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Synaptic computation is believed to underlie many forms of animal behavior. A correct

identification of synaptic transmission properties is thus crucial for a better understanding

of how the brain processes information, stores memories and learns. Recently, a number

of new statistical methods for inferring synaptic transmission parameters have been

introduced. Here we review and contrast these developments, with a focus on methods

aimed at inferring both synaptic release statistics and synaptic dynamics. Furthermore,

based on recent proposals we discuss how such methods can be applied to data

across different levels of investigation: from intracellular paired experiments to in vivo

network-wide recordings. Overall, these developments open the window to reliably

estimating synaptic parameters in behaving animals.

Keywords: synaptic transmission, short-term synaptic plasticity, model inference, probabilistic inference, quantal
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1. INTRODUCTION

Modifications of synaptic transmission properties are believed to underlie learning, memory and,
more generally, neural dynamics (Nabavi et al., 2014; Costa et al., 2017; Roelfsema and Holtmaat,
2018; Williams and Holtmaat, 2018; Llera-Montero et al., 2019). It is therefore of great importance
to accurately infer synaptic transmission properties. Two key features that define synaptic
communication are: stochastic transmission (Malagon et al., 2016) and (relatively fast) temporal
dynamics (Markram et al., 1998; Zucker and Regehr, 2002). The former is reflected as trial to trial
variability of synaptic transmission as the combined result of pre- and postsynaptic sources of noise,
such as probabilistic vesicle release (presynaptic) or binding of quantal neurotransmitter packets to
(postsynaptic) receptors (Faber and Korn, 1991; Traynelis et al., 1993).Whereas temporal dynamics
is reflected in the temporal modulation of synaptic responses, which is mediated by the multiple
time constants of the synaptic transmission machinery. Such dynamics give rise to the commonly
observed phenomenon of short-term plasticity (STP) (Tsodyks and Markram, 1997; Zucker and
Regehr, 2002). In this review we summarize, discuss and contrast recent developments in inference
methods that capture either of these two elements (i.e., stochastic release and STP), or both. In
particular our review focus on relatively simple phenomenological and statistical models, which
abstract out the underlying biophysics and do not capture some aspects of synaptic transmission.

We also highlight recent advances toward inferring synaptic properties in vivo. Studying
synaptic transmission parameters under naturalistic conditions is not only likely to give more
precise parameters estimates, but also insights into what synaptic transmission properties are
relevant in behaving animals (Dobrunz and Stevens, 1999; Isaac et al., 2009).

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://www.frontiersin.org/journals/synaptic-neuroscience#editorial-board
https://doi.org/10.3389/fnsyn.2019.00021
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsyn.2019.00021&domain=pdf&date_stamp=2019-08-20
https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rui.costa@bristol.ac.uk
https://doi.org/10.3389/fnsyn.2019.00021
https://www.frontiersin.org/articles/10.3389/fnsyn.2019.00021/full
http://loop.frontiersin.org/people/350225/overview
http://loop.frontiersin.org/people/754627/overview
http://loop.frontiersin.org/people/765847/overview
http://loop.frontiersin.org/people/766613/overview
http://loop.frontiersin.org/people/94375/overview
http://loop.frontiersin.org/people/767577/overview
http://loop.frontiersin.org/people/24587/overview


Bykowska et al. Model-Based Inference of Synaptic Transmission

2. INFERENCE OF STOCHASTIC
TRANSMISSION

Synaptic transmission is inherently stochastic (see Figure 1 for
a schematic). In the quantal view of synaptic transmission
neurotransmitter-containing vesicles (quanta) are released into
the synaptic cleft from N release sites with probability Prel
(Del Castillo and Katz, 1954; Korn and Faber, 1991; Larkman
et al., 1991; Lanore and Silver, 2016) (Figure 1A). Once released,
neurotransmitters bind to postsynaptic receptors triggering
a postsynaptic response with mean quantal amplitude q. A
binomial model is often used to describe these three aspects
(i.e., number of release sites N, release probability Prel and the
mean quantal amplitude q). In this model the mean peak of
postsynaptic responses is given by µ = qNPrel and their variance
by σ 2 = q2NPrel(1 − Prel) (Figure 1B)

