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Abstract. Differences between paleoclimatic reconstruc-
tions are caused by two factors: the method and the input
data. While many studies compare methods, we will focus
in this study on the consequences of the input data choice
in a state-of-the-art Kalman-filter paleoclimate data assim-
ilation approach. We evaluate reconstruction quality in the
20th century based on three collections of tree-ring records:
(1) 54 of the best temperature-sensitive tree-ring chronolo-
gies chosen by experts; (2) 415 temperature-sensitive tree-
ring records chosen less strictly by regional working groups
and statistical screening; (3) 2287 tree-ring series that are
not screened for climate sensitivity. The three data sets cover
the range from small sample size, small spatial coverage and
strict screening for temperature sensitivity to large sample
size and spatial coverage but no screening. Additionally, we
explore a combination of these data sets plus screening meth-
ods to improve the reconstruction quality.

A large, unscreened collection generally leads to a poor
reconstruction skill. A small expert selection of extratropi-
cal Northern Hemisphere records allows for a skillful high-
latitude temperature reconstruction but cannot be expected to
provide information for other regions and other variables. We
achieve the best reconstruction skill across all variables and
regions by combining all available input data but rejecting
records with insignificant climatic information (p value of
regression model > 0.05) and removing duplicate records.
It is important to use a tree-ring proxy system model that in-

cludes both major growth limitations, temperature and mois-
ture.

1 Introduction

In the past 20 years, a lot of effort has been invested
in improving climate reconstructions for the last centuries
to millennia based on indirect climate information – so-
called “proxies”. Focus has been on both large-scale aver-
ages as well as the reconstructions of regional to global fields
(Masson-Delmotte et al., 2013; Smerdon and Pollack, 2016).
Temporal and spatial resolution varied with the included pa-
leoclimatic archives. However, most reconstructions for the
past centuries rely heavily on the most abundant indirect cli-
mate archive, tree rings, and specifically on tree-ring width
(TRW) and late-wood density (MXD). Differences between
reconstructions have mostly been discussed with differences
in reconstruction methodology in mind (Christiansen and
Ljungqvist, 2017). However, a new study shows good agree-
ment between a wide range of methods if reconstructions are
based on the same input data set (Neukom et al., 2019a, b).
Another recent study found that temperature-sensitive tree-
ring proxies from the PAGES2k database (Emile-Geay et
al., 2017) lack multi-centennial trends, which are found in
other proxy archives (Klippel et al., 2019). This suggests that
the input data play a crucial role for differences between
reconstructions. This fact is also seen in data assimilation
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1062 J. Franke et al.: The importance of input data quality and quantity in climate field reconstructions

for weather prediction, e.g., at the addition of satellite to ra-
diosonde observations (Swinbank et al., 2012, p. 365). Today,
many proxy data archives are available; hence compiling in-
put data for reconstruction is not only a matter of the amount
of proxy data, but also of their selection, i.e., screening.

In this study, we therefore aim at evaluating the effect of
various tree-ring data collections and their screening on the
final reconstructions. Tree-ring proxies are by far the most
numerous climate information source for the past centuries
and additionally chosen because our methodology relies on
annual data without dating uncertainties. Due to the rele-
vance of temperature in the climate change discussion and
the fact that many biological proxies react to temperature
stress, temperature has so far been the variable of most in-
terest. However, to study the underlying processes a multi-
variable perspective is required. Therefore, we evaluate the
effects of the input data choice, using a state-of-the-art data
assimilation technique, which allows for multi-variable cli-
mate reconstructions in the form of model simulations that
are in optimal agreement with proxy information (Bhend et
al., 2012; Franke et al., 2017a).

A number of previous studies based on data assimilation
techniques tended to assimilate a high quantity of input data
instead of applying strict data selection beforehand (e.g.,
Steiger et al., 2018; Tardif et al., 2019). The idea is that
regression-based proxy system models weight each proxy
series by their regression residuals. Hence, proxies that do
not contribute information will be downweighted automati-
cally. However, this weighting may not work perfectly be-
cause of two factors: (1) the regression depends on overlap-
ping paleodata and instrumental measurements, which often
results in a small sample (Fig. 1 in Jones et al., 2012), uncer-
tain residuals and possible model overfitting; (2) moisture-
and temperature-sensitive proxies may correlate and hence
moisture-sensitive paleodata will be used to correct temper-
ature and vice versa. However, these two variables proba-
bly have very different multidecadal to centennial variability
(Franke et al., 2013). The growth-limiting factor may even
change over time (Babst et al., 2019).

