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Abstract
Surfacewater floods (SWFs) that lead to household losses aremainly localized phenomena. Research
on describing the associated precipitation characteristics has previously been based on case studies
and on the derivation of local rainfall thresholds, but no approaches have yet been presented on the
national scale. Here, we propose a newway to overcome this scaling problem.We linked a gridded
precipitation dataset based on both rainfall gauges and radar datawith geolocated insurance claims for
all of Switzerland.We show that the absolute thresholds varymarkedly over complex terrain, andwe
thus propose basing early warning systems for predicting damage-relevant SWF events on local
quantiles ofmaximum intensity and the total sumof event precipitation. A thresholdmodel based on
these two parameters is able to classify rainfall events potentially leading to damage-relevant SWF
events over large areas of complex terrain, including highmountains and lowland areas, and a variety
of geological conditions. Our approach is an important step towards the development of impact-based
early warning systems.Weatherwarning agencies or insurance companies can build upon these
findings tofindworkarounds for issuing user-targetedwarnings at national scale or for nowcasting
purposes.

1. Introduction

Floods are one of the most damaging natural hazards
that account for the majority of all economic losses
from natural hazards worldwide [1]. Floods are driven
by a variety of hydrometeorological processes that
depend on the sizes and the characteristics of river
basins and catchments. In mountainous areas, floods
of small tributaries and minor watercourses can cause
relevant damages. These small-scale floods mostly
occur during short-duration high-intensity precipita-
tion events, which are typically related to thunder-
storms [2]. Moreover, these short-duration heavy
precipitation events can lead to surface water floods
(SWFs) or to pluvial floods along with associated
damage. An SWF is defined here as the surface
overland flow of water that cannot be drained and is

directed towards a watercourse but does not originate
from it nor has reached it [3]. This definition includes
the overflowing of sewage and drainage systems. SWFs
are characterized by overland flow and ponding. In
contrast, fluvial floods (FFs) comprise flooding that
stems from a watercourse. Thus, SWFs are expected to
be more directly related to precipitation than FFs. In
Switzerland, approximately one-third of the insured
damage caused by weather-related hazards is caused
by floods [4]. This includes damage from both FFs and
SWFs. SWFs account for approximately one-fourth of
the damage, and FFs including lake floods account for
the remaining three-fourths of the damage [3]. How-
ever, SWFs account for approximately the same
absolute number of insurance damage claims as FFs
[3], indicating that SWFs are a very frequent flood
process. Despite the high frequency of SWFs, this
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hazard process is not as well studied as FFs by far, with
themain reason being that it is more difficult to obtain
reliable data on SWF events. This is an important
research gap, since SWF-triggering hydrometeorolo-
gical processes and local disposition of SWFs are the
basis for better process understanding, potential fore-
casting and warning applications and are critical in
light of future climate change [5]. Indeed, with the
observed [6, 7] and projected [8] increases of heavy
precipitation events, the impacts of SWFs will become
more relevant for flood risk management and insur-
ance [9–14]. Thus, we aim to link precipitation and
damage.

Recently, novel approaches have been developed
and evaluated to map areas affected by SWFs [15] and
to assess the exposure to these processes [5]. More-
over, first attempts have been made to develop early
warning systems for SWF events [16–22]. However,
the development of such early warning systems is chal-
lenging. A crucial factor for their development is the
characterization of the triggering event, i.e. the rainfall
event. There are several open questions in the analysis
of thresholds for triggering SWFs that lead to damages:
e.g. should rainfall events be classified by intensity,
duration, or total sum of precipitation? This question
requires classifying rainfall events by severity and
examining the possible impacts on values at risk (e.g.
houses). Consequently, damage related events must be
distinguished from minor events not leading to losses
[23–25]. The triggering rainfall eventmust be analyzed
in terms of rainfall intensity, precipitation sum and
duration. A further open question relates to the role of
antecedent conditions for triggering floods [26].

In summary, a prerequisite for the development of
impact-based SWF early warning systems is knowl-
edge of the relationship between rainfall character-
istics and damaging SWFs. The relationship between
rainfall characteristics and damage due to SWFs
requires linking precipitation data with damage data
[27]. In Switzerland, georeferenced data on flood los-
ses is exclusively available from insurance loss claims.

