootstrap procedure can be used for this assessment, see Appendix B.

In Table ??, we show the components of the estimated variance for the mean

particle volume estimator. The variance estimates have been determined empirically

and by a bootstrap procedure, see Appendix B. When using bootstrap, the total

variance may either be estimated as the sum of the average design variance and the

particle variance (indicated by (+) in Table ??) or by a separate procedure. Note

that the obtained coefficient of variation (CV) is 17% for both the section and the

slice estimator. This is the precision of the estimated mean particle volume, when

using a single set of measurements on 20 neurons.

— Table ?? here —

The components of the estimated variance of the displacement estimator, based

on a single set of measurements on 20 neurons, may be found in Table ??. An

estimate of the bias of the estimator of the signed length of the displacement may
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also be found in Table ??. As explained in Appendix B, the variance components

may in the case of the section estimator be estimated, using a Taylor expansion or

a bootstrap method. The estimated bias is small in absolute terms. Note that the

displacement estimates obtained by the section and slice estimators in Table ?? are

not significantly different, according to the estimated SDs in Table ??.

— Table ?? here —

In Table ??, the results for the elongation index shows a CV of 12% and 8% for

the section and slice estimators, respectively. The estimated bias is again small in

absolute terms.

— Table ?? here —

In Tables ??–??, the section and the slice estimator show similar performance,

regarding bias and variance. However, the time spent for determining the slice esti-

mator is a factor 3 longer than for the section estimator.

8 Discussion

In the present paper, we have described a new, simple stereological method of esti-

mating volume tensors in 3D from vertical sections. In contrast to the earlier method,

based on observation in several optical planes, see ?, the new method is less sensitive

to tissue shrinkage in the direction of the z-axis, because for each sampled particle

the section estimator only uses measurements in one optical plane, perpendicular to

the z-axis. The section estimator is therefore not only useful for plastic sections but

also for frozen or vibratome (agar embedding) sections, since these sections mainly

shrink in the z-direction. Furthermore, in the examples considered in the present

paper and in earlier simulation studies (?), the new estimator is more efficient than
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the one presented in ?. Also, the calculations needed for determining the section

estimator are much simpler than those needed for the slice estimator.

Methods of assessing the bias and the precision of the new estimator, based on

a bootstrap procedure, have also been provided in the present paper. Note that the

estimator of mean particle volume is unbiased, while the estimators of displacement

and elongation index may be biased to a degree, depending on the number of sampled

particles. In the example, we found that the bias was small and in fact negligible if

100 neurons were sampled. The CVs obtained with 100 neurons were about 5% for

volume and elongation while about 15% for displacement.

In a model-based setting, the new method requires that the particle population

satisfies the assumption of rotational invariance with respect to the chosen vertical

axis. A consequence of rotational invariance, that can be checked with the available

observations, is the following. For each particleX, consider the profileX∩(x(X)+L),

generated by the vertical plane centred at the reference point x(X) of the particle.

Reflect within x(X) + L the profile in the vertical axis through x(X). If rotational

invariance is satisfied, the distribution of the reflected profiles will be the same as

the distribution of the original profiles.

It is part of our future research plans to develop such procedures for checking

rotational invariance. In the actual example from BA46, considered in the present

paper, we adopted the design-based approach and used a vertical plane that was

uniformly rotated around the vertical axis. This approach allowed us to estimate

mean particle volume, the displacement in the direction of the vertical axis and the

elongation index.
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Appendix A – model-based approach

The particle population of compact particles in R3 is modelled by a stationary

marked point process

{[x(X);X − x(X)]},

where x(X) ∈ X is a reference point of the particle X and the mark X − x(X) is

the particle translated such that its reference point is at the origin O.

Let X0 be a random compact set distributed according to the particle mark

distribution. The random set X0 may be considered as a typical particle with O as

its reference point. In this model-based approach, the mean particle volume tensor

of rank k is given by T̄k = ETk(X0).

The estimator (??) is ratio-unbiased under this model-based approach. To see

this, we use that for a function f on compact subsets of R3

E
∑
X∈S

f(X − x(X)) = E
∑

x(X)∈W

f(X − x(X)) = λV (W )Ef(X0),

where λ = EN(W )/V (W ) is the intensity of the marked point process. It follows

that
E
∑

X∈S f(X − x(X))

EN(W )
= Ef(X0). (7)
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Choosing f in (??) as the elements of Tk, we get

E
∑

X∈S Tk(X − x(X))

EN(W )
= ETk(X0),

and the estimator (??) is therefore a ratio-unbiased estimator of T̄k = ETk(X0).

