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ABSTRACT

Creating a quantitative overview over the early Iron Age heritage of the Eurasian steppes is

a difficult task due to the vastness of the ecological zone and the often problematic access. Re-

mote sensing based detection on open-source high-resolution satellite data in combination with

convolutional neural networks (CNN) provide a potential solution to this problem. We create

a CNN trained to detect early Iron Age burial mounds in freely available optical satellite data.

The CNN provides a superior method for archaeological site detection based on the comparison

to other detection algorithms trained on the same dataset. Throughout all comparison metrics

(precision, recall, and score) the CNN performs best.
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1 INTRODUCTION1

The archaeology of the Early Iron Age in the Eurasian steppe deals with a vast and archae-2

ologically unexplored space between Eastern Europe and Mongolia. Despite the amount3

of research which has been conducted by scholars of the former USSR and the recent wave4

of new research coming out of these areas, a quantifiable understanding of the wealth of5

cultural heritage the Eurasian steppe harbors, has yet to be achieved. One of the problems6

which hinders researchers in gaining a wider understanding is the fact that the ancient7

cultural phenomena of the Early Iron Age did not neatly adhere to modern nation state8

borders (Figure 1). The current administrative, linguistic, and institutional fragmentation9

of this vast ecological zone –the steppe–makes research on the ground difficult. Remote10

sensing in combination with automatic or semi-automatic approaches for object detection11

have been established as a tool which largely disregards these problems and is able to pro-12

vide the basis for solutions (Caspari et al., 2014). Rooted in archaeological field research13

we combine open source data with convolutional neural networks (CNNs) in order to14

encompass the newest technological advances and use them to detect elite tombs of the15

Early Iron Age in the Eurasian steppe.16

When it comes to restrictive access for foreign researchers, the Xinjiang Uyghur Au-17

tonomous Region is maybe the most extreme example in the region. It is known for its18

political and ethnical issues (Clarke, 2008) and recently received international media at-19

tention due to its increasingly oppressive counter-terrorism campaigns. (Roberts, 2018)20

Notoriously hard to receive permits for archaeological fieldwork in the first place, spo-21

radic eruptions of ethnic conflicts between the Uyghur minority and Han Chinese major-22

ity in southern Xinjiang can abort long-planned projects last minute. Militarized border23

zones geographically curtail the areas archaeologists can work in. Even receiving a permit24

is not necessarily a guarantee that a field campaign can be conducted as planned, since25

the security apparatus is suspicious of any research activity by foreigners. Remote sensing26

mitigates these problems of access and the quality of publicly available high-resolution27

satellite data for Xinjiang has increased dramatically over the past years (Caspari, 2018).28
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Figure 1: The area of interest in the eastern Central Asian steppes

CNNs have become the standard tool in computer vision applications in recent years.29

Their particular use in pattern and shape recognition is noted and popularized with the30

LeNet-5 architecture for recognizing handwritten digits (Lecun et al., 1999). Their particu-31

lar usefulness is predicated on their ability to take inputs in the shape of multidimensional32

matrices (tensors), allowing them to work with patterns in multiple directions. Pixels ad-33

jacent to each other have influence on what is identified. Most other machine learning34

algorithms used in image recognition work with inputs that take the shape of single row35

vectors, eliminating the ability to harness the information given by adjacent pixels in36

an image that are not in the same row (the pixels right below, above or set diagonally).37

Hence, CNNs are much more sensitive to identifying subtle patterns in images.38

CNNs are a versatile solution to a plethora of problems in archaeology which works39

well when plenty of data is available. It comes at the cost of not being able to fully and an-40

alytically understand the process of solving the problem. The outcomes however can be41
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qualitatively assessed and the solution is reproducible. Consistent with their versatility,42

CNNs have been used in different archaeological sub fields and for a diverse number of43

tasks from sex determination of skeletal remains to solving mapping tasks and extracting44

pottery depictions from archaeological publications.45

Unsurprisingly, being one of the main categories of archaeological material, research46

on ceramics has seen a wide application of CNNs already. From recognizing vessels47

to classifying ceramic form, to understanding and classifying the structure of ceramics,48