In this study, we use the Kalman-filter-based state-of-
the-art data assimilation technique introduced in Bhend
et al. (2012), which is very similar to the methodology used
in the last millennium reanalysis (LMR) project (Hakim et
al., 2016; Tardif et al., 2019). In contrast to LMR, our method
is a transient-offline method, in which the background state is
time-dependent due to the external forcing prescribed for the
climate model simulations. In our experiments, we focus on
the effect of the input data choice on the final reconstruction.
We compare three published collections of tree-ring records
(focusing on TRW and MXD), of which at least two are com-
monly used for climate reconstructions. These have very dif-
ferent characteristics: (1) the B14 collection of 2287 consis-
tently detrended TRW chronologies from the International
Tree Ring Data Base (ITRDB), not screened for climate sen-
sitivity (Breitenmoser et al., 2014); (2) TRW and MXD series

from the PAGES2K database version 2 (Emile-Geay et al.,
2017), with a selection of 415 temperature-sensitive records,
most selected by a statistical screening for positive correla-
tion with instrumental temperature; and (3) the N-TREND
tree-ring collection of 54 TRW, MXD or blended TRW-MXD
time series (Wilson et al., 2016), selected by experts to be the
best temperature recorders. Thus, the three data sets cover
the range from large sample size and spatial coverage but
no screening for temperature sensitivity to small sample size
and small spatial coverage but strict screening. Note, that
these collections were generated with slightly different aims,
which affects their use in reconstructions. Thus, for instance,
we cannot expect to achieve the best global-scale field recon-
struction from a proxy collection covering a much smaller
area (Kutzbach and Guetter, 1980). However, all data sets
are used for climate reconstruction.

In the next section the method and data sets are introduced
in greater detail before we show our results. Then we discuss
the possible reasons for our results and the differences com-
pared to previous studies. Finally, we draw our conclusion on
what an optimal proxy selection process should look like.

2 Data and methods

We use three input data sets for comparison; all consist of an-
nually resolved tree-ring measurements, which have hardly
any dating uncertainties.

1. B14 is a collection by Breitenmoser et al. (2014) of
2287 uniformly detrended and standardized TRW mea-
surements from the ITRDB (Zhao et al., 2018). We
use the full collection without any further screening for
climate or temperature sensitivity. Hence, this repre-
sents the data set with the highest quantity of records.
However, the weighting of temperature information in
the paleodata is completely down to the reconstruction
method.

2. PAGES2k is a collection of 415 TRW and MXD series
from PAGES2k data base version 2 (Emile-Geay et al.,
2017). These are all records that correlate significantly
(p < 0.05) with nearby instrumental temperature mea-
surements and/or have been described by experts to rep-
resent temperature variability. This compilation repre-
sents a compromise of good quantity, large spatial cov-
erage and good quality paleodata, based on global se-
lection criteria. However, experts from various regional
groups had different levels of strictness in their screen-
ing procedure, which led to varying data density in the
different regions.

3. N-TREND is a collection of 54 tree-ring chronologies
based on TRW, MXD or a combination of both. They
were chosen by experts with the purpose being to pro-
vide the best tree-ring paleodata for temperature recon-
structions (Wilson et al., 2016). Hence, they are our low-
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Figure 1. Proxy locations of the three collections.

quantity, highest-quality input data set with the least
spatial coverage.

Climate fields are reconstructed by assimilating these tree-
ring observations into an ensemble of climate model simu-
lations using a Kalman-filter technique: ensemble Kalman
fitting (Bhend et al., 2012; Franke et al., 2017a). The sim-
ulations, which serve as a background (sometimes called
first guess or prior) of the atmospheric state at each point
in time, are given by a 30-member initial condition ensem-
ble of atmospheric model simulations (ECHAM5.4, Roeck-
ner, 2003). All simulations follow the same external forcings
(volcanic (Crowley et al., 2008), solar (Lean, 2000), green-
house gases (Yoshimori et al., 2010), land use (Pongratz et
al., 2008), tropospheric aerosols (Koch et al., 1999)) and sea
surface temperature boundary conditions based on a recon-
struction by Mann et al. (2009) plus additional El Niño–
Southern Oscillation variability (Franke et al., 2017a). The
data assimilation method is “transient offline”. “Transient”
refers to the fact that our prior at each point in time consists
of 30 ensemble members that are in agreement with forc-
ings and boundary conditions. “Offline” assimilation means
that the simulations are calculated for the full period before
the assimilation is conducted. This is possible in the paleo-
climatological setup because we only have one observation
per year per record. Predictability on these timescales only
comes from the boundary conditions and not from the atmo-
spheric model.