The particle process is said to satisfy the rotational invariance assumption with

respect to a line M through O if the distribution of X0 is invariant under rotations

around M . The line M is called the vertical axis, although M may be an arbitrary

line.

It follows from ?, (14.10) with r = 1, 2 that, under the rotational invariance

assumption, the displacement vector c̄ = ET1(X0)/ET0(X0) is parallel to the vertical

axis and the Miles ellipsoid ē is a centred ellipsoid of revolution around the vertical

axis. In the particular case where the particle process is isotropic, c̄ = O and ē is a

ball centred at O with volume equal to the mean particle volume v̄.

We will now derive the explicit form of T̃k for k = 0, 1, 2, along the lines in ?, p.

427-428. Using the definition of volume tensors, we find

ETk(X0) =
1

k!
E
∫
X0

xk dx

=
1

k!
E
∫
R3

1{x ∈ X0}xk dx

=
1

k!

∫
R3

P{x ∈ X0}xk dx,

where 1{·} is the notation used for the indicator function. Using cylindrical coordi-

nates around the z-axis, we get

ETk(X0) =
1

k!

∫ ∞
z=−∞

∫ ∞
u=0

∫ 2π

θ=0

P ((u cos θ, u sin θ, z) ∈ X0)

×(u cos θ, u sin θ, z)ku dθ du dz.

Assuming rotational invariance with respect to the vertical axis, taken to be the
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z-axis, we find

ETk(X0) =

∫ ∞
z=−∞

∫ ∞
u=0

P ((u, 0, z) ∈ X0)fk(u, z) du dz,

where

fk(u, z) =
1

k!

∫ 2π

θ=0

(u cos θ, u sin θ, z)ku dθ,

and therefore,

ETk(X0) = E
∫
X0∩L+

fk(u, z) du dz,

where L+ is the following half plane

L+ = {(u, 0, z) : u > 0, z ∈ R}.

Using symmetry arguments, we finally get

ETk(X0) =
1

2
E
∫
X0∩L

fk(|u|, z) du dz,

where

L = {(u, 0, z) : u, z ∈ R}.

In conclusion,

Ťk(X0 ∩ L) =
1

2

∫
X0∩L

fk(|u|, z) du dz

is an unbiased estimator of ETk(X0).

Using the formula for fk(u, z) given in ?, p. 428, we get for k = 0

Ť0(X0 ∩ L) = π

∫
X0∩L

|u| du dz,

while

Ť1(X0 ∩ L) =
(

0, 0, π

∫
X0∩L

|u|z du dz
)
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and Ť2(X0 ∩ L) is a 3× 3 diagonal matrix with diagonal elements

Ť2(X0 ∩ L)11 = Ť2(X0 ∩ L)22 =
π

4

∫
X0∩L

|u|3 du dz

and

Ť2(X0 ∩ L)33 =
π

2

∫
X0∩L

|u|z2 du dz.

Note that any of these integrals can be determined from information only within

X0 ∩ L.

The estimators Ťk(X0 ∩ L) involve integrals of the form

∫
X∩L
|u|i1zi2 du dz, (8)

where X is a compact subset of R3 and i1, i2 are non-negative integers. Note that

i1 is always an odd integer. If the profile X ∩ L is not available in digitized form,

we may estimate the integral (??), using e.g. a line grid perpendicular to the z-axis.

Let L1(z) denote the line in L, perpendicular to the z-axis, at height z. Let z− and

z+ be the lowest and highest point of the projection of X ∩ L onto the z-axis. Let

n be the number of lines, used in the line grid. The set of lines in the line grid is

given by

L1(zi), i = 1, . . . , n,

where zi = U + i−1
n

(z+ − z−) and U ∼ Unif(z−, z− + z+−z−
n

). Using the notation t =

(z+− z−)/n from the main text, the integral (??) can then be estimated unbiasedly

by

t
n∑
i=1

∫
X∩L1(zi)

|u|i1 du× zi2i . (9)

Note that we may increase the efficiency of the estimation procedure by alter-

nately choosing the positive and the negative half line with a random start, as

shown in Figure ?? in the main text. In that case, the contribution from each half
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line should be multiplied by 2 in order to obtain an unbiased estimator of (??).

