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Abstract. Phenological data have become increasingly important as indicators of long term climate change. 

Consequently, long-term homogeneity of the records is an important aspect. In this paper we apply a breakpoint 

detection algorithm to the phenological series from the Swiss Phenology Network (SPN). A combination of three 

statistical tests is applied and different constraints are tested with respect to the choice of reference series. 

Breakpoint detection is only possible for a fraction of the series due to the shortness of some series and the lack 5 

of suitable reference series. Spring phases are more likely to be suitable than fall phases because of their higher 

spatial correlation. Out of nearly 3,000 phenological series with at least 20 data points, only about 5% were 

found to be significantly inhomogeneous, although a visual validation indicates that many mid-sized breakpoints 

remained undetected. The detected breakpoints were compared with metadata and more than half of them could 

be attributed to a change of observer.  10 
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1. Introduction 

Observations of plant phenological phases not only constitute a monitoring of plant life, but serve the assessment 

of agricultural suitability, changes in habitat factors and others. Among the factors affecting changes in plant 

phenology, climate is one of the most important. This is particularly the case in spring. Because of high 15 

temperature sensitivity of many phenological phases, plant phenology has become an important climate change 

impact indicator in Switzerland (Studer et al. 2005; Seiz and Foppa 2007), in Europe (Menzel et al. 2006; Fu et 

al. 2015) and globally (Cramer et al. 2014), although warming effects are potentially not stable over time 

(Rutishauser et al. 2008; Fu et al. 2015). Its independence from instrumental temperature measurements makes 

phenology a particularly attractive indicator of global warming (Anderson et al. 2013). Furthermore, because 20 

observations of plant phenological phases date back several centuries, phenological observations can be used as 

a proxy for climate reconstruction (Rutishauser et al. 2008; Ge et al. 2014). 

For these reasons, phenology has been defined a relevant parameter for the National Climate Observing System 

(GCOS Switzerland) (Seiz and Foppa 2007; MeteoSwiss 2018), and is as such recognized an important factor in 

climate monitoring for terrestrial observations of the biosphere. However, using phenological observations for 25 

assessing climate trends brings specific requirements with respect to long-term stability (Dose and Menzel 2004; 

Seiz and Foppa 2007; Schleip et al 2008; WMO 2016). The stability of the observing configuration in phenology 

is dependent on how long the same observer is active, on the change of the observed plants, on changes in the 

environment or in the plant itself and on the quality of the observation instructions. Undesired signals in the time 

series must be flagged by detecting so-called breakpoints, i.e. points in time where a significant change occurred 30 

in the observing procedure (Dose and Menzel 2004; Rutishauser et al 2009; Keatley and Hudson 2012).  

While quality control procedures for phenological data have been developed (Hense and Müller 2007) and are 

routinely applied, breakpoint detection methods are only rarely used in plant phenology (e.g., Dose and Menzel 

2004; Schleip et al 2008). Conversely, while breakpoint detection methods are normally used in satellite 

phenology (e.g., Verbesselt et al 2010; Jamali et al 2015), series of plant phenological observations share more 35 

similarities with meteorological series. In this paper we apply breakpoint detection methods typically used in 

climatology to phenological series from the Swiss Phenology Network (SPN: Defila and Clot 2001). 
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Concerning meteorological data like temperature and precipitation, breakpoint detection methods are routinely 

applied (e.g., Begert et al. 2005; Kuglitsch et al. 2012). In a recent COST Action, detection and homogenisation 

methods were compared, and benchmark data sets have been constructed that allow rigorous testing (Venema et 

al. 2012; see also Willett et al. 2014). With respect to breakpoint detection, we recently have applied a 

combination of tests to the meteorological series from Switzerland (Kuglitsch et al. 2012). Here we analyse to 5 

what extent these methods are also suitable for phenological series from the same region.  