Insurance data has previously been used in a few
studies. Moncoulon et al [28] analyzed insurance mar-
ket exposure to both FFs and SWFs. A review of using
damage data and insurance data in the analysis of
SWFs is given by Gradeci et al [29]. Insurance claim
data are also used for validating flood models [30–32].
Hurford et al [33] evaluated the return periods of rain-
fall thresholds that are used for warnings by linking
rainfall intensities with observed SWFs using data
from fire and rescue services. Cortès et al [34] analyzed
the relationship between flood-related insurance
claims and heavy precipitation at the postal code level
using daily precipitation accumulations. However,
this study did not differentiate between FFs and SWFs.
A similar approach has been described by Spekkers
et al [35], who found that a substantial amount of var-
iance was left unexplained and proposed studying
other explanatory variables such as topographical

uncertainty and urban drainage system properties.
These studies are limited by the level of spatial aggre-
gation and the coarse spatiotemporal resolution of
rainfall data.

There is a current lack of studies that analyze the
characteristics of precipitation events leading to
damage-relevant SWFs at the single object level, e.g. at
the location of the insurance claim, and that use rain-
fall data at a very high spatiotemporal resolution.
Based on previous studies [3, 15] and on [28], we
hypothesize that a higher spatiotemporal resolution of
both the rainfall data and the damage data will help to
better explain the relationship between precipitation
and damage claims related to SWFs. A high spatial
resolution is expected to be especially relevant in com-
plex terrains such as Switzerland. Precipitation in
Switzerland is strongly related to its complex oro-
graphy, such as the main Alpine ridge and the lower
Jura Mountains in the northwest of the country at the
border with France and Germany. Climatologically,
the inner-Alpine valleys are generally drier while the
northern and southern rims of the Alps receive more
precipitation [36–40]. There is a fundamental differ-
ence in the daily precipitation frequency distribution
between the areas north and south of the Alps [40]. In
addition to precipitation, the ability of the ground to
drain water from the surface plays a crucial role in
SWFs. This ability is related to several factors includ-
ing geology, geomorphology, land use and urbaniza-
tion, namely, the sealing of areas, the provision of
drainage, and the blockage of drainage infrastructure
bymaterial such as debris or hail. All these factors vary
remarkably across Switzerland, having both urban and
rural areas, steep and flatmorphology, as well as differ-
ent socio-economic circumstances [3]. The develop-
ment of impact-based early warning systems at a
national scale must therefore consider the high varia-
bility of precipitation and terrain characteristics.

In this study, we aim to assess precipitation char-
acteristics leading to damage-relevant SWFs over a
variety of landscapes and over large regions of com-
plex terrain. The complexity is produced by climatol-
ogy along with topographical and geological variety.
This analysis should provide the basis for defining
rainfall thresholds that are relevant for nowcasting or
forecasting damage-relevant SWF events at a national
scale. To achieve this goal, we must answer several
research questions. Can we identify SWF-triggering
precipitation thresholds? Are these thresholds depen-
dent on the precipitation intensity and duration, ante-
cedent precipitation, weather pattern, temporal
evolution of precipitation intensity, and antecedent
rainfall? Is there a spatial variation in damage-relevant
thresholds over Switzerland that would point to a
strong dependence on land-use or soil or geological
properties? By answering these questions, we would
like to contribute to the development of early warning
systems related to SWFs.We aim at developing a parsi-
monious model for identifying rainfall events that
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trigger damage-relevant SWFs and for mapping areas
affected by such events based on meteorological fac-
tors. We hypothesize that a model with that purpose
roots in a definition of thresholds that are related to
the local precipitation climatology.

2.Data andmethods

We use datasets of precipitation and damage claims at
a very high spatial and temporal resolution and link
them to analyze the characteristics of rainfall events
triggering damage-relevant SWFs.