Let us consider the contribution from a half line L1+(zi). Define the power-α ray

distance as

lαi =
∑
j even

lαij −
∑
j odd

lαij

with lij as introduced in the main text. Then,

∫
X∩L1+(zi)

|u|i1 du× zi2i =
1

i1 + 1
li1+1
i zi2i .

Using half lines, we get that
2t

i1 + 1

n∑
i=1

li1+1
i zi2i

is an unbiased estimator of (??). From this result, (??)-(??) follow.

As mentioned in the main text, rotational invariance may be introduced into the

particle model by letting the vertical plane L in (??) be distributed as RL0, where

R is a uniform random rotation around M and L0 is a fixed vertical plane. The

estimator T̂k can then be rewritten as

T̂k =
1

N(W )

∑
X∈S

T̃k(R
−1[X − x(X)] ∩ L0),

where R−1 is the inverse rotation. So an equivalent description of the situation is

that each centred particle X − x(X) is given a uniform random rotation and then

sectioned by the fixed vertical plane L0.

The induced particle model

{[x(X);R−1(X − x(X))]}

satisfies the rotational invariance assumption with respect toM with typical particle

X̃0 = R−1X0. Using that R is a uniform random rotation around M , we get for any
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u ∈ R3

ER−1u = PMu,

where PM is the orthogonal projection onto M , and it follows that

ET1(X̃0) = PMET1(X0).

Since ET0(X̃0) = ET0(X0), the displacement vector in the induced model is therefore

equal to the projection of the displacement vector c̄ in the original model onto

the vertical axis M . Accordingly, in the design-based approach, T̂1/T̂0 becomes an

estimator of PM c̄.

As mentioned earlier, in the design-based approach we may imagine that each

centred particle X − x(X) is given a uniform random rotation around the vertical

axis. Remaining shape information is available in the Miles ellipsoid of the induced

model. Due to the fact that the induced model satisfies the rotational invariance

assumption, this Miles ellipsoid is an ellipsoid of revolution around the vertical axis.

The elongation index I is the ratio between the lengths of the semi-axes of this

ellipsoid, parallel and perpendicular to the vertical axis.

Appendix B – bootstrap methods

We have data of r = 5 repeated measurements for each of n = 20 neurons. The over-

all results (averaging over all 100 measurements) for the data are given in Table ??.

We have also used the data to assess the precision of the proposed estimators in the

case where a single set of measurements is available for each of n = 20 particles. For

this situation, Tables ??–?? summarize estimates of the different components of the

variance for the volume estimator, the displacement and the elongation index using

a bootstrap procedure (and a Taylor expansion approach where possible). For the

volume estimator, we also estimated the variances by the empirical counterparts.
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The bootstrap procedures work as follows. Let x = (xkj)k=1,...,20,j=1,...,5 be the

collection of (vectorized) volume tensors estimated five times for each of n = 20

particles from r = 5 iid repeated measurements. Our aim is to assess the precision

of the estimator of volume, displacement and elongation index in the case when

r = 1 measurement is available for n = 20 particles. For a set y = (yk)k=1,...,20 of

one set of measurements per particle, we denote any of these estimators by θ(y).

The overall estimate, averaging over all 100 measurements, is denoted by θ̄. The

estimators we consider are not necessarily unbiased, so we aim to assess their bias,

variance and coefficient of variation (CV) by a bootstrap procedure. To do so, we

draw B = 105 bootstrap samples, where we first pick a sample {k1, . . . , k20} with

replacement from the indices 1, . . . , 20 and then for each ki, we pick a random index

ji ∈ {1, . . . , 5}. Then, for each bootstrap sample b = ((ki, ji))i=1,...,20, we compute

θ∗b = θ((xki,ji)i=1,...,20).

We obtain the following bootstrap estimates of bias and variance

B̂ias =
1

B

∑
b

(θ∗b − θ̄)

V̂ar =
1

B − 1

∑
b

(
θ∗b −

1

B

∑
b

θ∗b

)2
(10)

where b denotes a bootstrap sample. This procedure was used to obtain the estimates

of the total variance in the second last line in Tables ??–??.

The variance of θ can be decomposed as follows

Var
(
θ(Y)

)
= E

(
Var(θ(Y)|P )

)
+ Var

(
E(θ(Y)|P )

)
(11)

where |P stands for “given the 20 particles” and Y is the random variable corre-

sponding to the observation y. We refer to the first part in the above decomposition

as the average design variance and to the second part as the particle variance.
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For a bootstrap estimate of the average design variance, we proceed as follows.