1. Several methods based
on the binomial release model have been proposed to infer
synaptic transmission parameters. A simple method relies solely
on using the mean and variance to get estimates of both q and

Prel by rearranging the terms as q̂ = σ 2

µ
+

µ

N and P̂rel =
µ

Nq̂

given a number of release sites N (Markram et al., 1997; Costa
et al., 2015). The variance-mean analysis (also known asmultiple-
probability fluctuation analysis) is a slightly more advanced
technique that relies on recording postsynaptic responses under
different release probability conditions, which are typical set
experimentally by varying the concentration of extracellular
calcium. The relationship between the variance and the mean
(i.e., µ and σ 2 as above) under different release probabilities
is then fitted to the parabolic function given by the binomial
model (Figure 3A). This method estimates all three parameters
(N, Prel, and q; see Lanore and Silver, 2016 for a detailed review
on the topic). Because thismethod depends on having an accurate
estimation of mean and variance of the postsynaptic responses, it
requires relatively long and stable electrophysiological recordings
under different conditions.

The binomial model described above may suffer from
identifiability issues. For example, in the presence of a high
level of noise it may not be possible to reliably separate the
multiple peaks of the postsynaptic responses. In this case a simple
Gaussian description of the synaptic responses may be preferable
(Figure 2A). In addition, the methods described above also rely
on point estimates which may lead to inaccurate conclusions due
to correlations in the parameters (see Figure 2A for an example
of such a case). A more principled approach to the problem that
explicitly represents the uncertainty in the parameters should
offer a better understanding of how well a particular model
explains a given dataset (see section 3 for examples of this).

Building on earlier work (Turner and West, 1993), Bhumbra
and Beato (2013) introduced a more principled quantal analysis
method—Bayesian Quantal Analysis (BQA). This method
applies Bayesian statistics which allows model inference to
combine prior knowledge P(θ) over model parameters θ (e.g,
θ = (Prel,N, q)) with the data likelihood P(D|θ) following

1The binomial release model makes a few assumptions, namely that each

site releases vesicles independently and that Prel is the same across different

release sites.

Bayes’ theorem as P(θ |D) ∝ P(θ)P(D|θ). In contrast to standard
optimization methods, Bayesian inference explicitly models
uncertainty over parameters given prior knowledge. Choosing
the appropriate prior is an important step when developing
Bayesian frameworks as it shapes the posterior distribution
over parameters given by the likelihood. In BQA, the prior is
used to integrate a priori knowledge about the synaptic release
statistics (e.g., expected bounds), which simultaneously models
the distributions of postsynaptic responses recorded under
multiple release probabilities (independent of each other). This
is in contrast with standard mean-variance analysis described
above, which simply models the mean responses across different
release probabilities. By incorporating prior information, this
method improves the accuracy of parameter inference and,
importantly, reduces the number of samples needed compared
to the mean-variance analysis (from about 100 samples to about
60 samples). Therefore, this new method may be preferable in
experimental conditions where long recordings are particularly
challenging (see a more detailed comparison in Table 1).

3. INFERENCE OF SHORT-TERM
PLASTICITY

Postsynaptic responses are dynamic—the peak response
amplitude depends not only on the quantal parameters,
but also on previous activity. If the presynaptic neuron
fires in quick succession, the released vesicles are not given
enough time to be recycled, which leads to less vesicles
available for release. As a consequence synaptic responses
become weaker, also known as short-term depression
(Figure 1A) and such recovery rates are often modeled
with an exponential with timeconstant τD. At the same
time the presynaptic calcium levels can increase with every
consecutive spike, which may lead to an increase in the
postsynaptic response rather than a decrease—this is known as
short-term facilitation.

3.1. Deterministic Models of Short-Term
Plasticity
A number of deterministic short-term plasticity models have
been proposed that characterize the dynamic properties of
synaptic transmission (for a review on STP models see Hennig,
2013). These models capture STP data relatively well, and thus
may enable us to uncover how STP may be regulated under
different conditions.