2.1.Damage reports anddamage events
In this study, single claims made to insurance compa-
nies are referred to as damage claims. Flood damage
claim data were made available to us by Swiss Public
Insurance Companies for Buildings (PICBs) and by
the Swiss Mobiliar Insurance Company, a private
cooperative insurance company (CIC). PICBs insure
the vast majority of buildings in 19 of the 26 Swiss
cantons (figure 1). This is because insurance against
natural hazards, including flooding from FFs and
SWFs, is mandatory in these 19 Swiss cantons. Hence,
the PICBs have a state-regulated monopoly. We were
given access to building damage claims from 14 of the
19 PICBs. The data from the CIC cover two types of
damages: damages to building structures (available for
the cantons without a monopoly situation) and
damages to household contents (available for all of
Switzerland except for the cantons of Nidwalden and
Vaude). However, this dataset does not cover the total
of insured values as valid for the PICBs, but instead
represents samples of the whole due to the free market
conditions in these cantons.

While the insurance data are available from
between 1981 (canton Solothurn) and 2004 (canton
Zug) until the end of 2013, the precipitation dataset is
available from 2005 to the present. Therefore, the
investigation period ranges from 1 January 2005 to 31
December 2013. The insurance datasets contain infor-
mation on the exact locations and dates of the dama-
ges. Uncertainty in the data is primarily due to clients
potentially filing damages for the wrong date and
imprecise location information. Further uncertainty is
discussed in Bernet et al [3]. Damage categorized as a
flood claim in the insurance datasets includes any
damage caused by water entering a building from
above the ground, irrespective of the exact flooding
process. Hence, no distinction between SWFs and FFs
is made by the insurance companies. For that reason,
Bernet et al [3] developed a method to classify damage
reports into damages caused by (a) most likely SWF,
(b) likely SWF, (c) either SWF or FF, (d) likely FF, and
(e) most likely FF. The same approach is applied to
classify every location of the insurance claim datasets
using these categories. Henceforth, categories (a) and
(b)will be referred to as ‘SWF damages’ and categories

(c)–(e) will not be considered in this study. Of the 39
556 available damage claims between 2005 and 2013,
15 803 were attributed to SWFs, 21 399 to FFs, and
2354 could not be assigned.

The 15 803 SWF damage claims were caused on
908 out of 3287 d in the considered 9 year study period
(27.6%) and these days are referred to as damage days.
The SWF damage claims correspond to 4329 damage
locations. A high number of damage claims was con-
centrated on a few specific days (figure 2). Thus, the
distribution of damage claims per damage day is
highly skewed. The damage day with the highest num-
ber of damage claims (1355)was 21 June 2007. Shortly
thereafter, a high number of damage claims were
reported on 7–9 August 2007 (350, 533, and 782
damage claims respectively) and 29 August 2007 (661
damage claims). The second largest number of
damage claims were filed on 22 August 2005, which is
within a three-day period of 21–23 August 2005, when
anomalously many claims were reported (825, 1143
and 213 damage claims, respectively).

2.2. Precipitation data
CombiPrecip is a precipitation dataset that combines
radar and rain-gauge data [41]. It is operationally
produced by the Federal Office of Meteorology and
Climatology MeteoSwiss. CombiPrecip has a 1 km by
1 km spatial resolution and an hourly temporal
resolution. CombiPrecip is the result of a geostatistical
blending between the radar data from the Swiss radar
network [41, 42] and the rain-gauge measurements
from the automatic ground weather stations operated
byMeteoSwiss. The rain-gauge data are considered the
primary variable, while the radar measurements are
used as a trend for the kriging routine. Thismeans that
the radar field is locally adjusted depending on the
precipitationmeasured by the rain-gauges nearby.

2.3. Linking SWFdamage datawith
precipitation data
The precipitation data and SWF damage data have
different spatial and temporal scales. In the damage
dataset, each record is spatially represented as a point
and the data have a daily temporal resolution, while
the gridded precipitation dataset has a spatial resolu-
tion of 1 km by 1 km and an hourly temporal
resolution. Thus, both datasets must be brought to a
common spatial and temporal reference.

2.3.1. Spatial aggregation of damage data
We aggregated insurance claims to the spatial grid of
the precipitation data. The aggregation is necessary to
obtain a comparable spatial resolution between the
insurance claim and precipitation data and to guaran-
tee client anonymity and to adhere to privacy regula-
tions. After aggregation, there were 4329 (6150) 1 km
by 1 km raster cells with at least one SWF (any flood)
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damage claim between 1 January 2005 and 31 Decem-
ber 2013 (figure 2).