For k = 1, . . . , 20, we draw a bootstrap observation jk ∈ {1, . . . , 5}, and then we

compute the variance as in (??) using

θ∗D,b = θ((xkjk)k=1,...,20).

We also use a bootstrap procedure to estimate the particle variance. Here, we

draw bootstrap samples b = {k1, . . . , kn} of size n = 20 with replacement from

{1, . . . , 20} and use θ∗P,b to compute the variance as in (??), where

θ∗P,b = θ
((1

5

5∑
j=1

xkij

)
i=1,...,20

)
.

The bootstrap procedure yields two estimates of the total variance of θ(Y). One

is obtained directly and one is the sum of the two bootstrap estimates of the average

design variance and the particle variance. Both estimates agree well overall. The sum

is marked with a (+) in Tables ??–??.

For the volume estimators, we can alternatively estimate the total variance and

the components of the variance in (??) by the empirical counterparts. For the section

estimator used for the displacement, one can alternatively use a Taylor expansion

approximation to estimate the variance components. We have

T1
T0
≈ E(T1)

E(T0)
+

1

E(T0)

(
T1 − E(T1)

)
− E(T1)

E(T0)2
(
T0 − E(T0)

)
.
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Hence

Var

(
T1
T0

)
≈ Var(T1)

E(T0)2
− 2Cov(T1, T0)

E(T1)

E(T0)3
+ Var(T0)

E(T1)
2

E(T0)4
,

Var

(
T1
T0

∣∣∣∣P) ≈ Var(T1|P )

E(T0|P )2
− 2Cov(T1, T0|P )

E(T1|P )

E(T0|P )3

+ Var(T0|P )
E(T1|P )2

E(T0|P )4
,

Var
(
E
(
T1
T0

∣∣∣∣P)) ≈ Var(E(T1|P ))

E(T0)2
− 2Cov

(
E(T1|P ),E(T0|P )

) E(T1)

E(T0)3

+ Var(E(T0|P ))
E(T1)

2

E(T0)4
,

where our data allows us to estimate the quantities on the right hand side of the

second and third line by their empirical counterparts. We estimate the total variance

as the sum of the average design variance and the particle variance.
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Figures and Tables moved here

Figure 1: 2D illustration of the ellipsoidal approximation to a particle X (grey). Here,
c(X) is the centre of mass of X and e(X) is a centred ellipsoid, approximating X − c(X).
If X is an ellipsoid, X = c(X) + e(X).
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Figure 2: 2D illustration of the displacement vector c̄ and the Miles ellipsoid ē for a particle
population, consisting of an equal mixture of ellipses and circular disks. The centre of mass
of a particle is indicated by an open circle and the reference point by a closed circle.
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Figure 3: The particle X is sectioned by a vertical plane L, containing the vertical axis
(VA) and passing through the reference point O of the particle.
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Figure 4: Illustration of the measurements on a sampled profile. A systematic set of
alternating half lines, perpendicular to the vertical axis (VA), is used. The intersection
points on a given half line are numbered according to decreasing distance to VA, using
number 0 for the most distant intersection point. We let lij be the distance from the j’th
intersection point on the i’th half line to VA and zi is the (signed) distance from O to the
i’th half line. For more details, see the text.
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A

C

B

D

Figure 5: (A) The region BA46 is defined by its cytoarchitecture and is part of the
Dorsolateral Prefrontal Cortex (DLPFC) which can be identified at the macroscopic level.
(B) A coronal block of DLPFC. (C) The tissue block is rotated uniformly around a vertical
axis (VA), perpendicular to the central pial surface of the block. (D) After agar hardening,
the block is cut into 2.5 mm thick parallel vertical slabs. The slabs are embedded in
glycolmethacrylate (Technovit 7100) and subsequently cut into 40 µm thick sections that
are stained with a Toluidinblue-Borax solution before further analysis.
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MFG
IFG}

VA

}

3 mm

Figure 6: The sample area within the medial frontal gyrus (MFG) is marked with a yellow
rectangle. The inferior frontal gyrus (IFG) is also indicated. VA is the vertical axis.
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A

