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Abstract. Differences between paleoclimatic reconstruc-
tions are caused by two factors: the method and the input
data. While many studies compare methods, we will focus
in this study on the consequences of the input data choice
in a state-of-the-art Kalman-filter paleoclimate data assim-
ilation approach. We evaluate reconstruction quality in the
20th century based on three collections of tree-ring records:
(1) 54 of the best temperature-sensitive tree-ring chronolo-
gies chosen by experts; (2) 415 temperature-sensitive tree-
ring records chosen less strictly by regional working groups
and statistical screening; (3) 2287 tree-ring series that are
not screened for climate sensitivity. The three data sets cover
the range from small sample size, small spatial coverage and
strict screening for temperature sensitivity to large sample
size and spatial coverage but no screening. Additionally, we
explore a combination of these data sets plus screening meth-
ods to improve the reconstruction quality.

A large, unscreened collection generally leads to a poor
reconstruction skill. A small expert selection of extratropi-
cal Northern Hemisphere records allows for a skillful high-
latitude temperature reconstruction but cannot be expected to
provide information for other regions and other variables. We
achieve the best reconstruction skill across all variables and
regions by combining all available input data but rejecting
records with insignificant climatic information (p value of
regression model > 0.05) and removing duplicate records.
It is important to use a tree-ring proxy system model that in-

cludes both major growth limitations, temperature and mois-
ture.

1 Introduction

In the past 20 years, a lot of effort has been invested
in improving climate reconstructions for the last centuries
to millennia based on indirect climate information – so-
called “proxies”. Focus has been on both large-scale aver-
ages as well as the reconstructions of regional to global fields
(Masson-Delmotte et al., 2013; Smerdon and Pollack, 2016).
Temporal and spatial resolution varied with the included pa-
leoclimatic archives. However, most reconstructions for the
past centuries rely heavily on the most abundant indirect cli-
mate archive, tree rings, and specifically on tree-ring width
(TRW) and late-wood density (MXD). Differences between
reconstructions have mostly been discussed with differences
in reconstruction methodology in mind (Christiansen and
Ljungqvist, 2017). However, a new study shows good agree-
ment between a wide range of methods if reconstructions are
based on the same input data set (Neukom et al., 2019a, b).
Another recent study found that temperature-sensitive tree-
ring proxies from the PAGES2k database (Emile-Geay et
al., 2017) lack multi-centennial trends, which are found in
other proxy archives (Klippel et al., 2019). This suggests that
the input data play a crucial role for differences between
reconstructions. This fact is also seen in data assimilation
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for weather prediction, e.g., at the addition of satellite to ra-
diosonde observations (Swinbank et al., 2012, p. 365). Today,
many proxy data archives are available; hence compiling in-
put data for reconstruction is not only a matter of the amount
of proxy data, but also of their selection, i.e., screening.

In this study, we therefore aim at evaluating the effect of
various tree-ring data collections and their screening on the
final reconstructions. Tree-ring proxies are by far the most
numerous climate information source for the past centuries
and additionally chosen because our methodology relies on
annual data without dating uncertainties. Due to the rele-
vance of temperature in the climate change discussion and
the fact that many biological proxies react to temperature
stress, temperature has so far been the variable of most in-
terest. However, to study the underlying processes a multi-
variable perspective is required. Therefore, we evaluate the
effects of the input data choice, using a state-of-the-art data
assimilation technique, which allows for multi-variable cli-
mate reconstructions in the form of model simulations that
are in optimal agreement with proxy information (Bhend et
al., 2012; Franke et al., 2017a).

A number of previous studies based on data assimilation
techniques tended to assimilate a high quantity of input data
instead of applying strict data selection beforehand (e.g.,
Steiger et al., 2018; Tardif et al., 2019). The idea is that
regression-based proxy system models weight each proxy
series by their regression residuals. Hence, proxies that do
not contribute information will be downweighted automati-
cally. However, this weighting may not work perfectly be-
cause of two factors: (1) the regression depends on overlap-
ping paleodata and instrumental measurements, which often
results in a small sample (Fig. 1 in Jones et al., 2012), uncer-
tain residuals and possible model overfitting; (2) moisture-
and temperature-sensitive proxies may correlate and hence
moisture-sensitive paleodata will be used to correct temper-
ature and vice versa. However, these two variables proba-
bly have very different multidecadal to centennial variability
(Franke et al., 2013). The growth-limiting factor may even
change over time (Babst et al., 2019).