2.3.2. Gridded precipitation time series, precipitation
events and damage trigger events
We refer to days with at least one SWF damage claim
in our dataset as damage days. Furthermore, a damage
location is a cell of the 1 km by 1 km precipitation grid
within which at least one SWF damage claim was filed
in the investigation period. Thus, the SWF associated
with the damage day at a specific damage location is
referred to as a damage event. The reported damage

date is inherently uncertain, and consequently the
damage day as well. The insurance company needs to
record the date of a damage caused by a process that
may span over night, over several days, may occur
without anybody’s notice or may cause damage over a
period of several days. Moreover, there is no conven-
tion for recording a damage date among the insurance
companies and assigning a precise damage date does
not lie in their primary interest. To consider these
inherent uncertainties, we have developed an objective
scoringmethod, to identify the triggering precipitation
event for each damage event in an objective manner

Figure 1.Maps of Switzerland showing the availability of SWFdamage data (2005–2013). (a) Shows the absolute number of SWF
damage claims for every grid cell (PICB + CIC claims). (b) and (c) show the number of PICB andCIC claims in the grid cells,
respectively. (d) Shows the number of buildings in the same spatial aggregation units.

4

Environ. Res. Lett. 14 (2019) 064010



that could be applied programmatically to all damage
events.

Prior to linking the damage days with the pre-
cipitation data, a precipitation time series was extrac-
ted for each grid cell that corresponded to a damage
location from the CombiPrecip dataset. The time ser-
ies for the damage locations cover the period from 1
January 2005 to 31 December 2013. To adjust for the
spatial uncertainty of the rainfall interpolation
method and the horizontal transport of rain, we
applied a 9 km by 9 kmmoving window to extract the
spatially averaged precipitation data at each damage
location. Subsequently, we identified precipitation
events in each precipitation time series using the fol-
lowing criteria: (i) a minimum precipitation sum over
the entire event of 10 mm and (ii) a continuous mini-
mum hourly precipitation intensity threshold of 0.1
mm h−1 corresponding to the precipitation detection
threshold. A minimum inter-event time of 8 h was
defined, according to Aryal et al [43]. A similar two
thresholds approach to define events was used by Vil-
larini et al [44]. Precipitation events can last between
one hour and several days. For each precipitation
event, we gathered the following information: event
duration (h); total event precipitation accumulation
(mm); maximum, mean and standard deviation of the
precipitation intensity (mm h−1); month of occur-
rence; predominant upper-level flow, such as weather
classes, over the Alpine region at the beginning of the
precipitation event; and the antecedent precipitation
index (APId (mm)), calculated following equation (1):

= +-
- ( )

K
PAPI

API
1d

d
d

1
1

with APId being the antecedent precipitation on day d,
K a coefficient set to 0.8, and Pd−1 the precipitation
sum one day before day d. This follows the procedures
of Kohler and Linsley [45] and Baillifard et al [46];
however, we adapted ourmethod to hourly time steps.

We considered precipitation up to 30 d before the start
of the precipitation events, similar to Froidevaux et al
[26]. The weather classes stem from Panziera et al [39]
and are based on geopotential height fields at 500 hPa.
Thirteen classes describing the predominant flow
direction are available every 6 h. The weather pattern
assigned to each precipitation event was the closest in
time before or exactly at the precipitation event start.
The temporal evolution of the rainfall event was
classified into four categories accordingly to the Ger-
man Association for Water, Wastewater and Waste
[47], and performed by calculating the RMSE between
cumulative precipitation and four types of design
precipitation events (continuous rainfall, maximum
intensity at the beginning, in the middle or at the end
of the rainfall event). Next, the damage-triggering
precipitation event needed to be identified for damage
events, as mentioned before. In order to objectively
and programmatically identify a single triggering
precipitation event, we assumed that themost extreme
event within a time window of maximum 5 d centered
on the reported damage date was the damages’ cause.
The scoring method considered four event character-
istics, i.e. the maximum and mean precipitation
intensity, the cumulative precipitation as well as the
event duration. The event duration was considered in
two different ways, i.e. as (i) the fraction of the
candidates’ time steps overlapping with the window’s
time steps and (ii) as the candidates’ total time steps
divided by the time steps overlapping with the time
window. The duration was considered in this way as to
balance the scoring of long-during events (scoring
higher with measure) (i) as well as shorter events
(scoring better with measure) (ii). Therefore, the
trigger identification method was based on five
different variables. First, all precipitation events from
the locally-specific time series were considered as
potential triggering precipitation events (candidates),
if at least one time step occurred during a timewindow
of 1, 3 and 5 d centered on the damage date. Starting