The parameters of these models are commonly fit using least-
squares optimization to obtain a single set of parameters (point
estimates) where the goal is to find the best (or at least a good)
set of parameters that captures a given experimental dataset
(Markram et al., 1998; Le Bé andMarkram, 2006; Markram, 2006;
Wang et al., 2006; Rinaldi et al., 2008; Ramaswamy et al., 2012;
Testa-Silva et al., 2012; Romani et al., 2013) (Figure 3B).

However, estimating parameters of STP models poses a
challenge. Similar to the issues highlighted above for binomial
models, in most STP models different parameter sets produce
model outputs that follow the observed data equally well
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FIGURE 1 | Inference of synaptic transmission parameters. (A) Schematic of synaptic transmission parameters. On the left the different elements of the synaptic

transmission process are represented: first (1), presynaptic spikes (blue vertical bars) lead to release of vesicles containing neurotransmitter (R, for presynaptic

resources) from one of N possible release sites with probability Prel; second (2), released neurotransmitters (quanta) bind to postsynaptic receptors triggering a

response with amplitude q; third (3), this process triggers a postsynaptic response with average amplitude NqRPrel, which takes into account both binomial and

short-term synaptic plasticity; fourth (4), presynaptic vesicles are recovered with a time constant τD which may lead to short-term depression of consecutive

postsynaptic responses (red trace on the postsynapse) before the presynaptic resources, R, fully recover; fifth (5), at the same time presynaptic voltage-dependent

calcium (Ca2+) channels can lead to calcium build-up on the presynapse (modeled by a time constant τF ), which may increase release probability (Prel) and in turn

lead to an increase of consecutive postsynaptic responses, also known as short-term facilitation (not shown). (B) Postsynaptic responses exhibit variability [blue

circles from (A) overlaid on top of the mean postsynaptic response in red]. Such variability is often described as a simple binomial process, with N release sites and

variance given by Nq2Prel (1− Prel). Plot represents a binomial release model with N = 5, Prel = 0.5 and some arbitrary q.

FIGURE 2 | Identifiability of synaptic transmission parameters. (A) Identifiability issues of quantal release models. Left upper figure: Histogram of 2000 simulated

postsynaptic responses with N = 5, Prel = 0.5, q = 1, σ = 0.3. In this case it is possible to fit a binomial model. Left lower figure: same simulation, but for high noise

(σ = 0.7). The quantal peaks (i.e., the parameter N) are not identifiable anymore if the recording noise is too high, and in this case a Gaussian model provides a better

description of the synaptic responses. Middle panel: Pairwise posterior marginal for N and Prel for a typical experimental case with 40 observations (simulated

postsynaptic responses shown in inset) where the true parameters were N = 30, Prel = 0.2 and q = 1 (green cross). The maximum a posterior (MAP) estimates is

obtained for N = 49 and Prel = 0.11 (red cross): as N and p are anticorrelated, the posterior is roughly the same over a long band were N and p can be substituted,

leading to inference error for a small number of observations. Right panel: Marginal posterior for N and Prel from the previous panel. (B) Identifiability issues of

short-term synaptic plasticity models. Given experimental data it is often of interest to infer the synaptic parameters. Two main types of inference have been applied:

point estimations where a single scalar is estimated for one or more parameters (red crosses) or full probabilistic inference, where the full probability density over the

parameters is obtained (black line). This particular example was obtained by inferring the Tsodyks-Markram model with four parameters given short-term plasticity

recordings between pyramidal cells in layer-5 visual cortex (see Costa et al., 2013 for more details, only three parameters are shown here for simplicity: τF , τD and

Prel). Point estimates were obtained using a standard least-square (LSQ) fitting method (simulated annealing). Full probabilistic inference was done using MCMC

sampling following Costa et al. (2013) (see main text for more details). As demonstrated by Costa et al. (2013) the uncertainty over the parameters can be greatly

reduced by using more informative protocols that cover a wider frequency range.
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TABLE 1 | Comparison of different model-based approaches.