CNNs have been useful in solving complex problems. (Benhabiles and Tabia, 2016) build49

a CNN to design local descriptors for content-based retrieval of three-dimensional (3-D)50

vessel replicas. (Pasquet et al., 2017) use a CNN to detect amphorae in an underwater set-51

ting, correctly mapping around 90% of the vessels. (Hein et al., 2018) automatically extract52

and classify ceramics based on textures. (Chetouani et al., 2018) enlist the help of a CNN in53

order to classify shards and understand the movement of potters. The ArchAIDE project54

experiments with CNNs to create an as-automated-as-possible tool for the classifications55

and interpretation of shards (Gualandi et al., 2016). A similar application is envisioned56

by (Tyukin et al., 2018) with the project Arch-I-Scan which aims to automatically classify57

Roman pottery.58

Interpreting other archaeological classes of information with CNNs is still in its in-59

fancy, but a number of examples can give the reader an idea of what might be possible60

if expertly human labeled datasets are combined with CNNs. (Byeon et al., 2019) au-61

tomatically identify and classify cut marks on bones. The authors manage to demon-62

strate that CNNs recognize and classify marks with a much higher accuracy rate than63

human experts. CNNs also perform exceptionally well when tasked with determining64

the sex of skeletal remains based on CT scans thereby eliminating human bias (Bewes65

et al., 2019). In the analysis and interpretation of ancient scripts, CNNs are also begin-66

ning to make an impact. First attempts have been made in indexing Mayan hieroglyphs67

(Roman-Rangel and Marchand-Maillet, 2016; Can et al., 2018) and creating a standard-68

ized corpus of graphemes for the Indus Valley script (Palaniappan and Adhikari, 2017).69

Further applications of CNNs in classifying, transcribing, and ultimately translating e.g.70
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cuneiform are to be expected.71

CNNs have so far found the widest application in the area of archaeological remote72

sensing. This subfield of archaeology has the advantage of already working within a73

data-focused framework where classification and mapping tasks are common. The ap-74

plication of CNNs thus comes as an obvious extension of existing automated and semi-75

automated methods. Especially with LiDAR data collection, the data volume is becoming76

too large to be analyzed through a manual approach. CNNs help to mitigate this problem77

while simultaneously maintaining a consistent approach. (Trier et al., 2019) present a case78

study mapping a number of archaeological object classes on an island in Scotland based79

on airborne laser scanning data. (Guyot et al., 2018) detect Neolithic burial mounds in80

a LiDAR-derived digital elevation model. (Kramer et al., 2017) combine aerial imagery81

and LiDAR data to detect archaeological structures using previously identified archaeo-82

logical sites as training data. Other non-invasive methods like geophysical prospection,83

in particular ground penetrating radar (Travassos et al., 2018; Ishitsuka et al., 2018; Pham84

and Lefèvre, 2018), have also seen the application of CNNs. Our own case study in this85

paper belongs to the wide field of CNN applications which arose from image processing86

conceptually close to well-known and widely applied tasks like the recognition of faces87

and vehicles in images. CNNs can be useful in any area where remote sensing data needs88

to be searched for archaeological structures. The efficient processing of image data even89

allows for real-time decision making so that (Rutledge et al., 2018) are able to present an90

autonomous underwater robot system, which allows for the autonomous surveying of91

underwater sites including path planning and acquisition of high-resolution sonar data.92

Even art historical classifications and comparisons are supported by CNNs. With the93

appropriate amount of data, it becomes feasible to define stylistic affinity. First applica-94

tions can be seen in the classification of wall paintings in Pompeii (Schoelz, 2018) and95

(Li et al., 2018) approach towards dating the Mogao Grottoes wall paintings based on96

drawing styles defined by a CNN. (Wang et al., 2017) use CNNs for defining similari-97

ties of Bodhisattva head images at the Dazu Rock Carving site and thus contribute to98

the reconstruction of some of the damaged rock carvings. An application of CNNs in the99
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restoration of damaged archaeology can also be seen in a paper by (Hermoza and Sipiran,100