Figure 2.Timeline from1 January 2005 to 31December 2013 showing the number of insurance damage claims (CIC+PICB) per day
in absolute (count; left black axis) and relative terms (%of the total 15 803 claims; right blue axis). Damage dayswith�200 damage
claims are highlighted and labeledwith the respective date.
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with a time window of 1 d, each candidate’s score was
increased by 1 if one of the five variables exhibited the
largest absolute value among these candidates. As an
example, the score of the event xi was increased by two,
if the event was associated with the highest maximum
precipitation intensity as well as the highest cumula-
tive precipitation of all candidates. Then the scoring
was repeated for time windows of 3 and 5 d. By using
these three increasing time windows, more weight was
given to events happening on or closer to the damage
date. Finally, the scores of all candidates were summed
up and the rainfall event with the highest score was
considered to be the triggering precipitation event.
Manually checking the assignment of the triggering
event, showed that events with a score of 10 or less
should not be considered. This accounted for data
errors in the damage date, location as well as in the
precipitation data. The triggering event’s characteris-
tics were then linked to the damage event. An example
of the damage trigger’s identification procedure is
shown infigure 3.

2.4.Model for the identification of rainfall events
leading to SWFs
The precipitation characteristics over the complex
topography of Switzerland are highly variable in space
[2, 39] and the spatial precipitation patternsmay differ
from the distribution of damage locations. To consider
this variability, we have derived local quantiles at grid
cell level in addition to the precipitation characteris-
tics’ absolute values. The advantage of using local
quantiles is that the values are directly comparable
across all damage locations. Grid cells without any
damage observations were excluded from the analyses.
In a first step, we compared the absolute values of the
damage events’ precipitation characteristics to the

events with no damage, i.e. the total event precipita-
tion accumulation, maximum andmean precipitation
intensity and the standard deviation thereof, as well as
the categorical variables including the month of
occurrence, weather class, and antecedent precipita-
tion. In a second step, we repeated the comparison
with the local quantiles for all but the categorical
variables. The differences were tested using the
Kolmogorov–Smirnov andMann–Whitney tests.

Finally, we developed and tested a simple parsimo-
nious threshold model to explicitly identify rainfall
events leading to damage-relevant SWFs. We based
the model on the percentiles of the precipitation sum
and the maximum intensity, because these two vari-
ables differed most between damage events and no-
damage events (figure 4). Moreover, the quantiles of
either or both variables are close to 1 for most events,
which indicates that neither of the two variables alone
would be a good choice for amodel (figure 6). The spe-
cific thresholds for the two-variable model were iden-
tified by optimizing the symmetric extremal
dependence index (SEDI) (equation (3)) as defined in
[48]. This metric combines the hit rate (probability of
detection) H (equation (3), [49]) and the false alarm
rate (probability of false detection) F (equation (4),
[49]). In addition, we computed the bias score (fre-
quency bias) BIAS (equation (5), [49]) for analyzing
the sensitivity.

