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Abstract
Phenological data have become increasingly important as indicators of long-term climate change. Consequently, long-term
homogeneity of the records is an important aspect. In this paper, we apply a breakpoint detection algorithm to the phenological
series from the Swiss Phenology Network (SPN). A combination of three statistical tests is applied and different constraints are
tested with respect to the choice of reference series. Breakpoint detection is only possible for a fraction of the series due to the
shortness of some series and the lack of suitable reference series. Spring phases are more likely to be suitable than fall phases
because of their higher spatial correlation. Out of nearly 3000 phenological series with at least 20 data points, only about 5%were
found to be significantly inhomogeneous, although a visual validation indicates that many mid-sized breakpoints remained
undetected. The detected breakpoints were compared with metadata and more than half of them could be attributed to a change
of observer.
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Introduction

Observations of plant phenological phases not only constitute a
monitoring of plant life but also serve the assessment of agricul-
tural suitability, changes in habitat factors and others. Among the
factors affecting changes in plant phenology, climate is one of the
most important. This is particularly the case in spring. Because of
high temperature sensitivity of many phenological phases, plant
phenology has become an important climate change impact in-
dicator in Switzerland (Studer et al. 2005; Seiz and Foppa 2007),
in Europe (Menzel et al. 2006; Fu et al. 2015) and globally
(Cramer et al. 2014), although warming effects are potentially

not stable over time (Rutishauser et al. 2008; Fu et al. 2015). Its
independence from instrumental temperature measurements
makes phenology a particularly attractive indicator of global
warming (Anderson et al. 2013). Furthermore, because observa-
tions of plant phenological phases date back several centuries,
phenological observations can be used as a proxy for climate
reconstruction (Rutishauser et al. 2008; Ge et al. 2014).

For these reasons, phenology has been defined a relevant
parameter for the National Climate Observing System (GCOS
Switzerland) (Seiz and Foppa 2007; MeteoSwiss 2018) and is
as such recognised an important factor in climate monitoring
for terrestrial observations of the biosphere. However, using
phenological observations for assessing climate trends brings
specific requirements with respect to long-term stability (Dose
and Menzel 2004; Seiz and Foppa 2007; Schleip et al. 2008;
WMO 2016). The stability of the observing configuration in
phenology is dependent on how long the same observer is
active, on the change of the observed plants, on changes in
the environment or in the plant itself and on the quality of the
observation instructions. Undesired signals in the time series
must be flagged by detecting the so-called breakpoints, i.e.
points in time where a significant change occurred in the ob-
serving procedure (Dose and Menzel 2004; Rutishauser et al.
2009; Keatley and Hudson 2012).
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While quality control procedures for phenological data
have been developed (Hense and Müller 2007) and are rou-
tinely applied, breakpoint detection methods are only rarely
used in plant phenology (e.g. Dose and Menzel 2004;
Schleip et al. 2008). Conversely, while breakpoint detection
methods are normally used in satellite phenology (e.g.
Verbesselt et al. 2010; Jamali et al. 2015), series of plant
phenological observations share more similarities with me-
teorological series. In this paper, we apply breakpoint de-
tection methods typically used in climatology to phenolog-
ical series from the Swiss Phenology Network (SPN; Defila
and Clot 2001).

Concerning meteorological data like temperature and
precipitation, breakpoint detection methods are routinely
applied (e.g. Begert et al. 2005; Kuglitsch et al. 2012). In
a recent COST Action, detection and homogenisation
methods were compared, and benchmark datasets have
been constructed that allow rigorous testing (Venema
et al. 2012; see also Willett et al. 2014). With respect to
breakpoint detection, we recently have applied a combina-
tion of tests to the meteorological series from Switzerland
(Kuglitsch et al. 2012). Here we analyse to what extent
these methods are also suitable for phenological series from
the same region.