EKF is the offline variant of the ensemble square root fil-
ter (Whitaker and Hamill, 2002), in which the observations
(y) are assimilated serially. The assimilation procedure is di-
vided into an update of the ensemble mean (x̄) and an update
of the anomalies with respect to the ensemble mean (x′):

xa
= xb

+K
(
ȳ−Hxb

)
, (1)

x′a = x′b+ K̃
(
y′−Hx′b

)
=
(
I − K̃H

)
x′b,

with: y′ = 0, (2)

where the superscript a refers to the analysis and b to the
background of the atmospheric state x, which is a vector with
values of multiple variables at all grid boxes. H denotes an
operator which maps xb to the observation space (see proxy
system model (PSM) below). K and K̃ are the Kalman gain

matrices (Whitaker and Hamill, 2002):

K= PbHT
(

HPbHT
+R

)−1
, (3)

K̃= PbHT

[(√
HPbHT +R

)−1
]T

×

(
HPbHT

+R+
√

R
)−1

. (4)

The K matrices control how the information from the ob-
servations updates the background. It depends on the obser-
vation error covariance matrix R and the background error
covariance matrix Pb. R is estimated from the regression
residuals of the PSM and errors are assumed to be uncorre-
lated. Background error covariances Pb are calculated from
the 30-member ensemble nens of ECHAM5.4 simulations
(CCC400) at each time step with row number i, column num-
ber j and ensemble member k (Bhend et al. 2012; Franke et
al. 2017a):

Pb
i,j =

1
nens− 1

nens∑
k=1

x′bi,kx
′b
j,k. (5)

This has the advantage of taking time-dependent covariance
structures into account, for instance during El Niño vs. La
Nina years. The disadvantage is the small sample of 30 en-
semble member for covariance estimation. To deal with spu-
rious correlations caused by the relatively small ensemble,
we apply a distance-dependent localization, i.e., updates are
only possible with a certain radius around the observations
(Valler et al., 2019):

C = exp

(
−

∣∣di − dj

∣∣2
2L2

)
. (6)

di and dj describe the zonal and meridional distances from
the selected grid box. L is the length scale parameter used
for localization. It has been estimated based on the spatial
correlation in the simulations and is variable dependent, e.g.,
1500/450 km in case of temperature/precipitation (Franke et
al., 2017a).

A recent comparison of Valler et al. (2019) has shown
superior performance when using an improved covari-
ance estimation, which blends 50 % of the 30-member
time-dependent covariance with 50 % of a 250-member
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“climatological” time-independent covariance (experiment
50c_PbL_Pc2L in Valler et al., 2019). In this paper we use
both the original setting as in Franke et al. (2017a) as well as
the improved setting proposed by Valler et al. (2019).

Our paleo-reanalysis is based on anomalies from a 71-
year period around the current year. Low-frequency variabil-
ity is a function of the models’ response to the prescribed
external forcings and background conditions, which include
sea surface temperatures. Because low-frequency variabil-
ity is not consistently preserved in paleodata (Franke et al.,
2013; Klippel et al., 2019) but reasonably well represented in
the model simulations of the last millennium (Franke et al.,
2017a), this approach is expected to provide consistent skill
at all timescales. Note that the assimilation of anomalies re-
tains possible model biases. This circumvents a big problem
in data assimilation approaches with temporally varying in-
put data networks. Observations that gradually pull the model
away from its biased state, can lead to artificial trends or step
functions in time series.

We use a linear multiple regression PSM to simulate tree-
ring observations using modeled temperature and/or precip-
itation. The regression model is calibrated with gridded in-
strumental data (CRU TS 3.1, Harris et al., 2014) in the pe-
riod 1901–1970. It includes monthly temperature (and pre-
cipitation) during the growing season April to September.
In this study, we limit the analysis to the Northern Hemi-
sphere because the majority of the tree-ring observations can
be found there. In the first four experiments (Table 1), which
only use temperature (T ) in the PSM, we have six inde-
pendent variables (i.e., local, monthly mean temperature of
April to September). If we assume that tree growth was lim-
ited by temperature and moisture (T R) variability (experi-
ments 5 and 6 in Table 1), we have 12 independent variables
(i.e., local, monthly mean temperature of April to Septem-
ber and monthly precipitation sums of April to September).
Note that regression coefficients can be zero and thus growth
can still be limited to just temperature or just precipitation
and to less than 6 months. In experiments 7 and 8 (Table 1)
we additionally consider only regression models, in which
the growth occurs in consecutive months. Therefore, we fit
all possible combinations of consecutive months and choose
the PSM with the lowest Akaike information criterion (AIC).
Temperature and precipitation limitations can occur in a dif-
ferent sequence of months for each variable (e.g., precipita-
tion limits growth from April to June and temperature limits
growth from June to September). The variance of the regres-
sion residuals is used to specify the observation error covari-
ance matrix (assumed to be diagonal) in the assimilation; i.e.,
the larger the residuals, the less weight an observation gets
and the less the model simulations get corrected.