=
- - - + -
+ + - + -

( )

( ) ( )
( ) ( )

2

F H F H

F H F H
SEDI

log log log 1 log 1

log log log 1 log 1

=
+

( )H
hits

hits misses
3

Figure 3.Exemplary identification of the trigger event. Precipitation event x3 has the highest score within the 1 dwindow for allfive
variables, but lower scores for the other timewindows. Event x2 has the highest scores within the 3 and 5 dwindow.Overall, the total
score of event x2 is largest and, thus, it is considered to be the damage-triggering precipitation event in this example, although it
occurred 1 d before the reported damage date.
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Figure 4.Density distributions of all precipitation events (gray) versus the damage-relevant SWF-triggering precipitation events only
(light blue). The absolute values of (a) event duration (h), (b) precipitation accumulation over the event (mm), (c) antecedent
precipitation (mm), (d)maximum/(e)mean/(f) standard deviation of the precipitation intensity (mmh−1) over the course of the
event are shown. (a)–(f) Specify the values for themedian and the 95th percentile of the distributions, respectively.
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false alarms

correct negatives false alarms
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hits false alarms

hits misses
. 5

3. Results and discussion

The comparison between all precipitation events at
each of the 4329 claim locations with the precipitation
triggering damage-relevant SWFs showed that the
latter differ significantly (p= 0.001) from the overall
precipitation events. In terms of the density

distribution of absolute numbers (figure 4), this
comparison showed that precipitation events that
trigger damage-relevant SWFs have shorter median
durations than all precipitation events. However,
events lasting longer than 50 h have higher densities of
triggering events (the 95th percentile is 64 h for all
events and 81 h for damage-relevant events). Trigger-
ing events have significantly higher event precipitation
accumulation (with amedian valuemore than twice as
large). The same is true for the maximum and mean
rainfall intensity. The antecedent precipitation is
significantly higher for triggering events. In terms of
relative numbers, i.e. when comparing the quantiles,
that SWF-triggering events are associated with the
highest quantiles of the event precipitation sum along
with mean and maximum rainfall intensity. Density
distributions of the other event characteristics show
statistically significant differences (p= 0.001)
between all precipitation events and SWF-damage-
relevant triggering events (figure 5). The monthly

occurrence of SWF-triggering events has maximums
in June, July, andAugust.

The analyses of the precipitation characteristics
lead to the development of a threshold model for clas-
sifying precipitation events as damage-relevant SWF-
triggering events or not (equation (6)). The most
important factors are local quantiles of precipitation
intensity and precipitation sum. Neither of the two
factors is a sufficient predictor for damage-relevant
SWFs, because both short and intensive as well as long
precipitation events with a high total sum are fre-
quently causing SWF damages. This is illustrated in
figure 6.

where qimax is the local quantile of the precipitation
intensity and qptot is the local quantile of the precipitation
total of the triggering event at each damage location x.
According to the calculated metrics, optimized threshold
values are the 90% quantile for the precipitation intensity
and the 98% quantile for the precipitation sum. These
thresholds lead to a hit rate of 0.998, a false alarm rate of
0.005 and a SEDI index of 0.92. We tested the sensitivity
and the robustness of the thresholdmodel by varying the
minimumnumber of claims per grid cell. This sensitivity
analysis showed that the model is sensitive to an increase
of theminimumnumber of claims per grid cell from 1 to
2, but not remarkably sensitive to a further increase
(figure 6). The full results of this sensitivity analyses are
shown in appendices A1 and A2. The relative thresholds
model provides similar results over whole Switzerland
with its high variability of landscapes and terrain
characteristics. While the absolute values of precipitation
maxima are highly variable in space [39], we could show
that thresholds based on local relative quantiles are

Figure 5.Density distributions of all precipitation events (gray) versus only the damage-relevant SWF-triggering precipitation events
(light blue). The following are shown: (a) precipitation evolution class (Cont. = continuous, Beg./Mid./End = intensity peak at
beginning/center/end of event, (b)month, and (c)weather class at the beginning of the event over the Alpine area (W=westerly,
SW=southwesterly, NW=northwesterly, N=northerly, NE=northeasterly, E=easterly, SE=southeasterly, S=southerly,
H=high pressure, LNW=low pressure at northwest, LNE=low pressure north east, LSE=low pressure south east, and
LSW=lowpressure southwest).