The paper is organised as follows. In the “Materials and
methods” section, we describe the data, the breakpoint detec-
tion methods, and the evaluation strategy of the detection ap-
proaches. In the “Results” section, we show the results of
applying the methods. In the “Discussion” section, we discuss
the limitations of applicability of the approach and compare
the results to those typically obtained for meteorological se-
ries. Conclusions are drawn in the “Conclusions” section.

Materials and methods

The SPN

This paper uses the data from the SPN which was initiated
in 1951 (Defila et al. 2016) with 70 stations. The SPN com-
prises today 167 stations across Switzerland (Fig. 1). The
onset dates of up to 69 different phenological events (for 26
different species) are currently being observed. Twenty-
eight of these phenological events have been observed
since the beginning, whereas the other 41 started in 1996
within a renewal of the observation program (Defila 2008).
A dataset from 1951 to 2015 was used, comprising 9455
series with about 200,000 single observations. However, in
this study, only 2925 series were tested, although 7393 se-
ries had been used within experiments to find the best test
configuration (see Table 1).

The data underwent careful quality assurance, which is
described in detail in Auchmann et al. (2018). In this pro-
cess, suspect data were flagged according to a sequence of
checks that was based on range, internal consistency, bio-
logical plausibility and comparisons with the same series
from neighbouring stations or different series from the
same station. For this study, the flagged data were not
used.

The metadata we used in this study are the years of the
observer changes. The observers of the SPN are volunteers
who observe the plants in their neighbourhood following
instructions from MeteoSwiss and a detailed manual
(Brügger and Vassella 2003). A change of an observer often
implies a change of the observed plants, which can cause
breaks in the data series of that station.

0 − 500 m asl (#51)
501 − 1000 m asl (#76)
1001 − 1500 m asl (#33)
1501 − 2000 m asl (#7)

# parameters
0 − 40 (#12)
41 − 50 (#22)
51 − 60 (#60)
61 − 69 (#73)

Fig. 1 Location of phenology
stations by elevation (colours)
and number of parameters per
station (point size). The left leg-
end shows in brackets the number
of stations for each number-of-
parameters class
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Breakpoint detection methods

Historical phenological records, just like meteorological ones,
are prone to inhomogeneities caused by factors that affect the
way observations are carried out (e.g. a change of the observ-
er). Inhomogeneities can be detected using statistical methods,
especially if they happened at a specific time point (so-called
breakpoints). Knowing which data series are affected by sig-
nificant breakpoints is particularly important when analysing
trends.

We used an algorithm similar to that used for Swiss tem-
perature series in Kuglitsch et al. (2012). We independently
applied three statistical tests to each phenological series that
has at least 20 observations (shorter series constitute a too
small sample for meaningful statistical testing). The agree-
ment among the three tests determines which breakpoints
are to be considered significant. The main advantage of this
approach is the reduction of false detections. The tests, how-
ever, are not the same as used in Kuglitsch et al. (2012).

Each test is applied to difference series between the candi-
date and well-correlated reference series. The whole proce-
dure is fully automatic and reproducible, and the detection
does not involve subjective decisions after the initial parame-
ters are set. The tests that we used are the following:

– Standard norma l homogene i ty t e s t (SNHT;
Alexandersson and Moberg 1997)

– Pettitt’s test (Pettitt 1979)
– Penalised maximal t test (PMT; Wang 2008)

The SNHT and Pettitt’s test are based on rather simple
statistical tests in which a series is divided into two parts.
The null hypothesis is that the means of the two sub-samples
are identical. The main difference between SNHTand Pettitt’s
is that the latter is nonparametric, and as such, it does not
require a normal distribution. These tests can detect only a
single breakpoint at a time; therefore, they are applied recur-
sively to homogeneous sub-periods as long as these have at
least 20 data points.

The PMT test is an improvement of the SNHT test in which
a penalty factor is introduced to reduce the false alarm rate at
the edges of a series (i.e. near the beginning and the end). This
implies a better hit rate in the middle but a lower hit rate at the
edges (see also Wang et al. 2007). The PMT test was applied
using an adapted version of the R software RHtestsV5.