In this study, we use the Kalman-filter-based state-of-
the-art data assimilation technique introduced in Bhend
et al. (2012), which is very similar to the methodology used
in the last millennium reanalysis (LMR) project (Hakim et
al., 2016; Tardif et al., 2019). In contrast to LMR, our method
is a transient-offline method, in which the background state is
time-dependent due to the external forcing prescribed for the
climate model simulations. In our experiments, we focus on
the effect of the input data choice on the final reconstruction.
We compare three published collections of tree-ring records
(focusing on TRW and MXD), of which at least two are com-
monly used for climate reconstructions. These have very dif-
ferent characteristics: (1) the B14 collection of 2287 consis-
tently detrended TRW chronologies from the International
Tree Ring Data Base (ITRDB), not screened for climate sen-
sitivity (Breitenmoser et al., 2014); (2) TRW and MXD series

from the PAGES2K database version 2 (Emile-Geay et al.,
2017), with a selection of 415 temperature-sensitive records,
most selected by a statistical screening for positive correla-
tion with instrumental temperature; and (3) the N-TREND
tree-ring collection of 54 TRW, MXD or blended TRW-MXD
time series (Wilson et al., 2016), selected by experts to be the
best temperature recorders. Thus, the three data sets cover
the range from large sample size and spatial coverage but
no screening for temperature sensitivity to small sample size
and small spatial coverage but strict screening. Note, that
these collections were generated with slightly different aims,
which affects their use in reconstructions. Thus, for instance,
we cannot expect to achieve the best global-scale field recon-
struction from a proxy collection covering a much smaller
area (Kutzbach and Guetter, 1980). However, all data sets
are used for climate reconstruction.

In the next section the method and data sets are introduced
in greater detail before we show our results. Then we discuss
the possible reasons for our results and the differences com-
pared to previous studies. Finally, we draw our conclusion on
what an optimal proxy selection process should look like.

2 Data and methods

We use three input data sets for comparison; all consist of an-
nually resolved tree-ring measurements, which have hardly
any dating uncertainties.

1. B14 is a collection by Breitenmoser et al. (2014) of
2287 uniformly detrended and standardized TRW mea-
surements from the ITRDB (Zhao et al., 2018). We
use the full collection without any further screening for
climate or temperature sensitivity. Hence, this repre-
sents the data set with the highest quantity of records.
However, the weighting of temperature information in
the paleodata is completely down to the reconstruction
method.

2. PAGES2k is a collection of 415 TRW and MXD series
from PAGES2k data base version 2 (Emile-Geay et al.,
2017). These are all records that correlate significantly
(p < 0.05) with nearby instrumental temperature mea-
surements and/or have been described by experts to rep-
resent temperature variability. This compilation repre-
sents a compromise of good quantity, large spatial cov-
erage and good quality paleodata, based on global se-
lection criteria. However, experts from various regional
groups had different levels of strictness in their screen-
ing procedure, which led to varying data density in the
different regions.

3. N-TREND is a collection of 54 tree-ring chronologies
based on TRW, MXD or a combination of both. They
were chosen by experts with the purpose being to pro-
vide the best tree-ring paleodata for temperature recon-
structions (Wilson et al., 2016). Hence, they are our low-
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Figure 1. Proxy locations of the three collections.

quantity, highest-quality input data set with the least
spatial coverage.