The paper is organised as follows. In Section 2 we describe the data, the breakpoint detection methods, and the 

evaluation strategy of the detection approaches. In Section 3 we show the results of applying the methods. In 

Section 4 we discuss the limitations of applicability of the approach and compare the results to those typically 

obtained for meteorological series. Conclusions are drawn in Section 5.  10 

2. Materials and Methods 

2.1. The Swiss Phenology Network 

This paper uses the data from the Swiss Phenology Network (SPN) which was initiated in 1951 (Defila et al. 

2016) with 70 stations. The SPN comprises today 167 stations across Switzerland (Fig. 1). The onset dates of up 

to 69 different phenological events (for 26 different species) are currently being observed. Twenty-eight of these 15 

phenological events have been observed since the beginning, whereas the other 41 started in 1996 within a 

renewal of the observation program (Defila 2008). A dataset from 1951 to 2015 was used, comprising 9,455 

series with about 200,000 single observations. However, in this study only 2,925 series were tested, although 

7,393 series had been used within experiments to find the best test configuration (see Table 1). 

The data underwent careful quality assurance, which is described in detail in Auchmann et al. (2018). In this 20 

process, suspect data were flagged according to a sequence of checks that was based on range, internal 

consistency, biological plausibility, and comparisons with the same series from neighbouring stations or 

different series from the same station. For this study, the flagged data were not used. 

The metadata we used in this study are the years of the observer changes. The observers of the Swiss Phenology 

Network are volunteers who observe the plants in their neighbourhood following instructions from MeteoSwiss 25 

and a detailed manual (Brügger and Vassella 2003). A change of an observer often implies a change of the 

observed plants, which can cause breaks in the data series of that station.  

2.2. Breakpoint detection methods 

Historical phenological records, just like meteorological ones, are prone to inhomogeneities caused by factors 

that affect the way observations are carried out (e.g., a change of the observer). Inhomogeneities can be detected 30 

using statistical methods, especially if they happened at a specific time point (so-called “breakpoints”). Knowing 

which data series are affected by significant breakpoints is particularly important when analysing trends. 

We used an algorithm similar to that used for Swiss temperature series in Kuglitsch et al. (2012). We 

independently applied three statistical tests to each phenological series that has at least 20 observations (shorter 

series constitute a too small sample for meaningful statistical testing). The agreement among the three tests 35 

determines which breakpoints are to be considered significant. The main advantage of this approach is the 

reduction of false detections. The tests, however, are not the same as used in Kuglitsch et al. (2012). 
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Each test is applied to difference series between the candidate and well-correlated reference series. The whole 

procedure is fully automatic and reproducible, the detection does not involve subjective decisions after the initial 

parameters are set. The tests that we used are the following: 

− standard normal homogeneity test (SNHT; Alexandersson and Moberg 1997); 

− Pettitt's test (Pettitt 1979); 5 

− penalized maximal t test (PMT; Wang 2008). 

The SNHT and Pettitt’s test are based on rather simple statistical tests in which a series is divided into two parts. 

The null-hypothesis is that the means of the two sub-samples are identical. The main difference between SNHT 

and Pettitt’s is that the latter is non-parametric and as such it does not require a normal distribution. These tests 

can detect only a single breakpoint at a time, therefore they are applied recursively to homogeneous sub-periods 10 

as long as these have at least 20 data points.  

The PMT test is an improvement of the SNHT test in which a penalty factor is introduced to reduce the false 

alarm rate at the edges of a series (i.e., near the beginning and the end). This implies a better hit rate in the 

middle but a lower hit rate at the edges (see also Wang et al. 2007). The PMT test was applied using an adapted 

version of the R software RHtestsV5. 15 

The p-value threshold for significance was set to 0.05 in all three tests. A breakpoint is considered detected by a 

certain test if the test finds it in at least three difference series (candidate minus three reference series). We 

allowed a tolerance of one year (for example, if the first difference series has a breakpoint in 1979, the second in 

1980, and the third in 1981, then all of them have a breakpoint in 1980). If two or three tests detect the same 

break (always +/- 1 year) a breakpoint is set (“significant” breakpoint). In general, breakpoints are merged with 20 

an iterative procedure that starts with 0 tolerance and increases to maximum tolerance (one year). This way the 

year with more detections is preferred. 