The p value threshold for significance was set to 0.05 in all
three tests. A breakpoint is considered detected by a certain
test if the test finds it in at least three difference series (candi-
date minus three reference series). We allowed a tolerance of
1 year (for example, if the first difference series has a
breakpoint in 1979, the second in 1980, and the third in
1981, then all of them have a breakpoint in 1980). If two or
three tests detect the same break (always ± 1 year) a
breakpoint is set (“significant” breakpoint). In general,
breakpoints are merged with an iterative procedure that starts
with 0 tolerance and increases to maximum tolerance (1 year).
This way the year with more detections is preferred.

The statistical tests that we used have been developed
mainly for temperature and precipitation, although they have

Table 1 Settings and outcome of different breakpoint detection
experiments. Biological constraint: reference must be same species and
phase of the candidate (exceptions are start of flowering/full flowering
and the leaf or needle colouring/leaf or needle drop). Statistical tests:
number of significant tests out of 3 tests required to accept a breakpoint.
Reference series: number of reference series. Max onset diff: the pheno-
logical mean onset cannot differ more than a certain period between

candidate and reference series. Min correlation: minimum Pearson’s cor-
relation of reference series. Tolerance: tolerance in years for detected
breakpoints. Quality controlled: data underwent quality control before
breakpoint detection. If more than the maximum number of series fulfil
all requirements those with most overlapping observations were consid-
ered. The chosen configuration is highlighted in italics

ALL1 ALL2 8REF 5REF 5REF_NOQC

Biological constraint No No Yes Yes Yes

Statistical tests 2/3 2/3 2/3 2/3 2/3

Reference series 8 8 8 5 5

Min overlap No No 90% 90% 90%

Min length (years) 10 10 20 20 20

Max elevation diff (m) 1000 1000 750 750 750

Max onset diff (days) No No 30 30 30

Min correlation 0.6 0.6 0.6 0.6 0.6

Tolerance (years) 1 2 1 1 1

Quality controlled Yes Yes Yes Yes No

Series tested 7393 7393 2566 2925 2951

Breakpoints 485 644 330 156 141

- Confirmed by metadata 209 (43%) 257 (40%) 140 (42%) 85 (54%) 76 (54%)
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been used in other areas (e.g. Čufar et al. 2012). Phenological
and temperature series have similar statistical properties. For
instance, annual temperature means are normally distributed;
86% of the Swiss phenological series with at least 20 obser-
vations do not differ significantly (p ≤ 0.05) from a normal
distribution, according to the Lilliefors (Kolmogorov-
Smirnov) test. However, similarly to precipitation, phenolog-
ical series are in general less correlated in space than temper-
ature (Güsewell et al. 2018), which makes the detection of
breakpoints less effective. This is mainly because the behav-
iour of plants is more complex than that of temperature, being
dependent on both meteorological and biological factors.
Temperature series (annual means) usually have correlations
larger than 0.9 when distances between stations are in the
order of tens of kilometres, whereas many phenological series
do not reach correlations above 0.7 for the same distances.

Phenological series, like precipitation, also show larger
inter-annual variability in comparison with temperature,
which negatively affects the signal-to-noise ratio of inhomo-
geneities. For these reasons, we expect the breakpoint detec-
tion in phenological series to have a hit rate similar to those
estimated for precipitation, i.e. in the range of 5–25%
(Venema et al. 2012).

Reference series

Kuglitsch et al. (2012) used ten reference series for tempera-
ture (of which at least 3 must detect the same breakpoint for it
to be considered significant). For phenological series, a poten-
tial issue of false detections arises because single plants can
react rather abruptly to environmental factors. To reduce false
detections, we used a smaller number of reference series. This
has the side effect of reducing the hit rate of the algorithm,
particularly for midsize breakpoints, but also has the advan-
tage of increasing the quantity of data for which it is possible
to find enough reference series to perform the breakpoint
detection.