2017) where the authors try to predict the missing geometry of damaged archaeological101

objects opening a promising avenue of research into computer-supported reconstruction102

and restoration of archaeological artifacts.103

Wherever the exploration and analysis of large data sets is aided by recognizing com-104

plex patterns, CNNs can be helpfully employed. This leads to creative applications like105

a study by (Graham, 2018). The authors identify sales of human remains on social media106

platforms using CNNs to detect patterns allowing for the classification of a combination107

of images and text ultimately aiding the reconstruction of sales networks.108

2 THE FIELD ARCHAEOLOGICAL FOUNDATION109

The Dzungaria Landscape Project, first established in 2014 (Caspari et al., 2017), relied on110

a large-scale automated survey by means of a trained Hough Forest algorithm (Caspari111

et al., 2014). Since then, machine learning has made enormous progress and the quality112

of the freely available satellite imagery has increased substantially. Through an intensive113

on-ground survey, the project was able to obtain a dataset of archaeological structures in114

the foothills of the Chinese Altai Mountains. Accumulations of very large Early Iron Age115

burial mounds early on caught the attention of the researchers (Figure 2 and Figure 3).116

It soon became clear that the southern Altai Mountains, in particular the area around117

Heiliutan were a focus of intense funerary building activity, especially during the first118

millennium BCE (Caspari et al., 2017). A number of different Early Iron Age material119

cultures in the first millennium BCE can be identified (van Geel et al., 2004). Here, we are120

specifically focusing on the funerary architecture of the Saka culture due to its relative121

homogeneity. There is a plethora of architectural remains from the Early Iron Age present122

in the survey area, but many of them are too small to be reliably detected in open source123

optical satellite data (Caspari, 2018). By far the most dominant anthropogenic features of124

the landscape are large burial mounds with circular ditches around them.125

These monuments of which 59 (Caspari et al., 2017; Caspari, Forthcoming) were mapped126
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Figure 2: Map generated during the 2015 survey of the Heiliutan Valley in northern Xinjiang. Large Saka
burial mounds tend to cluster. Dark grey = mound. Light grey = ditch.

during the field surveys, bear a striking resemblance to so-called Saka burials from the127

Semirechye (eastern Kazakhstan), the northern Tianshan and the Ili Valley. The term128

“Saka” is a relatively unspecific ethnic term stemming from Persian sources as (P’iankov,129

1994) elaborates and thus should only be used with the appropriate care. Over decades of130

archaeological research in what is now eastern Kazakhstan, the term, however, has come131

to denote a specific Early Iron Age material culture and is seen as a technical term among132

many researchers without implying the potentially problematic ethnic connotations. The133

Saka material culture in eastern Kazakhstan is dated to the 7th/6th cent. BCE and the134

3rd cent. BCE (Parzinger, 2011). Saka burials have so far mainly been known from the135

Semirechye (Davis-Kimball, 1991; Gass, 2011; Nagler, 2009; Nagler et al., 2010) and have136

only recently been compiled in a large study by (Gass, 2016).137

The connections of Saka-related material culture into northern Xinjiang have been ana-138

lyzed (Davis-Kimball, 1991; Chen and Hiebert, 1995) but due to the fragmentary nature of139

archaeological data in Xinjiang have been assumed to mainly be confined to the western-140

most stretches of Xinjiang, namely the Ili Valley and the northern Tianshan. Older Chinese141
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research has looked at these connections from the eastern side (Wang, 1985) working on142

a number of sites which show clear relations to eastern Kazakhstan like Tiemulike (Insti-143

tute of Archaeology of the Xinjiang Academy of Social Sciences, 1988), Dacaotan (Institute144

of Archaeology of the Xinjiang Academy of Social Sciences, 1985), and Zhongyangchang145

(Institute of Archaeology of the Xinjiang Academy of Social Sciences, 1986). The architec-146

tural features of the mounds in the Heiliutan Valley, however, suggest a strong cultural147

connection during the middle of the first millennium BCE all the way into the foothills of148

the Chinese Altai Mountains.149

Figure 3: Architectural features of Saka burial mounds.