Climate fields are reconstructed by assimilating these tree-
ring observations into an ensemble of climate model simu-
lations using a Kalman-filter technique: ensemble Kalman
fitting (Bhend et al., 2012; Franke et al., 2017a). The sim-
ulations, which serve as a background (sometimes called
first guess or prior) of the atmospheric state at each point
in time, are given by a 30-member initial condition ensem-
ble of atmospheric model simulations (ECHAM5.4, Roeck-
ner, 2003). All simulations follow the same external forcings
(volcanic (Crowley et al., 2008), solar (Lean, 2000), green-
house gases (Yoshimori et al., 2010), land use (Pongratz et
al., 2008), tropospheric aerosols (Koch et al., 1999)) and sea
surface temperature boundary conditions based on a recon-
struction by Mann et al. (2009) plus additional El Niño–
Southern Oscillation variability (Franke et al., 2017a). The
data assimilation method is “transient offline”. “Transient”
refers to the fact that our prior at each point in time consists
of 30 ensemble members that are in agreement with forc-
ings and boundary conditions. “Offline” assimilation means
that the simulations are calculated for the full period before
the assimilation is conducted. This is possible in the paleo-
climatological setup because we only have one observation
per year per record. Predictability on these timescales only
comes from the boundary conditions and not from the atmo-
spheric model.

EKF is the offline variant of the ensemble square root fil-
ter (Whitaker and Hamill, 2002), in which the observations
(y) are assimilated serially. The assimilation procedure is di-
vided into an update of the ensemble mean (x̄) and an update
of the anomalies with respect to the ensemble mean (x′):

xa
= xb

+K
(
ȳ−Hxb

)
, (1)

x′a = x′b+ K̃
(
y′−Hx′b

)
=
(
I − K̃H

)
x′b,

with: y′ = 0, (2)

where the superscript a refers to the analysis and b to the
background of the atmospheric state x, which is a vector with
values of multiple variables at all grid boxes. H denotes an
operator which maps xb to the observation space (see proxy
system model (PSM) below). K and K̃ are the Kalman gain

matrices (Whitaker and Hamill, 2002):

K= PbHT
(

HPbHT
+R

)−1
, (3)

K̃= PbHT

[(√
HPbHT +R

)−1
]T

×

(
HPbHT

+R+
√

R
)−1

. (4)

The K matrices control how the information from the ob-
servations updates the background. It depends on the obser-
vation error covariance matrix R and the background error
covariance matrix Pb. R is estimated from the regression
residuals of the PSM and errors are assumed to be uncorre-
lated. Background error covariances Pb are calculated from
the 30-member ensemble nens of ECHAM5.4 simulations
(CCC400) at each time step with row number i, column num-
ber j and ensemble member k (Bhend et al. 2012; Franke et
al. 2017a):

Pb
i,j =

1
nens− 1

nens∑
k=1

x′bi,kx
′b
j,k. (5)

This has the advantage of taking time-dependent covariance
structures into account, for instance during El Niño vs. La
Nina years. The disadvantage is the small sample of 30 en-
semble member for covariance estimation. To deal with spu-
rious correlations caused by the relatively small ensemble,
we apply a distance-dependent localization, i.e., updates are
only possible with a certain radius around the observations
(Valler et al., 2019):

C = exp

(
−

∣∣di − dj

∣∣2
2L2

)
. (6)

di and dj describe the zonal and meridional distances from
the selected grid box. L is the length scale parameter used
for localization. It has been estimated based on the spatial
correlation in the simulations and is variable dependent, e.g.,
1500/450 km in case of temperature/precipitation (Franke et
al., 2017a).

A recent comparison of Valler et al. (2019) has shown
superior performance when using an improved covari-
ance estimation, which blends 50 % of the 30-member
time-dependent covariance with 50 % of a 250-member
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“climatological” time-independent covariance (experiment
50c_PbL_Pc2L in Valler et al., 2019). In this paper we use
both the original setting as in Franke et al. (2017a) as well as
the improved setting proposed by Valler et al. (2019).

Our paleo-reanalysis is based on anomalies from a 71-
year period around the current year. Low-frequency variabil-
ity is a function of the models’ response to the prescribed
external forcings and background conditions, which include
sea surface temperatures. Because low-frequency variabil-
ity is not consistently preserved in paleodata (Franke et al.,
2013; Klippel et al., 2019) but reasonably well represented in
the model simulations of the last millennium (Franke et al.,
2017a), this approach is expected to provide consistent skill
at all timescales. Note that the assimilation of anomalies re-
tains possible model biases. This circumvents a big problem
in data assimilation approaches with temporally varying in-
put data networks. Observations that gradually pull the model
away from its biased state, can lead to artificial trends or step
functions in time series.