Requiring the same number of reference series for each and
every target series guarantees some consistency in the method
(i.e. the probability of finding a breakpoint is similar every-
where). If this is possible only for a sub-period of a series (i.e.
by picking a later starting year), then the breakpoint detection
is performed only on that sub-period (this affects 29% of the
analysed series).

We tested five different approaches of how to select refer-
ence series. The approaches made use of information such as
phase/species, altitude, correlation, overlap, and tolerance
year. The experiments differ in the combination of selection
criteria (except minimum correlation, which was always set to
0.6). Table 1 shows an overview of the experiments.

Experiments ALL1 and ALL2 did not use biological con-
straints. We used eight reference series with one (ALL1) or
two (ALL2) years tolerance for the detected breakpoints

among the three different tests. The use of any reference series
that is well correlated with the candidate, independently from
its plant species or phase, had the advantage that enough ref-
erence series could be found for every series in every period.
The disadvantage was that some data series ended up with
reference series with spurious correlation that are unsuitable
for comparisons in a biological context, for example spring
phases were correlated with autumn phases, which react dif-
ferently to climate factors.

Therefore, in experiment 8REF, we introduced the biolog-
ical constraint (and a maximum difference in onset days of
30 days, again 8 references were used). Inter-species correla-
tions are often as large as those between the same species.
Using other species as reference, however, would increase
the risk of misinterpreting different biological reactions to
forcings such as a rapid warming. Additionally, in 8REF, a
reference series could not come from the same station of the
candidate series unless no other alternatives were available, to
avoid simultaneous inhomogeneities due to changes of ob-
server. The number of tested series dropped in this experiment
due to the lower amount of potential reference series.

To enlarge the number of series that could be tested and at
the same time reach a low false detection rate, we tested ex-
periment 5REF using five reference series (experiment
5REF_NOQC, which is the same as 5REF but using not qual-
ity controlled data, showed fewer breakpoints due to larger
noise and was not considered further). In the 5REF experi-
ment, a breakpoint has to be seen by the majority of the ref-
erences (three out of five) to be confirmed. Therefore, it rep-
resents the more conservative setting. In the remainder of the
paper, unless noted otherwise, results for 5REF are shown.

Use of metadata

The years when changes of observer occurred are used to
adjust the position of detected breakpoints (metadata adjust-
ment): if a breakpoint is detected 1 year before or after the year
when the observer changed, it was moved to the year of the
change. Metadata adjustment was done for each of the three
tests separately and again on the final set of breakpoints. In a
similar fashion, breakpoints were forced to be at the year pre-
ceding a large gap (≥ 3 years) if a statistically detected
breakpoint appears 1 or 2 years before the first gap year or if
it appears in the first year of observation after the gap.

The highest fraction of breakpoints that are confirmed by
metadata is found for the 5REF experiment (Table 1). This is
an indication that 5REF has, as expected, the lowest false
alarm rate.

Verification

A proper validation of the breakpoint detection algorithm
would require a benchmark consisting of surrogate series.

Int J Biometeorol



Such benchmarks have only recently been developed in the
climate sciences (e.g. Venema et al. 2012) and require detailed
knowledge of the causes of the breakpoints and of their statis-
tical properties. Two of the three tests used in this paper have
been benchmarked in Venema et al. (2012); however,
breakpoints in phenological series are arguably rather different
from those affecting temperature series. For instance, events
such as parasites attacking a plant do not have a correspon-
dence in meteorological data.

In the absence of surrogate series, we only provide a sub-
jective validation, based on the visual analysis of a randomly
selected sub-sample of series, using standardised summary
plots produced by the breakpoint detection software (see
Fig. 5).We inspected all the series found inhomogeneous, plus
100 randomly selected homogeneous series. The inspection
was carried out independently by three of the authors (hereaf-
ter referred as “experts”).