The statistical tests that we used have been developed mainly for temperature and precipitation, although they 

have been used in other areas (e.g., Čufar et al. 2012). Phenological and temperature series have similar 

statistical properties. For instance, annual temperature means are normally distributed; 86% of the Swiss 25 

phenological series with at least 20 observations do not differ significantly (p≤0.05) from a normal distribution, 

according to the Lilliefors (Kolmogorov-Smirnov) test. However, similarly to precipitation, phenological series 

are in general less correlated in space than temperature (Güsewell et al. 2018), which makes the detection of 

breakpoints less effective. This is mainly because the behaviour of plants is more complex than that of 

temperature, being dependent on both meteorological and biological factors. Temperature series (annual means) 30 

usually have correlations larger than 0.9 when distances between stations are in the order of tens of kilometres, 

whereas many phenological series do not reach correlations above 0.7 for the same distances. 

Phenological series, like precipitation, also show larger inter-annual variability in comparison with temperature, 

which negatively affects the signal-to-noise ratio of inhomogeneities. For these reasons, we expect the 

breakpoint detection in phenological series to have a hit rate similar to those estimated for precipitation, i.e. in 35 

the range of 5-25% (Venema et al. 2012). 
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2.3. Reference series 

Kuglitsch et al. (2012) used ten reference series for temperature (of which at least 3 must detect the same 

breakpoint for it to be considered significant). For phenological series, a potential issue of false detections arises 

because single plants can react rather abruptly to environmental factors. To reduce false detections, we used a 

smaller number of reference series. This has the side effect of reducing the hit rate of the algorithm, particularly 5 

for midsize breakpoints, but also has the advantage of increasing the quantity of data for which it is possible to 

find enough reference series to perform the breakpoint detection.  

Requiring the same number of reference series for each and every target series guarantees some consistency in 

the method (i.e., the probability of finding a breakpoint is similar everywhere). If this is possible only for a sub-

period of a series (i.e., by picking a later starting year), then the breakpoint detection is performed only on that 10 

sub-period (this affects 29% of the analysed series). 

We tested five different approaches of how to select reference series. The approaches made use of information 

such as phase/species, altitude, correlation, overlap, and tolerance year. The experiments differ in the 

combination of selection criteria (except minimum correlation, which was always set to 0.6). Table 1 shows an 

overview of the experiments. 15 

Experiments ALL1 and ALL2 did not use biological constraints. We used eight reference series with one 

(ALL1) or two (ALL2) years tolerance for the detected breakpoints among the three different tests. The use of 

any reference series that is well correlated with the candidate, independently from its plant species or phase, had 

the advantage that enough reference series could be found for every series in every period. The disadvantage was 

that some data series ended up with reference series with spurious correlation that are unsuitable for comparisons 20 

in a biological context, for example spring phases were correlated with autumn phases, which react differently to 

climate factors. 

Therefore, in experiment 8REF we introduced the biological constraint (and a maximum difference in onset days 

of 30 days, again 8 references were used). Inter-species correlations are often as large as those between the same 

species. Using other species as reference, however, would increase the risk of misinterpreting different biological 25 

reactions to forcings such as a rapid warming. Additionally, in 8REF a reference series could not come from the 

same station of the candidate series unless no other alternatives were available, to avoid simultaneous 

inhomogeneities due to changes of observer. The number of tested series dropped in this experiment due to the 

lower amount of potential reference series. 

To enlarge the number of series that could be tested and at the same time reach a low false detection rate, we 30 

tested experiment 5REF using five reference series (experiment 5REF_NOQC, which is the same as 5REF but 

using not quality controlled data, showed fewer breakpoints due to larger noise and was not considered further). 

In the 5REF experiment, a breakpoint has to be seen by the majority of the references (three out of five) to be 

confirmed. Therefore, it represents the more conservative setting. In the remainder of the paper, unless noted 

otherwise, results for 5REF are shown.  35 

2.4. Use of metadata 

The years when changes of observer occurred are used to adjust the position of detected breakpoints (metadata 

adjustment): if a breakpoint is detected one year before or after the year when the observer changed, it was 
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moved to the year of the change. Metadata adjustment was done for each of the three tests separately and again 

on the final set of breakpoints. In a similar fashion, breakpoints were forced to be at the year preceding a large 

gap (≥3 years) if a statistically detected breakpoint appears one or two years before the first gap year or if it 

appears in the first year of observation after the gap. 