The large burial mounds of the Saka material culture usually were built from a mixture150

of pebbles, larger round stones and earth from the alluvial terraces. Mounds are typically151

elevated and surrounded by circular rings of stones or circular ditches (Figure 3). Both152

ditch and mound are clearly visible in open source optical satellite data. The profile of153

the Saka burial mounds typically shows steep sides (sometimes three steep sides and one154

with a gentler slope) and a flat top. Maximum diameters in the Heiliutan area are typi-155

cally between 15.5m and 34.1m (89.5 %) and therefore well within the range of detectable156

objects in open-source satellite imagery (Figure 4). A group of outliers has diameters of157

over 40m. The average diameter of Saka mound in the Heiliutan Valley is 27.93m (median158

26.8m).159

The heights of these burial mounds average at 1.97m (median 1.4m). The largest160
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Figure 4: Scatterplot of Saka burial mound diameters, notice the cluster of extraordinarily large mounds
which clearly set themselves apart from the smaller ones. These “princely” tombs are easily recognizable
in open source remote sensing data.

mounds have a height of up to 6.5m. Both diameters and heights of Saka burial mounds161

in the Chinese Altai are comparable to Saka burial mounds from Issyk, Kegen and other162

cemeteries with princely tombs (Gass, 2011; Samashev, 2007). The Saka burials of the163

Heiliutan area are all practically identical in their composition of building materials and164

the profile of the mound. The largest mound has a diameter of 53.5m, a height of 6.0m,165

and the circular ditch measures 91.5m across. This type of burial usually has a 5:3 ratio166

between circular ditch diameter and mound diameter which again matches Saka buri-167

als from the Semirechye (Gass, 2011). The large accumulation of Saka burials (Figure 2)168

with a length of almost 2km are visible from afar and one of the dominant archaeological169

places within the landscape of the Heiliutan Valley. One of these monuments has been170

excavated in 2016 by the Institute of Archaeology of the Xinjiang Academy of Social Sci-171

ences but has yet to be published like many other burial mounds in the area of interest172

the grave was unfortunately looted.173
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3 CONVOLUTIONAL NEURAL NETWORKS174

CNNs are a specific type of neural network architectures popularized by (Lecun et al.,175

1999), which can take grid-like inputs. Our particular case is a two-dimensional grid of176

pixels, in which each pixel can be considered a source of information in the same way as177

a cell in a row of tabular data would be. Note that images can be interpreted as numerical178

grids if each pixel on each channel (RGB) is given a numerical value based on the intensity179

of the color from 0 to 255. In order to understand how CNNs work, we will define them180

as the junction of three different operating components as types of “layers”:181

• convolutional layers182

• pooling layers183

• fully connected layers184

The convolutional and pooling layers are used to identify and summarize patterns185

in the data. The fully connected layers are used to utilize these summaries as inputs186

of a classification problem, helping us make the determination of whether our (in this187

case) image belongs to a specific class based on the model. An example diagram of these188

architectures is presented in Figure 5.189

Figure 5: CNN architecture example diagram
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3.1 CONVOLUTIONAL LAYERS190

The network uses convolutional layers to detect simple features or patterns in the data.191

The patterns can be small and simple, but the combination of multiple simple patterns192

allow for the search of complex forms.193

Each convolutional layer is composed of two stages: convolution and detection. In the

first stage a set of convolution operations are run on the input grid. A kernel or filter is

moved sequentially on the input generating outputs on each position they take. These

are defined by:

hi,j =
m
∑

h=1

m
∑

l=1
wk,lxi+k−1,j+l−1

where hi,j is the output of the convolution at position (i, j) , xi+k−1,j+l−1 portion of the input194

grid over which the filter is applied, wk,l is the filter at position (k, l), and m determines195

the height and width of the filter.196

Hence, the filter is a weighting square grid, which is applied to the larger input grid to197

highlight specific patterns within it. The higher the value of a convolution operation, the198

higher the chance that the pattern that the filter searches for is found. Figure 6 highlights199

this process by exemplifying it. We can then use different filters to find different patterns.200