Results

Correlation with reference series

Figure 2 shows the distribution of the correlations of
the reference series as a function of the phenological
phase. The highest correlations are found for the start
of flowering and for vintage, the lowest for hay harvest,
leaf colouring and leaf drop. Figure 3 shows the corre-
lations as a function of elevation difference. As shown
by the red line, more than half of all reference series
used in the whole dataset were drawn from stations no
more than 125 m higher or lower than the candidate
station. Correlations are higher when the elevation dif-
ference is below 125 m (median of 0.7). However, once
the elevation difference is larger than 250 m, elevation

difference becomes no longer important. The figure also
shows that the spread of correlation for different pheno-
logical phases becomes smaller once the elevation dif-
ference becomes larger. This is also because the refer-
ence series are constrained to a minimum correlation of
0.6.

There are no appreciable differences among species in the
correlation changes with the elevation (not shown).

Feasibility of the breakpoint detection

Not for all series we find sufficient (five) references series that
fulfil the conditions specified in Table 1. For the case of 5REF,
this fraction is shown in Figs. 4 (as a function of phenological
phase) and 5 (in the form of a map). In some cases, parts of the
series could be tested, but not the entire series.

Figure 4 shows for which parameters it was easier to find
reference series (left-hand side of the plot) and for which it
was more difficult (right-hand side). In general, late phases
(fruit maturity, leaf colouring, leaf drop) have lower spatial
correlation and are observed at fewer stations than spring
phases; therefore, it is harder to find suitable reference series
for them.

Concerning species, we find that the cherry tree (Prunus
avium), the pear tree (Pyrus communis), the apple tree (Malus
domestica) and the dandelion (Taraxacum officinale) have
enough reference series in almost all stations (not shown).

Figure 5 shows the geographical picture of the breakpoint
detection feasibility. Here, we clearly see that the mountainous
regions (Jura to the north-west and Alps to the south) are those
where finding reference series is more difficult. Even on the
Swiss Plateau, though, some stations have one quarter of the
parameters with insufficient reference series. Taken together,
the breakpoint detection was applied to 73.9% (2925) of the
phenological series with at least 20 observations (thereof,
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2082 entire series where subjected to the break detection, for
843 series only segments could be used). For the remaining
26.1%with at least 20 observations (1035), it was not possible
to find enough suitable reference series.

Number of breakpoints and comparison
with metadata

In this section, we analyse breakpoints, their attribution to
metadata and their size. Before analysing the statistics of the
accepted breakpoints, an example of results for breakpoint
detection for one phase of one species at one site is shown
in Fig. 6 (see also Figs. S1 and S2 in the Supplementary
Material for further examples). The example is for the full

flowering of the horse chestnut (Aesculus hippocastanum) in
Altdorf. In this example, correlations with reference series are
high (up to 0.8) and all reference series comprise the entire
35 years covered by the candidate. One significant breakpoint
is detected in 1995. This breakpoint was detected by two of
the three tests (SNHT and Pettitt) by three reference series
each. Hence, the breakpoint is barely significant by our defi-
nition. However, it can be related to a change of observer and
it is followed by a gap of 3 years. The second panel in Fig. 6
shows that until 1995, the flowering in Altdorf was usually
among the latest, while after 1995, it is often the earliest (ex-
cept for the last few years). A similar breakpoint (not shown)
corresponding to the same change of observer was detected at
the same station for the full flowering of the European elder
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(Sambucus nigra) and of the field daisy (Leucanthemum
vulgare), the latter with the highest possible significance (all
reference series in all tests saw the breakpoint); this adds con-
fidence that a change of observer did cause inhomogeneities in
the Altdorf series in 1995.