The highest fraction of breakpoints that are confirmed by metadata is found for the 5REF experiment (Table 1). 5 

This is an indication that 5REF has, as expected, the lowest false alarm rate.  

2.5 Verification 

A proper validation of the breakpoint detection algorithm would require a benchmark consisting of surrogate 

series. Such benchmarks have only recently been developed in the climate sciences (e.g., Venema et al. 2012) 

and require detailed knowledge of the causes of the breakpoints and of their statistical properties. Two of the 10 

three tests used in this paper have been benchmarked in Venema et al. (2012); however, breakpoints in 

phenological series are arguably rather different from those affecting temperature series. For instance, events 

such as parasites attacking a plant do not have a correspondence in meteorological data.  

In the absence of surrogate series, we only provide a subjective validation, based on the visual analysis of a 

randomly selected sub-sample of series, using standardised summary plots produced by the breakpoint detection 15 

software (see Fig. 5). We inspected all the series found inhomogeneous, plus 100 randomly selected 

homogeneous series. The inspection was carried out independently by three of the authors (hereafter referred as 

“experts”).  

3. Results 

3.1. Correlation with reference series 20 

Figure 2 shows the distribution of the correlations of the reference series as a function of the phenological phase. 

The highest correlations are found for the start of flowering and for vintage, the lowest for hay harvest, leaf 

colouring and leaf drop. Figure 3 shows the correlations as a function of elevation difference. As shown by the 

red line, more than half of all reference series used in the whole data set were drawn from stations no more than 

125 meters higher or lower than the candidate station. Correlations are higher when the elevation difference is 25 

below 125 m (median of 0.7). However, once the elevation difference is larger than 250 m, elevation difference 

becomes no longer important. The figure also shows that the spread of correlation for different phenological 

phases becomes smaller once the elevation difference becomes larger. This is also because the reference series 

are constrained to a minimum correlation of 0.6. 

There are no appreciable differences among species in the correlation changes with the elevation (not shown).  30 

3.2. Feasibility of the breakpoint detection 

Not for all series we find sufficient (five) references series that fulfil the conditions specified in Table 1. For the 

case of 5REF, this fraction is shown in Fig. 4 (as a function of phenological phase) and 5 (in the form of a map). 

In some cases parts of the series could be tested, but not the entire series.  

Figure 4 shows for which parameters it was easier to find reference series (left-hand side of the plot) and for 35 

which it was more difficult (right-hand side). In general, late phases (fruit maturity, leaf colouring, leaf drop) 
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have lower spatial correlation and are observed at fewer stations than spring phases, therefore it is harder to find 

suitable reference series for them. 

Concerning species, we find that the cherry tree (Prunus avium), the pear tree (Pyrus communis), the apple tree 

(Malus domestica) and the dandelion (Taraxacum officinale) have enough reference series in almost all stations 

(not shown). 5 

Figure 5 shows the geographical picture of the breakpoint detection feasibility. Here we clearly see that the 

mountainous regions (Jura to the north-west and Alps to the south) are those where finding reference series is 

more difficult. Even on the Swiss Plateau, though, some stations have one quarter of the parameters with 

insufficient reference series. Taken together, the breakpoint detection was applied to 73.9% (2,925) of the 

phenological series with at least 20 observations (thereof, 2,082 entire series where subjected to the break 10 

detection, for 843 series only segments could be used). For the remaining 26.1% with at least 20 observations 

(1,035) it was not possible to find enough suitable reference series. 