For example, using a filter of the form:201

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0

0 1 0

0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

would be used to identify vertical lines.202

Filters can be, and often are, initialized at random to pick on many and varied subtle203

patterns within the input grid. Each convolutional layer runs several filters on the inputs204

and outputs grids for each.205

For the detection or activation stage, the results from the convolution stage are taken206
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Figure 6: Filter applied over a matrix

and passed through a function. We used the ReLU (Rectifying linear unit), which is de-207

fined as:208

σ (x) = max (0, x)

This specific function grants extra weight to all of the non-negative units. Since the209

filters can have negative values, this activation allows for extra salience of patterns.210

After activation, the outputs of the convolutional layer are used as inputs for the pool-211

ing layers.212

3.2 POOLING LAYERS213

A pooling layer summarizes the resulting activated grids through max pooling. This214

work uses max pooling. A new grid is constructed from each activated grid by assigning215

each entry of it to the maximum value of 2×2 subgrids. An example is shown in Figure 7.216
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Figure 7: 2× 2 max pooling

At this point, the practitioner has two choices: to summarize the results once more217

through a fully connected layer (see Section 3.3) or to repeat the process of passing the218

outputs through a convolutional layer and pooling layer once again. This is what is meant219

by making a network ”deeper.” Passing the data through extra convolutional and pooling220

layers allows for further and more subtle evaluation of patterns. This is said to elevate221

the complexity of the model.222

3.3 FULLY CONNECTED LAYERS223

Fully connected layers have the basic structure of artificial neural networks or multilayer224

perceptrons. Their task is to take the outputs from the last pooling layers and classifying225

them into specific categories. Before passing the grids resulting from the pooling layers226

to the fully connected layers, the grids are ”flattened.” Meaning the results from all the227

resulting grids are combined into a single row vector. The resulting elements of the vector228
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produced after the flattening are then linearly combined. This means they are written as:229

β0 +∑
i

βi × elementi

where β0 is called the ”bias” and the rest of the βi are called the ”weights.” Each of230

these linear combinations is passed through an activation function yet again generating a231

single number output. This particular structure of operations constitutes what is called a232

“neuron.” The set of these activated linear combinations is called a ”hidden layer.” The233

practitioner can add extra complexity to the model by using the outputs of each hidden234

layer as the inputs for a new fully connected layer. The practitioner has to choose both235

the number of neurons and the depth of the model by choosing the number of hidden236

layers. Once it has been decided that the architecture is deep enough, in the case of binary237

classification such as ours, a final fully connected layer is created yielding a single linear238

combination and the activation of this one is what we consider the “output layer” of the239

network usually normalized between zero and one thanks to the activation function (a240

sigmoid function1 is a common choice). The corresponding number in this output layer241

is mapped to a specific class according to a threshold. For example, binary classes code242

their “target” variable as either having values of zero or one. We can say that an output243

layer with a value larger than 0.5 will predict the input belongs to class one and to class244

zero otherwise.245

The question remains on how these networks are actually generalized for large sam-246

ples of images. Consider that a sample of already identified and labeled images, which247

we call our ”target” is compiled in a vector y. Then, we would like to make sure that over-248

all the values of the distinct weights and biases are chosen such that the resulting output249

layer is as close to the target as possible for representative samples. In this case, we would250

like to choose values such that the following distance is minimized via a process called251

“backpropagation” for n observations in a sample:252

n
∑

i=1

1
2
(yi − outputi)

2
(1)