In total, 156 breakpoints were detected in 2925 analysed
series. Multiple breakpoints were detected in only 3 series.
Figure 7 shows the occurrence of breakpoints for each year
in all tested series, as well as the occurrence of changes of
observer. Aside from the 1950s (where the low number of
stations inflates the frequency of changes), the number of
changes is particularly high at the end of the 1980s, in the
mid-1990s and in the late 2000s. As one would expect, the
main peaks in the occurrence of breakpoints are close to those
in the changes of observer. The 1950s are again a special case:
here no breakpoints were detected, because the quantity of
data is too small and often not enough suitable reference series
can be found. Similarly, in the 2000s, the breakpoint detection
works less well, because the sample after the breakpoint is too
small. The peaks in 1987 and 1995 are mostly the result of
noise, specifically of simultaneous breakpoints in a few sta-
tions caused by new observers (4 breakpoints in the same
station are detected in 1987, accounting for nearly 30% of
the breakpoints detected in the whole dataset in that year). It
is also important to remark that breakpoints near the beginning
and the end of a series are more difficult to detect, so those in
the 1980s and 1990s are more often detected also because
those years are often in the middle of long series (1986 and
1993 are the two most common middle years).

We estimated the size of each inhomogeneity from the
same five reference series used in the breakpoint detection.
Figure 8 shows the distribution of the absolute (left panel)
and standardised (right panel) sizes of all breakpoints. The
distribution is bimodal because breakpoints with a size close
to zero are too small to be detected. Moreover, the distribution

is not symmetric: there are significantly more negative chang-
es (i.e. anticipation of the phenological phase after the
breakpoint) than positive (61%vs. 39%). This asymmetry is
found across all phases, although the leaf unfolding is slightly
less affected (56% vs. 44%). The reason of the asymmetry is
unknown, but our results suggest that it is related to the new
observers (the fraction of negative changes reaches 66% for
breakpoints confirmed by metadata).

Performance of the breakpoint detection

All breakpoints detected by the algorithm were confirmed by
all the experts, meaning that the false detection rate of the
algorithm is virtually zero. In very few cases (3%), however,
at least one expert judged the breakpoints to be misplaced by
at least 2 years, or to represent a trend rather than a step
function. In 16% of the inhomogeneous series, a possible sec-
ond breakpoint was not detected by the algorithm; moreover,
in 10% of the randomly selected homogeneous series, at least
one expert observed at least one breakpoint.

From these numbers, we extrapolate that 277 additional
series, where no breakpoint was detected by the algorithm,
contain breakpoints that could be detected visually by an ex-
pert. This means that the algorithm is capable of flagging
about one third of the series that would be considered inho-
mogeneous by at least one expert after visual inspection.
However, not all of the visually detected breakpoints are real
breakpoints. The hit rate could be improved by changing the
parameters of the algorithm, but this would come at the cost of
more false detections.

Long phenological series: an example

To illustrate the impact of inhomogeneities on trends, in
Fig. 9, we show 10 long series for the full flowering of the

Fig. 5 Breakpoint detection
feasibility for each station. The
red fraction of the pies is the
fraction of series that did not have
enough reference series in any
period of at least 20 years. The
area of the pies is proportional to
the number of parameters
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dandelion (Taraxacum officinale) with similar long-term av-
erage, of which one is inhomogeneous. This is an example
where a change of observer in the 1980s causes an overesti-
mation of the actual negative trend at one station.

In this subset of stations, the flowering of the dandelion
changed on average by 13 days over the analysed period.
After excluding the inhomogeneous series, the average
change is reduced to 11 days.

Fig. 6 Breakpoint detection summary plot for the full flowering of the
horse chestnut in Altdorf. The map shows the position of the candidate
(black point) and reference series (red points); the vertical dashed line in

the time series indicates the position of the breakpoint and the triangles
the changes of observer
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Discussion

Phenological series are less well correlated with each other
than temperature series. Particularly in the complex landscape
of Switzerland, correlations are relatively low (Güsewell et al.
2018). A minimum correlation of 0.6 was chosen, which for
temperature homogenisation (based on monthly averages)
would be fulfilled by almost all possible station pairs in
Switzerland (Gubler et al. 2017). The correlations of pheno-
logical series are more similar to those of precipitation, which
(for monthly totals in Switzerland) often fall below 0.6 even,
sometimes, over short distances. However, in contrast to pre-
cipitation, which exhibits correlations close to zero between
the northern and southern slopes of the Alps (Gubler et al.