Approach Binomial STP Inference

qualityh
Experimental

easeh
Algorithm

complexity

Mean-variance analysisa X × ** * (PSR) O(M)

Bayesian quantal analysisb X × *** ** (PSR) O(MN)

Least-square STP fittingc × X ** *** (PSR) O(M)

Bayesian Gaussian-STPd × X **** *** (PSR) O(MS)

Binomial-STPe X X *** *** (PSR) O(MN4)

Bayesian binomial-STPf X X ***** *** (PSR) O(MN4)

Spike-based GLMg × X * **** (spikes) O(M)

Note that the approaches that consider parameter uncertainty can be readily extended to Bayesian. In the O algorithm complexity analysis M refers to the number of data points, N to

the number of release sites and S to the number of samples needed. Point estimate methods that obtain some measures of uncertainty of the parameters rely on getting multiple point

estimates, whereas this comes naturally in full probabilistic methods (this is here reflected in the inference quality). The list of methods presented here is grouped into quantal methods

(first two rows) and into STP models (last 5 rows) and then sorted by their publication date (earlier first). PSR: Postsynaptic responses. We use star-based ranking system for both

inference quality and experimental ease, where one star means worse/harder.
asee Korn and Faber (1991), Lanore and Silver (2016), and Figure 3A.
bsee Bhumbra and Beato (2013) and Figure 3A.
csee for example Markram et al. (1998), Le Bé and Markram (2006), Markram (2006), Wang et al. (2006), Rinaldi et al. (2008), Ramaswamy et al. (2012), Testa-Silva et al. (2012), Romani

et al. (2013) and Figure 3B.
dsee Costa et al. (2013) and Figure 3C.
esee Loebel et al. (2009), Barri et al. (2016), and Figure 3C.
f see Bird et al. (2016) and Figure 3C.
gsee Ghanbari et al. (2017) and Figure 3D.
hNote that this ranking is subjective and based purely on our experience with these methods.

(Figure 2B; Costa et al., 2013). The existence of these
multiple plausible solutions opens problems when relying on
point estimates to draw conclusions about the underlying
biological mechanisms. Therefore, it is important to also
consider the uncertainty of the parameter estimation. Unlike
single point estimate approaches, full probabilistic inference
naturally captures parameter uncertainty, which enables a more
comprehensive model comparison (e.g., Akaike Information
Criterion, Bayesian Information Criterion or Bayes factor).
Note that this can also be in principle obtained using
sensitivity or cross-validation analysis when using standard
fitting methods (Varela et al., 1997; Tennøe et al., 2018),
but as highlighted in Figure 2B these methods may not
provide a complete picture of the parameter landscape. One
form of probabilistic inference is full Bayesian inference
where, similar to the BQA approach, we aim to obtain the
posterior distribution of STP parameters given experimentally
observed data.

Costa et al. (2013) introduced the first Bayesian inference

framework of STP models (Bayesian Gaussian-STP; Figure 3C;
Table 1). In this work the authorsmodeled themean postsynaptic

peak responses using the Tsodyks-Markram STP model to

account for the dynamic properties of the synapse (Tsodyks and
Markram, 1997; Markram et al., 1998). The Tsodyks-Markram
STP model is a commonly used model built around the synaptic

dynamics discussed above. In order to capture the variability

of synaptic responses, Costa et al. (2013) used a Gaussian
approximation as the likelihood and a flat (uninformative) prior

with reasonable bounds over the parameters. Calculating the

posterior exactly is often intractable due to complex likelihoods

and intractable normalizing constants. Instead, Costa et al.
(2013) obtained the posterior distribution P(θ |D) via sampling
using a Markov Chain Monte Carlo (MCMC) algorithm.

MCMC methods rely on constructing a Markov chain2 that
should converge to the desired probability distribution in the
equilibrium (i.e., after long enough observations).

This method was used to study the parameter uncertainty
given datasets obtained with common experimental protocols,
which are typically based on regular spike trains. The posterior
distributions revealed that some of the parameters from the
Tsodyks-Markram STP models were poorly constrained by
such experimental protocols (Figure 2B). This observation led
to the proposal of new and irregular experimental protocols
that span a broader stimulation frequency range and result in
substantially reduced uncertainty over the parameter values.
Such protocols not only lead to reduced uncertainty, but
can also be more easily applied in realistic and natural
conditions (Dobrunz and Stevens, 1999).