1

σ (x) =
1

1+ e−x
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It needs to be noted that deeper networks with hidden layers and many neurons in253

each are capable to make the distance in Equation (1) very small for a sample due to added254

complexity. This however does not come without the risks of making the network attuned255

to only the images fed through the specific sample and incapable of generalizing to others256

from the same population of objects but that were not present in the sampled data. This257

process is called ”overfitting.” Hence, the practicioner needs to be sure to design their258

architecture in a fine balance. The network must be capable to process complex enough259

patterns for classification, but not be so overly attuned to the sample data such that it fails260

classifying data from the same population outside the sample.261

4 APPLICATION OF A CNN ON “PRINCELY” TOMB CLASSIFICATION262

4.1 DATA PREPROCESSING263

Using open-source optical satellite data from Google Earth (100 x 100 pixels) of tombs264

with known locations and arbitrary patches of land around them, a labelled dataset was265

created with the following labelling scheme:266

y =

⎧
⎪⎪⎪⎪
⎨
⎪⎪⎪⎪
⎩

0 if tomb present

1 if tomb absent

The dataset is composed of 1212 images with 169 including tombs. Typical observa-267

tions of each case are presented in Figure 8. It is important to note that the distinctive268

shape of the tombs makes them easily distinguishable from other patches of land even in269

low-resolution data.270

In order to verify that the model we fit is a good model, the data is split in two portions,271

one for fitting the model (training data) and one for looking at how well it generalizes272

(testing and validation). The testing and validation data are simply datasets that don’t273

undergo the fitting process. Since the data belongs to the same population as the training274

data does, assessing the goodness of fit of the model in these can give us a good idea of275
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Figure 8: Top: Examples of images labelled as tomb absent. Bottom: Examples of images labelled as tomb
present.

how well the model generalizes and it helps identify overfitting.276

The data was split with 75% used for training and 25% used for testing and valida-277

tion. Since the images containing tombs are heavily underrepresented in the dataset,278

augmentation is necessary for training appropriately with multiparameter methods such279

as convolutional neural networks. In this case 655 new images were synthesized from the280

training data with tombs present. The new samples are created by modifying the existing281

ones through randomly zooming, shearing, and performing horizontal flips. Note that282

augmented images are only used during the training stage. Using them for testing or val-283

idation is inappropriate due to their high correlation with the images that they originate284

from.285

4.2 CNN ARCHITECTURE286

The CNN utilized for our problem was trained on the augmented data mentioned at the287

beginning of this section. The full summary of the architecture is detailed in Figure 9.288

The CNN was trained in Keras, a Python module which uses Google’s TensorFlow as a289
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backend in our case.290

Figure 9: Keras model summary

The architecture shown is relatively simple consisting of 3 convolutional and pooling291

layers with ReLU activations and two fully connected layers before the final activation292

with a sigmoid. The diagram specifies the dimensions of each. For example, the first293

convolutional layer uses 32 filters and outputs a 98× 98 grid. A natural question not nec-294

essarily explained in the prior sections is what the ”dropout” row means in the diagram.295

Dropout is a regularization technique which disallows certain linear combinations to ex-296

ist at random during the optimization step. This technique helps ”regularize” or penalize297

overfitting. Hence, making sure the model is generalizable.298

4.3 BENCHMARKS AND RESULTS299

Judging the accuracy of the convolutional neural network specified in Section 4.2 requires300

plausible methods for benchmarking. Furthermore, the true metrics of accuracy we are301

interested in are those in the validation data. These would be the ones that would tell302
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us how each model works under observations not seen by the training model. As such,303

three models were chosen: a biased random guess, a support vector classifier with a linear304

kernel and a support vector classifier with a radial basis function kernel.305

Random guess is useful as a comparative benchmark since it selects its output by sim-306

ple random chance. In order to make the benchmark tougher, we biased the probabilities307

of classifying an image as containing a tomb to be the proportion of the actual number of308

tombs in the validation set309

Since the shapes of the tombs are simple and easily distinguishable, it stands to rea-310

son that simpler and more tractable classification methods could work as long as they311

allow for flexible boundary classification. Support vector machines with kernels as pro-312

posed by (Boser et al., 1992) work as sensible and powerful alternatives to deep learning313

models. We attempt using two types of kernels in this study, the linear kernel and the314

radial basis function kernel which both allow for different transformations of the data315

pre-classification. Each of these models have their hyperparameters adjusted via 5 -fold316

cross validation.317

We use three measures to compare the predictions made by the classifiers accuracy:318