2017), we did not find a strong influence of the watershed in
reducing the correlation.

The period 1986–1989 shows 3 to 4 times more
breakpoints than surrounding 4-year periods. This is a pe-
riod characterised by a rapid temperature increase in
Switzerland and similarly rapid changes in phenological
variables (Schleip et al. 2008; Reid et al. 2016), but unfor-
tunately, it also coincides with a particularly large number
of new observers (about 20% of stations affected). If there
was an increase of false detections caused by the rapid
climate change, we would expect the fraction of
breakpoints related to changes of observer to decrease.
However, for 1986–1989, this fraction is 57%, even larger
than the overall average of 54%.

Fig. 7 (Left) Number of significant breakpoints detected (relative to the number of tested series). (Right) Number of changes of observer (relative to the
number of tested stations). The red lines depict the number of tested series/stations

Fig. 8 Histograms of the absolute (left) and standardised (right) size of the detected inhomogeneities
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The estimation of the size of the inhomogeneities is not al-
ways reliable. In the example shown in Fig. S1, one breakpoint
(1998) barely reaches the significance threshold (three reference
series in two tests show a break). A second possible breakpoint in
correspondence of a second change of observer in 2001 is only
detected by one test and is therefore not significant. Judging from
the bottom plot in Fig. S1, the size of the two breakpoints is
similar and it is of about one standard deviation; however, since
the breakpoint in 2001 was not significant, the whole period
1999–2015 is used to calculate the size of the first breakpoint
and this results in an estimated size of only 0.4 standard devia-
tions (i.e. 5 days). There would possibly be a third breakpoint
around 1965, but the first 14 years of the series were ignored by
the detection algorithm (yellow shading) since not enough refer-
ence series were available in that period.

In general, the closer to each other two breakpoints are, the
more difficult it becomes to detect them, because of the re-
duced sample. Moreover, the nature of the tests implies that
single breakpoints are much more likely to be detected than
multiple breakpoints, because the tests can only detect one
breakpoint at a time.

We summarise that breakpoint detection in combination with
a thorough analysis of metadata such as observer changes may
contribute to a complementary, more robust estimation of
breakpoints and shifts in phenological records. Additionally, fur-
ther metadata will be helpful, like e.g. changes in observed
plants. An important aspect is the careful quality control of the
data, since it has been shown for temperature and precipitation
that breakpoint detection and homogenisation produces much
better results on carefully quality-controlled data (Hunziker
et al. 2018).

Conclusions

In this paper, we have applied breakpoint detection as it is
typically used for meteorological variables to phenological

data from the Swiss Phenology Network (SPN). We use a
combination of three breakpoint tests, each employing 5 ref-
erence series that are sufficiently correlated with the candi-
date. Only a fraction of the series has enough references—
spring phases more often than fall phases. The detected
breakpoints were compared with metadata, and 54% of them
could be attributed to observer changes. We found that espe-
cially those breakpoints caused by new observers are more
frequently linked to an anticipation of the phenological
phases, which is the same signal caused by a warming climate.
More detailed metadata, in particular if an observer change
corresponds to a change in the observed plants, would help
understanding the causes of the asymmetry of the distribution
of the breakpoint’s sizes and allow the implementation of
measures to reduce the systematic impact on trends.
However, additional studies are required to assess whether this
asymmetry is a special feature of the SPN or whether it can be
found in other networks as well. In general, our study demon-
strates that the breakpoint detection methods routinely used in
climatology are applicable for phenological series. With this
automated method, the fraction of detected breakpoints is
comparable with the automated detected fraction for precipi-
tation series. Due to high variability and comparably low cor-
relations between phenological series, mainly large
breakpoints are detected. The graphical and statistical outputs
of the breakpoint detection can be used for further assessment
of the most valuable data series by a manual control.

In the future, citizen science data might be used more fre-
quently for gaining phenological data (Lehmann et al. 2018),
which makes quality control and the assessment of long-term
stability even more important.
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