Furthermore, obtaining the posterior distribution helps to
understand the dependencies between parameters, which is not
straightforward using traditional fitting methods. For example,
in Stone et al. (2014), the authors used an MCMC method to
obtain the posterior distribution over the parameters (similar
to Costa et al., 2013) allowing the authors to highlight two
strongly correlated parameters. Importantly, the identification
of this correlation led to a reparameterization of the model
which improved parameter inference. Therefore, obtaining the
posterior distribution over the parameters makes it possible to
characterize their uncertainty and explore possible dependencies
between parameters. SuchMCMCmethods are relatively efficient
as long as the model can be computed efficiently (up to a few
seconds) and the number of STP parameters remains relatively
low (less than a few dozens).

2A Markov chain represents a probabilistic transition between states, in which a

given transition depends only on the previous state.
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FIGURE 3 | Different approaches to model-based inference of synaptic transmission. The different methods are organized based on the type of experimental data to

which they are applied (first column), the model being assumed (second column) and the method of parameter inference (third column; dashed green and gray boxes

indicate point estimate and full probabilistic inference, respectively). (A) Methods that use the variability of the first postsynaptic responses to infer binomial release

statistics. (B) Methods that rely on multiple averaged responses to fit short-term plasticity (STP) models, which typically discard binomial release statistics. (C)

Methods that directly consider both variability and multiple synaptic responses using probability theory to infer the synaptic transmission parameters. Here two

variants have been explored: (i) a Bayesian framework where Gaussian noise is used to model the synaptic response variability (Costa et al., 2013) and (ii) a framework

in which binomial release statistics are explicitly considered (Barri et al., 2016; Bird et al., 2016). The later has been explored using two variants: full inference (using

sampling, Bird et al., 2016) and optimization methods (Barri et al., 2016). (D) Methods that work directly at the level of spike trains and try to infer short-term plasticity

parameters. Ghanbari et al. (2017) introduced a new method based on generalized linear models (GLMs) to obtain point estimates of short-term plasticity models.

Prel: Release probability; q: mean quantal amplitude; N: number of release sites; τD: depression time constant; τF : facilitation time constant; f : facilitation rate. Similarly

to previous figures the mean postsynaptic responses are shown in red, spikes in blue (vertical lines) and small blue circles represent individual samples of

postsynaptic responses.

3.2. Stochastic Short-Term Plasticity
Models
There are two important limitations of relying on deterministic
STP models. First, the optimization depends on an accurate
estimation of the mean synaptic responses. As mentioned above,
this requires a high number of trials, which is experimentally
challenging (see Table 1). Second, by only considering averages
these methods ignore the correlations between postsynaptic

peaks, yet these correlations may provide valuable information
to accurately infer the synaptic properties.

A couple of recent studies introduced methods that
incorporate correlations between postsynaptic responses in
the inference of STP parameters. These methods allow the

extraction of both quantal and dynamic parameters of synaptic
transmission from trains of postsynaptic responses without

the requirement of averaging over multiple sweeps (Loebel
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et al., 2009; Barri et al., 2016; Bird et al., 2016). These studies
implemented stochastic models of synaptic transmission by
combining phenomenological Tsodyks-Markram STP models
with binomial models of vesicular release and replenishment.
The probability of vesicle release is derived from a Tsodyks-
Markram model and the vesicle replenishment probability is
modeled with a Poisson process controlled by a depression time
constant parameter τD. The quantal size of the postsynaptic
response evoked by each vesicle can be approximated by either a
gamma distribution in Bird et al. (2016), or an inverse Gaussian
distribution in Barri et al. (2016), and the total amplitude is
modeled as a linear combination of these distributions. The
choice of these distributions is motivated by the fact that the
quantal amplitude distribution is positively skewed, a feature
that can not be captured by a Gaussian distribution.

The full formulation of the stochastic STP model can be used
to define the likelihood of the observed data given the model,
P(D|θ). The stochasticity of the model introduces correlations
between peaks in the train and these correlations pose the
main difficulty in the likelihood calculation. In particular,
because the amplitude of the postsynaptic response is dependent
on the number of released vesicles. As discussed in Barri
et al. (2016), if the likelihood is to be formulated using the
probability distribution of released vesicles, the number of terms
in the calculation would grow exponentially. This becomes a
permutation with repetition problem, in order to account for
correlations of released vesicles the number of terms in the
calculation would grow as (N + 1)K with N being the number
of release sites and K corresponding to the number of spikes in
the train. To make the calculation more efficient, in both studies
the likelihood function is formulated in terms of the probability
distributions of the release sites before and after a spike (rather
than continuously), which fully captures the state of the system.