 È
=

⎪

⎧⎨
⎩( ) ( )f x

q q q qdamage, _

no damage, otherwise
, 6i x i p x pmax , max tot, tot thresholdthreshold
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representative over large areas including mountainous
and flat terrain. This is interesting because the fre-
quency of SWF damage claims is also remarkably
varying over Switzerland. Bernet et al [3] showed that
SWFs are more frequent in the Jura mountains and the
Western Plateau than in the Alpine areas and identified
a few hot spot areas in Switzerland in terms of claim
numbers. The presented approach covers these hot
spots as well as cold spots. However, the question
remains open whether the model can be transferred to
high mountain areas that are not covered with settle-
ment and, thus, are not considered in the analyses
because ofmissing data (black colored areas infigure 2).
The purpose of this model was to obtain meaningful
threshold values, purely derived from the precipitation
characteristics, in order to test the prediction of
damage-relevant SWF events. Within the scope of this
study, we constrained the analyses to the damage
locations. In this way, we ensured that the analyzed
locations encompassed at least somebuildings thatwere
susceptible to SWF damage. The reason why no SWF
damages were observed in all the other cells are
manifold: for instance, there may simply be no build-
ings within a cell, the exposed properties may be well
protected against flooding, the local topography may
route the overland flow past vulnerable objects, or the
location is not completely covered by the data.

4. Conclusions

The spatiotemporal overlay of 9 years of the hourly 1 km
by 1 km CombiPrecip precipitation dataset with high-
resolution damage data from insurance companies
allowed characterizing precipitation events leading to
damaging SWFs. We used a representative set of 15 803
SWF damage claims at 4329 different damage locations.
The analysis of damage-relevant and non-relevant

precipitation events confirmed that precipitation inten-
sity and sum, event duration, antecedent precipitation,
andmonth of occurrence significantly differ for damage-
relevant SWF events in comparison to events with no
damage. The seasonal occurrence is mostly concentrated
on summer months [5, 27]. Local antecedent conditions
do not play amajor role for triggering SWFs in the case of
particularly short and intense rainfall or very long rainfall
with a high precipitation sum. The relevance of the
maximum intensity and the precipitation is in agreement
with thoseof previous studies [50, 51].

We developed a parsimonious model for mapping
the areas with probable SWFs on the basis of spatio-tem-
poral rainfall data based on two parameters: rainfall
intensity and sum. It uses a relative threshold approach
based on local quantiles. In contrast to absolute thresh-
old values, this method is applicable to large areas over
complex terrain, including high mountains and lowland
areas and a variety of environmental conditions as descri-
bed in [2, 3, 39]. A simple relative thresholdmodel based
on these two parameters is able to classify rainfall events
in relation to the occurrence of a damage-relevant SWF
event. The transfer of these parameters from grid cells
with observed damages to those without damage obser-
vationhas tobe evaluated in future studies.

Our approach is an important step towards the
development of impact-based early warning systems.
Weather warning agencies or insurance companies
can build upon these findings to develop workarounds
for issuing user-targeted warnings [52] at the national
scale or for nowcasting purposes (e.g. mobilizing per-
sonnel for evaluating incoming claim reports). The
main barrier of this approach is the availability of
insurance data. These data are mostly restricted due to
data privacy legislation, reputational issues, business
secrets, loyalty to customers, or issues of competition
for market share [29]. By presenting the benefits of
these data, we want to contribute to the discussion on

Figure 6. Sensitivity of the relative thresholdmodel to the number of claims per grid cell.
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opening damage data archives for research or for
establishing national damage databases. Further stu-
dies should consider other explaining meteorological
variables than just the two factors implemented in the
model, e.g. antecedent precipitation, seasonal occur-
rence, and weather class. Moreover, additional
explaining variables have to be considered in future
studies as well, e.g. damage variables including the
characteristics of the buildings affected by SWFs such
as physical vulnerability, geographic variables includ-
ing the characteristics of the sewer system, terrain
parameters around the buildings, and possibly also
demographic variables [29]. These variables are even
more relevant when not only the occurrence of
damage-relevant SWFs are predicted, but also the
actual amount of loss. The thresholds used in the pre-
sented model for predicting the occurrence of SWFs
are valid for the period 2005–2013. They are expected
to change with global warming and the analyses have
to be repeated periodically for updating the thresh-
olds. In principle, the thresholds could also be used for
analyzing potential effects of climate change on the
occurrence of SWFs by using very high resolution
regional climate models with explicit convection
resolving that are able to simulate the precipitation
events of relevance [53].
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