Open Access

Correction to: Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells

Adel Tekari¹, Samantha C. W. Chan^{1,2}, Daisuke Sakai^{3,5}, Sibylle Grad^{4,5} and Benjamin Gantenbein^{1,5*}

Correction to: Stem Cell Res Ther (2016) 7:75 https://doi.org/10.1186/s13287-016-0337-9

Following publication of the original article in Stem Cell Research & Therapy [1], we would like to alert the reader that the immune-histological sections shown in Fig. 2 bottom line are mistakenly the images from an experiment using a different Tie2+ antibody than originally reported in the manuscript (i.e. R&D, anti-human Tie2 labeled APC, cat.No:FAB3131A, clone:83715, mouse IgG) for the florescence associated cell sorting (FACS). This antibody has been previously tested in the group of Prof. Dr. Daisuke Sakai and was performed by Ms Tomoko Nakai, Tokai University. This antibody, however, was not found to be specific for bovine Tie2+ cells. The immune-histology procedure was correctly described using the PG antibody from Millipore. However, the pictures presented in Fig. 2 in the last raw in the article of Tekari et al. [1] are not from the same experiment using the Tie2 antibody from Bioss, inc. clone bs-1300R, Bioss Antibodies, Woburn, MA, USA, as the publication reported.

We have now fixed this issue by providing a new Fig. 2 using the reported Tie2 primary antibody from Bioss and the secondary antibody labeled with Alexa 488 (cat# A-11008, Molecular Probes, Life Technologies, Zug, Switzerland) for FACS sorting.

The corrected Material and Methods Section for this part on page 4 of the original article should read:

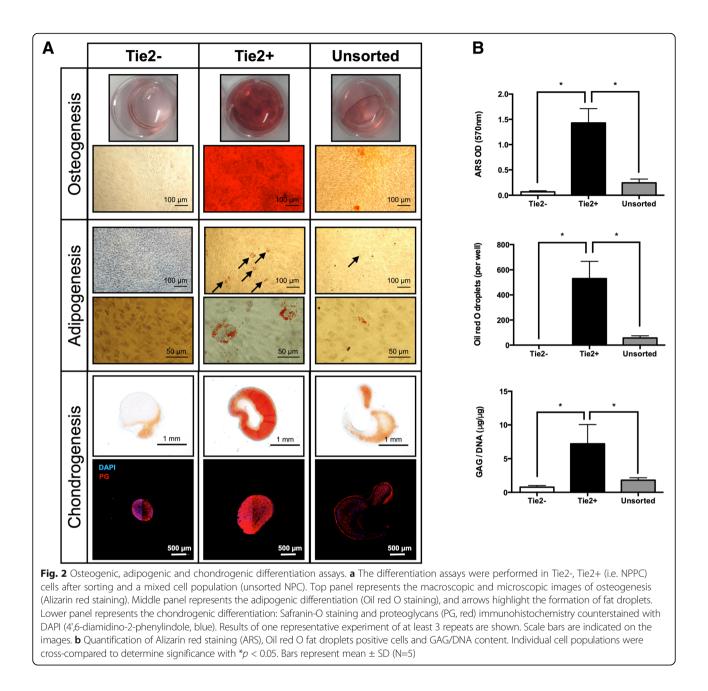
"Immunohistochemical staining for proteoglycans was performed by incubation of the sections with a

¹Tissue and Organ Mechanobiology, Institute for Surgical Technology & Biomechanics, Medical Faculty, University of Bern, Bern, Switzerland ⁵AO Spine Research Network, AO Spine International, Davos, Switzerland Full list of author information is available at the end of the article monoclonal mouse anti-human proteoglycan antibody (10 µg/ml, clone EFG-4; Millipore, Billerica, MA, USA, diluted 1:50) overnight at 4 °C after permeabilization with 100 % methanol for 2 min, rehydration and blocking with 10 % FBS in phosphate buffered saline (PBS) for 1 hour. Secondary antibody was then added after stringent washing for 1 hour on the next day, which was a goat anti-mouse antibody (Alexa Fluor 555 goat anti-mouse SFX-Kit IgG A-31621, Invitrogen, Fisher-Scientific, Basel, 1:200 diluted). Finally, slides were mounted in DAPI containing embedding medium (Fluoroshield[™] cat# ab104139, abcam plc, Cambridge, UK). Images were then taken with a confocal laser scanning microscope at a 10x magnification and using 4x4 tile imaging (cLSM710, Carl Zeiss, Jena, Germany)."

Author details

¹Tissue and Organ Mechanobiology, Institute for Surgical Technology & Biomechanics, Medical Faculty, University of Bern, Bern, Switzerland. ²Biointerfaces, EMPA, Swiss Federal Laboratories for Materials Science and Technology, St Gallen, Switzerland. ³Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan. ⁴AO Research Institute Davos, Davos, Switzerland. ⁵AO Spine Research Network, AO Spine International, Davos, Switzerland.

Received: 24 January 2019 Revised: 24 January 2019 Accepted: 24 January 2019 Published online: 31 January 2019


Reference

. Tekari A, Chan SC, Sakai D, Grad S, Gantenbein B. Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells. Stem Cell Res Ther. 2016;**7**(1):75.

© The Author(s). 2019 **Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

^{*} Correspondence: benjamin.gantenbein@dbmr.unibe.ch