We use a linear multiple regression PSM to simulate tree-
ring observations using modeled temperature and/or precip-
itation. The regression model is calibrated with gridded in-
strumental data (CRU TS 3.1, Harris et al., 2014) in the pe-
riod 1901–1970. It includes monthly temperature (and pre-
cipitation) during the growing season April to September.
In this study, we limit the analysis to the Northern Hemi-
sphere because the majority of the tree-ring observations can
be found there. In the first four experiments (Table 1), which
only use temperature (T ) in the PSM, we have six inde-
pendent variables (i.e., local, monthly mean temperature of
April to September). If we assume that tree growth was lim-
ited by temperature and moisture (T R) variability (experi-
ments 5 and 6 in Table 1), we have 12 independent variables
(i.e., local, monthly mean temperature of April to Septem-
ber and monthly precipitation sums of April to September).
Note that regression coefficients can be zero and thus growth
can still be limited to just temperature or just precipitation
and to less than 6 months. In experiments 7 and 8 (Table 1)
we additionally consider only regression models, in which
the growth occurs in consecutive months. Therefore, we fit
all possible combinations of consecutive months and choose
the PSM with the lowest Akaike information criterion (AIC).
Temperature and precipitation limitations can occur in a dif-
ferent sequence of months for each variable (e.g., precipita-
tion limits growth from April to June and temperature limits
growth from June to September). The variance of the regres-
sion residuals is used to specify the observation error covari-
ance matrix (assumed to be diagonal) in the assimilation; i.e.,
the larger the residuals, the less weight an observation gets
and the less the model simulations get corrected.

In this study, the period in which the regression coeffi-
cients of the PSM are estimated and the regression residuals
are calculated overlaps with the period when the reconstruc-
tion skill is estimated. This apparent lack of independence is
negligible in this case because regression coefficients are es-

timated from gridded instrumental data sets to translate grid
cell temperature (and moisture) anomalies to local tree-ring
measurements. The optimization is done on tree rings, not
on the climate data, and it is done on many local scales. In
that sense the effects of the dependence are rather indirect. In
contrast to statistical reconstruction methods, which directly
estimate a climate variable such as temperature through the
regression parameter estimate, our assimilation method is far
less affected by the calibration procedure. Nevertheless, us-
ing the same data for validation probably leads to a slight
overestimation in reconstruction skill. However, in this study
we just compare the relative skill of various inputs data sets,
so the impact of dependencies will be the same for all. Con-
cerning the regression residuals, again the error estimate con-
cerns tree-ring width, not climate parameters. We use the
residuals as an estimate of error covariance. In case we un-
derestimate the residuals, proxy observation would have too
much weight in the assimilation process compared to the
simulations. Uncertainty estimation in both observations and
models is a crucial but challenging part of data assimilation.
We evaluate the spread-to-error ratios to assess the under- or
overconfidence of our reconstructions (Franke et al., 2017a).

If multiple data collections are combined, there may be du-
plicates of the same proxy, possibly in differently treated or
detrended versions. We conduct experiments where we pre-
vent single sites from being assimilated twice by only choos-
ing the best proxy (smallest regression residuals irrespective
of series length) in a 0.1◦× 0.1◦ (ca. 10 km) grid. This is
a rare case, however, hardly affecting the results.

We evaluate the quality of the reconstruction based on cor-
relation with gridded instrumental observations of temper-
ature, precipitation (Harris et al., 2014) and sea-level pres-
sure (Allan and Ansell, 2006) in the period 1901–1990 as
a reference (xref, where x is the state vector). After show-
ing absolute correlation coefficients of the analysis, we focus
on correlation improvements over the original model simula-
tions because these forced simulations already correlate pos-
itively with the gridded observations in many locations. Cor-
relation focuses on the covariability, i.e., the correct sign of
the anomaly. Additionally, we use a root-mean-square-error
skill score (RMSESS) that describes the improvement of the
analysis xa over the original model simulations (background)
xb over all time steps i:

RMSESS= 1−

∑(
xa

i − xref
i

)2∑(
xb

i − xref
i

)2 . (7)

It is more difficult to reach positive RMSESS values than cor-
relation improvements because this score penalizes a wrong
amplitude of variability (e.g., an uncorrelated reconstruction
with correct variance would yield RMSESS=−1). Because
it is based on squared errors, too high a variability is penal-
ized more than little variability, which the ensemble mean of
the original model simulations has. We only present correla-
tion improvements and the RMSESS of the ensemble mean.