C

B

D

35 µm

Figure 7: Measurement steps for a sampled neuron in layer III of the medial frontal
gyrus in BA46, required for the section estimator. (A) A neuron in focus inside the optical
disector. (B) The nucleolus was chosen as the reference point and the pre-defined vertical
axis appears as a blue line. (C) The cell boundary in the vertical direction (top and bottom)
are marked. (D) Four half lines perpendicular to the vertical axis with uniform random
position appear. The intersection points between the neuron boundary and the half lines
are marked with +.
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Figure 8: For each of the 111 sampled neurons, the volume estimate, based on the slice
estimator, is plotted against the volume estimate, based on the section estimator. The
dotted line is the identity.
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Table 1: The table illustrates for a sampled particle X the measurements and calculations
on the profile that enter into the estimates of mean particle volume tensors of rank 0,1
and 2. The measurements are in arbitrary units and refer to the profile shown in Figure
??. The distance between neighbour half planes is t = 1.2. Using (??)-(??), we have
T̃0(X ∩L) = 30.50 and T̃1(X ∩L) = (0, 0, 1.39), while T̃2(X ∩L) is a diagonal matrix with
first and second diagonal element equal to 11.43 and third diagonal element equal to 27.95.

i li0 li1 li2 zi l2i zil
2
i z2i l

2
i l4i

1 2.1 1.4 0.9 1.4 3.26 4.564 6.3896 16.2626
2 1.4 0.2 1.96 0.392 0.0784 3.8416
3 1.2 -1.0 1.44 -1.440 1.4400 2.0736
4 1.2 0.1 -2.2 1.43 -3.146 6.9212 2.0735

Σ 8.09 0.370 14.8292 24.2513
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Table 2: For the sample of 111 neurons, the table shows the estimated mean particle
volume, the signed length of the estimated displacement vector, the lengths of the semi-
axes of the estimated Miles ellipsoid and the estimated elongation index, based on the
section and the slice estimators, respectively. For more details, see the text.

Section estimator Slice estimator

Volume (µm3) 5235 5558
Displacement (µm) 1.86 2.00
Parallel semi-axis (µm) 12.77 13.85
Perpendicular semi-axes (µm) 9.89 9.79
Elongation index 1.29 1.41
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Table 3: Estimated bias and coefficient of variation for the sample of 111 neurons. Since
the displacement vector may have zero length, the standard deviation is reported instead
of the coefficient of variation for this parameter. For more details, see the text.

Section estimator Slice estimator

Bootstrap Bootstrap

Volume CV 0.059 0.060

Displacement Bias −0.003 −0.001
SD 0.309 0.289

Parallel Bias 0.004 0.002
semi-axis CV 0.027 0.039

Perpendicular Bias −0.006 −0.002
semi-axes CV 0.026 0.027

Elongation Bias 0.002 0.002
index CV 0.035 0.051
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Table 4: The table shows for the section and the slice estimators, respectively, the esti-
mated mean particle volume, the signed length of the estimated displacement vector and
the estimated elongation index, based on 5 repeated measurements of 20 sampled neurons.
The average time spent collecting a single set of measurements on one sampled neuron is
also shown.

Section estimator Slice estimator

Volume (µm3) 6151 6747
Displacement (µm) 0.41 0.078
Elongation index 1.198 1.257

Time (s) 7.0 19.5
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Table 5: Components of the variance for volume estimators. For more details, see the text.

Section estimator Slice estimator

Empirical Bootstrap Empirical Bootstrap

Average design variance 12836 10291 76125 60149
Particle variance 1056755 1005402 1226403 1165501
Total variance 1069590 (+)1015693 1302528 (+)1225650

1027098 1230964

Total CV 0.168 0.165 0.169 0.164
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Table 6: Bias, variance and SD for the signed length of the displacement. For more details,
see the text.

Section estimator Slice estimator

Taylor Bootstrap Bootstrap

Bias — 0.047 0.017

Average design variance 0.050 0.093 0.100
Particle variance 0.941 0.877 0.719
Total variance 0.991 (+)0.970 (+)0.820

— 0.967 0.817

Total SD 0.995 0.983 0.904
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Table 7: Bias, variance and CV for the elongation index. For more details, see the text.

Section estimator Slice estimator

Bootstrap Bootstrap

Bias 0.0260 0.0044

Average design variance 0.0037 0.0035
Particle variance 0.0161 0.0060
Total variance (+)0.0198 (+)0.0095

0.0193 0.0095

Total CV 0.1160 0.0775
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