These two studies apply different strategies to obtain point
estimates from the likelihood. Barri et al. (2016) uses an
expectation-maximization algorithm (referred to as Binomial-
STP in Table 1; see also Loebel et al., 2009), while Bird et al.
(2016) uses MCMC sampling and flat priors (referred to as
Bayesian binomial-STP in Table 1). While both methods return a
point estimate of the parameter set that maximizes the likelihood
function, only the sampling approach approximates the joint
likelihood distribution of the parameters. As discussed above, by
obtaining the full likelihood, not just a point estimate, Bird et al.
(2016) explicitly quantifies the uncertainty over the parameters,
and the full likelihood density (or posterior) can be analyzed.
Moreover, it also allows for correlations between the distributions
over the parameters to be studied.

The main features of these approaches are (i) accounting
for correlations between subsequent postsynaptic responses and
(ii) using individual postsynaptic traces for fitting the models,
which offers theoretical and practical advantages. Interestingly,
both Barri et al. (2016) and Bird et al. (2016) report that
considering correlations during inference yields estimates of
synaptic parameters that are more accurate and require less
sweeps when compared to ignoring correlations. This means that
the experimental protocols can be shorter, hence making these
inference methods particularly attractive for experiments in vivo.

4. TOWARD INFERENCE OF SYNAPTIC
TRANSMISSION IN VIVO

Recent developments have started to raise the possibility of
accurately inferring synaptic transmission properties in vivo. One
way to tackle this problem is to perform whole-cell recordings
in vivo while stimulating the presynaptic neurons (or presenting
a stimuli) (Costa et al., 2015; Pala and Petersen, 2015; Sedigh-
Sarvestani et al., 2019). This is a valuable approach that is
enabling the community to confirm previous in vitro results in
vivo. For example, Costa et al. (2015) applied binomial-based
estimation methods typically used in slices to in vivo data,
and obtained results consistent with both modeling predictions
and slice data. Puggioni et al. (2017) and Latimer et al. (2018)
introduced new statistical methods with some success in inferring
synaptic conductances from in vivo intracellular recordings and
spike trains, respectively. However, these methods were not
developed to estimate quantal or synaptic dynamics properties.
In order to test how such synaptic features are shaped in more
natural conditions across different brain regions new methods
are required that can operate on the growing imaging-based or
spike-based datasets.

Detecting synaptic connections from spikes alone is
challenging. Even in the case of simple monosynaptic
connections this is not straightforward (Fetz et al., 1991), but
there have been recent successful attempts (English et al., 2017).
One of the key difficulties in inferring synaptic parameters from
spikes is that several non-synaptic variables can have an impact
on the spiking statistics (Stevenson et al., 2008). For example,
when a presynaptic neuron fires at high frequencies one would
expect a reduction in the firing rate of the postsynaptic neuron
due to short-term depression at their synaptic connections, but a
similar effect can also be mediated by postsynaptic neuron-wide
adaptation mechanisms (Brette and Gerstner, 2005).

A first attempt at tackling this problem has recently been
put forward (Ghanbari et al., 2017). In this framework,
the authors extended a generalized linear model to infer
both neuronal and STP parameters directly from spike-trains
(Figure 3D, referred to as spike-based GLM in Table 1).
Interestingly, using their framework Ghanbari et al. (2017)
showed that in a reduced system—a single postsynaptic neuron
in slices with simulated inputs—postsynaptic adaptation can
be distinguished from short-term depression as they are
predominantly correlated with pre- and postsynaptic firing rates,
respectively. More recently the same authors (Ghanbari et al.,
2018) went further and used their framework to show that
functional connectivity with STP may explain the diversity
of activity patterns observed in vivo between different brain
areas. However, for these approaches to provide accurate
estimates of synaptic transmission properties (Table 1) in
vivo many other factors need to be considered in future
work, such as network dynamics, cell-type specificity and
dendritic integration.