3.3. Number of breakpoints and comparison with metadata 

In this section we analyse breakpoints, their attribution to metadata, and their size. Before analysing the statistics 

of the accepted breakpoints, an example of results for breakpoint detection for one phase of one species at one 15 

site is shown in Fig. 6 (see also Fig. S1 and S2 in the Supplementary Material for further examples). The 

example is for the full flowering of the horse chestnut (Aesculus hippocastanum) in Altdorf. In this example, 

correlations with reference series are high (up to 0.8) and all reference series comprise the entire 35 yrs covered 

by the candidate. One significant breakpoint is detected in 1995. This breakpoint was detected by two of the 

three tests (SNHT and Pettitt) by three reference series each. Hence, the breakpoint is barely significant by our 20 

definition. However, it can be related to a change of observer and it is followed by a gap of 3 years. The second 

panel in Figure 6 shows that until 1995 the flowering in Altdorf was usually among the latest, while after 1995 it 

is often the earliest (except for the last few years). A similar breakpoint (not shown) corresponding to the same 

change of observer was detected at the same station for the full flowering of the European elder (Sambucus 

nigra) and of the field daisy (Leucanthemum vulgare), the latter with the highest possible significance (all 25 

reference series in all tests saw the breakpoint); this adds confidence that a change of observer did cause 

inhomogeneities in the Altdorf series in 1995. 

In total 156 breakpoints were detected in 2,925 analysed series. Multiple breakpoints were detected in only 3 

series. Figure 7 shows the occurrence of breakpoints for each year in all tested series, as well as the occurrence 

of changes of observer. Aside from the 1950s (where the low number of stations inflates the frequency of 30 

changes), the number of changes is particularly high at the end of the 1980s, in the mid-1990s and in the late 

2000s. As one would expect, the main peaks in the occurrence of breakpoints are close to those in the changes of 

observer. The 1950s are again a special case: here no breakpoints were detected, because the quantity of data is 

too small and often not enough suitable reference series can be found. Similarly, in the 2000s the breakpoint 

detection works less well, because the sample after the breakpoint is too small. The peaks in 1987 and 1995 are 35 

mostly the result of noise, specifically of simultaneous breakpoints in a few stations caused by new observers (4 

breakpoints in the same station are detected in 1987, accounting for nearly 30% of the breakpoints detected in 

the whole dataset in that year). It is also important to remark that breakpoints near the beginning and the end of a 
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series are more difficult to detect, so those in the 1980s and 1990s are more often detected also because those 

years are often in the middle of long series (1986 and 1993 are the two most common middle years). 

We estimated the size of each inhomogeneity from the same five reference series used in the breakpoint 

detection. Figure 8 shows the distribution of the absolute (left panel) and standardized (right panel) sizes of all 

breakpoints. The distribution is bimodal because breakpoints with a size close to zero are too small to be 5 

detected. Moreover, the distribution is not symmetric: there are significantly more negative changes (i.e., 

anticipation of the phenological phase after the breakpoint) than positive (61%vs. 39%). This asymmetry is 

found across all phases, although the leaf unfolding is slightly less affected (56% vs. 44%). The reason of the 

asymmetry is unknown, but our results suggest that it is related to the new observers (the fraction of negative 

changes reaches 66% for breakpoints confirmed by metadata). 10 

3.4. Performance of the breakpoint detection 

All breakpoints detected by the algorithm were confirmed by all the experts, meaning that the false detection rate 

of the algorithm is virtually zero. In very few cases (3%), however, at least one expert judged the breakpoints to 

be misplaced by at least two years, or to represent a trend rather than a step function. In 16% of the 

inhomogeneous series a possible second breakpoint was not detected by the algorithm; moreover in 10% of the 15 

randomly selected homogeneous series at least one expert observed at least one breakpoint 

From these numbers we extrapolate that 277 additional series, where no breakpoint was detected by the 

algorithm, contain breakpoints that could be detected visually by an expert. This means that the algorithm is 

capable of flagging about one third of the series that would be considered inhomogeneous by at least one expert 

after visual inspection. However, not all of the visually detected breakpoints are real breakpoints. The hit rate 20 

could be improved by changing the parameters of the algorithm, but this would come at the cost of more false 

detections.  