Precision, Recall and F1 score. Definitions below:319

Precision =
# of True Positives

# of True Positives + # of False Positives

Recall =
# of True Positives

# of True Positives + # of False Negatives

F1 score =
2

1
Recall +

1
Precision

Precision simply gives the rate of correctly classified objects among all classified objects320

with the same label. Recall gives the rate of correctly labeled objects among all actual321

objects with that label. F1 score gives a balanced measure of both. All tables and figures322
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comparing models in this paper use these measures.323

Table 1 and Table 2 encapsulate the results obtained from the trained models making324

predictions on the validation set. We can appreciate that for both, images which con-325

tained tombs or those which did not, the CNN performs best. Interestingly, despite the326

fact that SVMs worked under training with an augmented dataset, their performance in327

identifying pictures with tombs was not comparable to that of the neural network. This328

is surprising since the tomb shapes are mostly simple to the naked eye, hence nonlinear329

classification should work well. The reason lies in the likelihood of the SVM models con-330

taining many false positives (objects that are not tombs being identified as such). This331

occurs because other images that might just simply be circular in shape are likely to be332

picked up by the SVM models as tombs . This has been an issue with other detection333

algorithms before e.g. (Caspari et al., 2014) . The big advantage of our architecture relies334

on the quantity of filters used being able to recognize higher subtlety in the patterns of335

the trained dataset that might identify a tomb, beyond just the circular shape. Figure 10336

summarizes both tables and includes a bar for Average/Total, which has a weighted av-337

erage for both classes under the measure. Showing that overall the CNN is the better338

performing model.339

Model Precision Recall F1score
Random Guessing 0.64 0.65 0.65

SVM with linear kernel 0.9 0.96 0.94
SVM with RBF kernel 0.96 0.97 0.97

CNN 0.98 1 0.99

Table 1: Classification metrics for validation data set pictures without tombs.

Model Precision Recall F1score
Random Guessing 0.59 0.58 0.59

SVM with linear kernel 0.29 0.15 0.20
SVM with RBF kernel 0.76 0.67 0.71

CNN 1 0.84 0.91

Table 2: Classification metrics for validation data set pictures with tombs.
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Figure 10: Result Summaries

5 CONCLUSIONS340

The distinctive shape of the early Iron Age Saka burial mounds and their relatively large341

size make them an ideal training set for machine learning algorithms which can be run342

on open source satellite imagery. Our CNN outperforms other methods and provides343

a valuable approach for the large-scale detection of elite burial mounds in the Eurasian344

steppes. In this way a macro-regional survey of northern Xinjiang and the adjacent ar-345

eas could be conducted in order to assess the spatial distribution of this monument type346

and possibly revise the geographical extent to which Saka-related material culture spread347

through Eastern Central Asia during the first millennium BCE. The method has the clear348

advantage that all analyses can be conducted without the access problems archaeological349

projects in the region usually have to deal with.350

Preliminary satellite imagery analysis has developed into playing a major role in plan-351

ning and implementing archaeological field research (Lasaponara and Masini, 2012; Cas-352
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pari et al., 2019). But automatic feature detection has yet to become accessible to a wider353

range of researchers in order to be widely applied. A number of attempts have been354

made to connect archaeological surveys with automatic detection of features (Caspari355

et al., 2017; Trier et al., 2009; Trier and Pil, 2012), however, it is not commonly used by356

practitioners. Both the complexity of the method which often demands cooperation with357

computer science specialists, and the lack of awareness for the possibility play a role in358

the so far rare application of automatic detection algorithms by archaeological practition-359

ers. The authors do not expect to see a widespread application unless intuitive tools are360

developed for feature selection, algorithm training and visualization of ready-to-use re-361

sults.362
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