As highlighted above (section 3), inferring synaptic
parameters using naturalistic conditions (e.g., spike patterns)
not only is likely to give more precise estimates of synaptic
parameters, but also insights into which synaptic transmission
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properties are relevant in behaving animals (Dobrunz and
Stevens, 1999; Isaac et al., 2009).

5. DISCUSSION

In this review we have provided an overview of standardmethods
and recent developments of model-based inference of synaptic
transmission. We started out by reviewing methods that rely on
the binomial statistics of the first postsynaptic response alone and
moved on to methods that consider the dynamics of consecutive
synaptic responses (short-term plasticity) and their statistical
properties. Historically, inference methods have mostly focused
on point estimations, which give a biased interpretation of
synaptic data (Costa et al., 2013). More recent developments have
focused on full probabilistic inference, thus providing a more
comprehensive picture on the most likely synaptic transmission
parameters (Bhumbra and Beato, 2013; Costa et al., 2013; Bird
et al., 2016).

One research direction that should improve the inference
quality of the short-term plasticity parameters is to optimize the
experimental protocol, namely the timings of the presynaptic
action potentials. The stimulation protocol needs to be within
some acceptable range (a too high stimulation frequency would
induce long-term plasticity and thereby violate the stationarity
assumption). However, within such a range, there is a lot of
freedom that can be exploited to improve the quality of the
parameter estimates. For example, Costa et al. (2013) explored
a few different protocols (regular spike trains, regular spike
train + recovery spike(s) or Poisson spike trains). It would be
important to systematically study the space of protocols and
determine which ones are the most informative. Pushing this
idea even further, it would be interesting to design a closed-loop
inference scheme such that after each spike and its subsequent
postsynaptic response, the algorithm determines the best interval
for the next spike that is maximally informative about the
synaptic parameters.

In this review, we have not covered some other properties
that are of interest. One that has received attention recently is
the inference of the size of the presynaptic readily-releasable
vesicle pool (Abrahamsson et al., 2017; Barros-Zulaica et al.,
2019). Additionally, we have focused on the binomial release
model, but many synapses require different release probabilities
and quantal amplitudes across release sites, which is better
captured by multinomial statistics (Walmsley et al., 1988;
Lanore and Silver, 2016). There are several other important
aspects of synaptic transmissoin not considered here, such as
constrains on trial-to-trial quantal variability (Kullmann, 1993),
STP models that also account for changes in quantal amplitude

(Scheuss et al., 2002), frequency-dependent recovery rates in STP
(Fuhrmann et al., 2004), and release-independent short-term
depression (Bellingham and Walmsley, 1999; Fuhrmann et al.,
2004). In future work, it would be important to understand how
the developments reviewed here can also consider and be used to
better understand these finer aspects of synaptic transmission.

There have been remarkable developments in measuring
synaptic properties with high temporal and spatial resolution
(Rey et al., 2015; Tang et al., 2016). Of particular interest are
recent advances in ultrafast optical glutamate sensors, which are
enabling measurements of synaptic release with high accuracy
(Helassa et al., 2018). These developments, when coupled with
the statistical inference frameworks reviewed here (Costa et al.,
2013; Bird et al., 2016; Ghanbari et al., 2017, but see also Soares
et al., 2019), raise the possibility of accurate optical estimation of
synaptic transmission properties in awake behaving animals.

Finally, there has been a recent surge in new and exciting
large-scale recordings, such as voltage and calcium imaging
(Piatkevich et al., 2019), multi-patch recordings (Peng et al.,
2019) and multi-electrode spike recordings (Jun et al., 2017).
With such methods at hand now is the right time to start
asking questions that bridge systems neuroscience and synaptic
transmission properties. By building on initial studies on how
synapses are shaped by naturalistic spike-trains (Dobrunz and
Stevens, 1999; Isaac et al., 2009), this body of work opens
the possibility of inferring quantal and dynamic properties
of synapses over multiple brain areas as animals learn a
particular task.

Taken together these novel inference and experimental
methods open the possibility of testing different theories put
forward for the role of synaptic transmission in learning and
memory (Pfister et al., 2010; Costa et al., 2015, 2017; Llera-
Montero et al., 2019), but also their impact in pathological states
(Jackson et al., 2017).
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