3.5. Long phenological series: an example 

To illustrate the impact of inhomogeneities on trends, in Fig. 9 we show 10 long series for the full flowering of 

the dandelion (Taraxacum officinale) with similar long-term average, of which one is inhomogeneous. This is an 25 

example where a change of observer in the 1980s causes an overestimation of the actual negative trend at one 

station. 

In this subset of stations the flowering of the dandelion changed on average by 13 days over the analysed period. 

After excluding the inhomogeneous series, the average change is reduced to 11 days. 

4. Discussion 30 

Phenological series are less well correlated with each other than temperature series. Particularly in the complex 

landscape of Switzerland, correlations are relatively low (Güsewell et al. 2018). A minimum correlation of 0.6 

was chosen, which for temperature homogenization (based on monthly averages) would be fulfilled by almost all 

possible station pairs in Switzerland (Gubler et al. 2017). The correlations of phenological series are more 

similar to those of precipitation, which (for monthly totals in Switzerland) often fall below 0.6 even, sometimes, 35 

over short distances. However, in contrast to precipitation, which exhibits correlations close to zero between the 
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northern and southern slopes of the Alps (Gubler et al. 2017), we did not find a strong influence of the watershed 

in reducing the correlation.  

The period 1986-1989 shows 3 to 4 times more breakpoints than surrounding 4-year periods. This is a period 

characterized by a rapid temperature increase in Switzerland and similarly rapid changes in phenological 

variables (Schleip et al. 2008; Reid et al. 2016), but unfortunately it also coincides with a particularly large 5 

number of new observers (about 20% of stations affected). If there was an increase of false detections caused by 

the rapid climate change, we would expect the fraction of breakpoints related to changes of observer to decrease. 

However, for 1986-1989 this fraction is 57%, even larger than the overall average of 54%. 

The estimation of the size of the inhomogeneities is not always reliable. In the example shown in Fig. S1, one 

breakpoint (1998) barely reaches the significance threshold (three reference series in two tests show a break). A 10 

second possible breakpoint in correspondence of a second change of observer in 2001 is only detected by one 

test and is therefore not significant. Judging from the bottom plot in Fig. S1, the size of the two breakpoints is 

similar and it is of about one standard deviation; however, since the breakpoint in 2001 was not significant, the 

whole period 1999-2015 is used to calculate the size of the first breakpoint and this results in an estimated size of 

only 0.4 standard deviations (i.e., 5 days). There would possibly be a third breakpoint around 1965, but the first 15 

14 years of the series were ignored by the detection algorithm (yellow shading) since not enough reference series 

were available in that period. 

In general, the closer to each other two breakpoints are, the more difficult it becomes to detect them, because of 

the reduced sample. Moreover, the nature of the tests implies that single breakpoints are much more likely to be 

detected than multiple breakpoints, because the tests can only detect one breakpoint at a time.  20 

We summarize that breakpoint detection in combination with a thorough analysis of metadata such as observer 

changes may contribute to a complementary, more robust estimation of breakpoints and shifts in phenological 

records. Additionally further metadata will be helpful, like e.g. changes in observed plants. An important aspect 

is the careful quality control of the data, since it has been shown for temperature and precipitation that 

breakpoint detection and homogenization produces much better results on carefully quality-controlled data 25 

(Hunziker et al. 2018). 

5. Conclusions 

In this paper we have applied breakpoint detection as it is typically used for meteorological variables to 

phenological data from the Swiss Phenology Network (SPN). We use a combination of three breakpoint tests, 

each employing 5 reference series that are sufficiently correlated with the candidate. Only a fraction of the series 30 

has enough references   ̶ spring phases more often than fall phases. The detected breakpoints were compared with 

metadata, and 54% of them could be attributed to observer changes. We found that especially those breakpoints 

caused by new observers are more frequently linked to an anticipation of the phenological phases, which is the 

same signal caused by a warming climate. More detailed metadata, in particular if an observer change 

corresponds to a change in the observed plants, would help understanding the causes of the asymmetry of the 35 

distribution of the breakpoint’s sizes and allow the implementation of measures to reduce the systematic impact 

on trends. However, additional studies are required to assess whether this asymmetry is a special feature of the 

SPN or whether it can be found in other networks as well.  In general, our study demonstrates that the breakpoint 
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detection methods routinely used in climatology are applicable for phenological series. With this automated 

method, the fraction of detected breakpoints is comparable with the automated detected fraction for precipitation 

series. Due to high variability and comparably low correlations between phenological series, mainly large 

breakpoints are detected. The graphical and statistical outputs of the breakpoint detection can be used for further 

assessment of the most valuable  data series by a manual control.  5 

In the future, citizen science data might be used more frequently for gaining phenological data (Lehmann et al. 