Clim. Past, 16, 1061–1074, 2020 https://doi.org/10.5194/cp-16-1061-2020



J. Franke et al.: The importance of input data quality and quantity in climate field reconstructions 1065

Table 1. Experiments.

Name Proxy system model Description

1. NTREND_T Six regression coeff. for Apr to Sep
monthly temperature (T ).

Using the best tree-ring chronologies for temperature re-
construction, which have been chosen by experts, i.e., very
strict selection of a few, best records.

2. PAGES_T Same as above. Using a selection of temperature-sensitive proxies selected
by the regional PAGES working groups. The mostly statis-
tical screening for a temperature signal involved a sign cor-
rection; i.e., if temperature and moisture are negatively cor-
related, tree-ring chronologies can remain as temperature-
sensitive in the data set. Therefore, more records but less
strictly screened than NTREND.

3. B14_T Same as above. Consistently detrended tree-ring data from the ITRDB by
B14. This proxy set includes the largest amount of proxy
series. However, many of them do not include any climate
signal.

4. ALL_T Same as above. All three data sets together, largest data set with greatest
spatial coverage. However, duplicate proxies have not been
excluded.

5. ALL_TR Twelve regression coeff. for Apr to Sep
monthly temperature and precipitation
(R).

Same as above.

6. ALL_TR_scr0.05 Same as above. Same as above but with additional basic statistical screen-
ing; i.e., only records with a climate signal (p value < 0.05)
will be assimilated. This procedure removes records with-
out or with very little and uncertain climatic information.

7. ALL_TR_scr0.05_AIC_
NOdup

Maximum of 12 regression coefficients
but only consecutive months are al-
lowed; mixed temperature and precip-
itation signals are still possible.

Same as above, but with the AIC we chose the regression
model under the precondition that only climate from con-
secutive months can influence tree growth, which is more
realistic due to local growing season length. Additionally,
we remove duplicate proxies by only considering the best
proxy (lowest regression residuals) within a 0.1◦×0.1◦ (ca.
10 km) grid. In each grid box we keep both the best mainly
temperature-limited and the best mainly moisture-sensitive
proxy if both exist.

8. ALL_TR_scr0.05_AIC_
NOdup_ClimCovar

Same as above. Same as above but with background error covariance esti-
mate not only from the 30 ensemble members of the current
year. Instead we use a mix of 50 % error covariance coming
from 250 random ensemble members and years.

In contrast to correlation coefficients, which tend to be higher
for the ensemble mean than for the ensemble members, the
RMSESS of single ensemble members tends to be slightly
higher than the RMSESS of the ensemble mean (Fig. 6 in
Bhend et al., 2012).

To evaluate the influence of the input data on the final re-
construction, we conducted the set of experiments described
in Table 1.

3 Results

Temperature correlation coefficients between the analyses
and gridded instrumental data are positive nearly all around
the globe and for all three proxy collections (Fig. 2a–c) be-
cause the transient simulations follow forcings and boundary
conditions and hence show proper multidecadal variability
and a 20th-century warming trend. However, this is not the
case for precipitation, which does not show a warming trend
(Fig. 2d–f). In contrast to the assimilation of PAGES and
NTREND (Fig. 2d, e), we can observe clearly higher cor-
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Figure 2. Pearson correlations coefficients between the analysis and gridded instrumental data in the 20th century. Panels (a), (b) and (c)
show temperature and the (d), (e) and (f) precipitation correlation. This figure shows results from experiments 1 to 3 (Table 1), i.e., after
assimilation of the three proxy data collections using the proxy system model that assumes only growth limitation by temperature.

Figure 3. Temperature correlation improvement of the analysis over the original model simulations, i.e., correlation between analysis and
CRU TS minus correlation between simulations and CRU TS, where red colors indicate an improvement of the analysis. All maps show the
April to September growing season of the Northern Hemisphere.
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