2018), which makes quality control and the assessment of long-term stability even more important. 
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Table 1: Settings and outcome of different breakpoint detection experiments. Biological constraint: reference must be 

same species and phase of the candidate (exceptions are start of flowering/ full flowering and the leaf or needle 

colouring/leaf or needle drop). Statistical tests: number of significant tests out of 3 tests required to accept a 

breakpoint. Reference series: number of reference series. Max onset diff: the phenological mean onset cannot differ 

more than a certain period between candidate and reference series. Min correlation: minimum Pearson’s correlation 5 

of reference series. Tolerance: tolerance in years for detected breakpoints. Quality controlled: data underwent quality 

control before breakpoint detection. If more than the maximum number of series fulfil all requirements those with 

most overlapping observations were considered. The chosen configuration is highlighted in bold. 

 ALL1 ALL2 8REF 5REF 5REF_NOQC 

biological constraint No No Yes Yes Yes 

statistical tests 2/3 2/3 2/3 2/3 2/3 

reference series 8 8 8 5 5 

min overlap No No 90% 90% 90% 

min length (yrs) 10 10 20 20 20 

max elevation diff (m) 1000 1000 750 750 750 

max onset diff (days) No No 30 30 30 

min correlation 0.6 0.6 0.6 0.6 0.6 

tolerance (yrs) 1 2 1 1 1 

quality controlled Yes Yes Yes Yes No 

series tested 7393 7393 2566 2925 2951 

breakpoints 485 644 330 156 141 

- confirmed by metadata 209 (43%) 257 (40%) 140 (42%) 85 (54%) 76 (54%) 

 

10 
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Figure 1: Location of phenology stations by elevation(colors) and number of parameters per station (point size). The 

left legend shows in brackets the number of stations for each number-of-parameters class. 

 

 5 

Figure 2: Boxplots of the Pearson correlation of the reference series for each phase. The whiskers encompass the full 

range of values. Reference series have a minimal correlation of 0.6 according to our criterion. Note that the needle 

emergence/colouring/drop are included into leaf unfolding/colouring/drop. 
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Figure 3: Boxplots of the correlations between candidate and reference series separated by elevation differences. The 

points show the averages of different phases, the red lines show how many reference series contributed to each 

boxplot. 

 5 

 

Figure 4: Breakpoint detection feasibility for each phase. The red fraction of the bars is the fraction of series that did 

not have enough reference series for any period of at least 20 years. Note that the needle emergence/colouring/drop 

are included into leaf unfolding/colouring/drop. 
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Figure 5: Breakpoint detection feasibility for each station. The red fraction of the pies is the fraction of series that did 

not have enough reference series in any period of at least 20 years. The area of the pies is proportional to the number 

of parameters. 
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Figure 6: Breakpoint detection summary plot for the full flowering of the horse chestnut in Altdorf. The map shows 

the position of the candidate (black point) and reference series (red points), the vertical dashed line in the time series 

indicates the position of the breakpoint and the triangles the changes of observer. 
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Figure 7: (left) Number of significant breakpoints detected (relative to the number of tested series). (right) Number of 

changes of observer (relative to the number of tested stations). The red lines depict the number of tested series / 

stations. 
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Figure 8: Histograms of the absolute (left) and standardized (right) size of the detected inhomogeneities. 
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Figure 9: Selected time series of the full flowering of the dandelion (Taraxacum officinale). The red line represents a 

series with a breakpoint in 1986, the black line represents the average of all the other series. Dashed lines are the 

respective linear trends. 
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