In this study, the period in which the regression coeffi-
cients of the PSM are estimated and the regression residuals
are calculated overlaps with the period when the reconstruc-
tion skill is estimated. This apparent lack of independence is
negligible in this case because regression coefficients are es-

timated from gridded instrumental data sets to translate grid
cell temperature (and moisture) anomalies to local tree-ring
measurements. The optimization is done on tree rings, not
on the climate data, and it is done on many local scales. In
that sense the effects of the dependence are rather indirect. In
contrast to statistical reconstruction methods, which directly
estimate a climate variable such as temperature through the
regression parameter estimate, our assimilation method is far
less affected by the calibration procedure. Nevertheless, us-
ing the same data for validation probably leads to a slight
overestimation in reconstruction skill. However, in this study
we just compare the relative skill of various inputs data sets,
so the impact of dependencies will be the same for all. Con-
cerning the regression residuals, again the error estimate con-
cerns tree-ring width, not climate parameters. We use the
residuals as an estimate of error covariance. In case we un-
derestimate the residuals, proxy observation would have too
much weight in the assimilation process compared to the
simulations. Uncertainty estimation in both observations and
models is a crucial but challenging part of data assimilation.
We evaluate the spread-to-error ratios to assess the under- or
overconfidence of our reconstructions (Franke et al., 2017a).

If multiple data collections are combined, there may be du-
plicates of the same proxy, possibly in differently treated or
detrended versions. We conduct experiments where we pre-
vent single sites from being assimilated twice by only choos-
ing the best proxy (smallest regression residuals irrespective
of series length) in a 0.1◦× 0.1◦ (ca. 10 km) grid. This is
a rare case, however, hardly affecting the results.

We evaluate the quality of the reconstruction based on cor-
relation with gridded instrumental observations of temper-
ature, precipitation (Harris et al., 2014) and sea-level pres-
sure (Allan and Ansell, 2006) in the period 1901–1990 as
a reference (xref, where x is the state vector). After show-
ing absolute correlation coefficients of the analysis, we focus
on correlation improvements over the original model simula-
tions because these forced simulations already correlate pos-
itively with the gridded observations in many locations. Cor-
relation focuses on the covariability, i.e., the correct sign of
the anomaly. Additionally, we use a root-mean-square-error
skill score (RMSESS) that describes the improvement of the
analysis xa over the original model simulations (background)
xb over all time steps i:

RMSESS= 1−

∑(
xa

i − xref
i

)2∑(
xb

i − xref
i

)2 . (7)

It is more difficult to reach positive RMSESS values than cor-
relation improvements because this score penalizes a wrong
amplitude of variability (e.g., an uncorrelated reconstruction
with correct variance would yield RMSESS=−1). Because
it is based on squared errors, too high a variability is penal-
ized more than little variability, which the ensemble mean of
the original model simulations has. We only present correla-
tion improvements and the RMSESS of the ensemble mean.
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Table 1. Experiments.

Name Proxy system model Description

1. NTREND_T Six regression coeff. for Apr to Sep
monthly temperature (T ).

Using the best tree-ring chronologies for temperature re-
construction, which have been chosen by experts, i.e., very
strict selection of a few, best records.

2. PAGES_T Same as above. Using a selection of temperature-sensitive proxies selected
by the regional PAGES working groups. The mostly statis-
tical screening for a temperature signal involved a sign cor-
rection; i.e., if temperature and moisture are negatively cor-
related, tree-ring chronologies can remain as temperature-
sensitive in the data set. Therefore, more records but less
strictly screened than NTREND.

3. B14_T Same as above. Consistently detrended tree-ring data from the ITRDB by
B14. This proxy set includes the largest amount of proxy
series. However, many of them do not include any climate
signal.

4. ALL_T Same as above. All three data sets together, largest data set with greatest
spatial coverage. However, duplicate proxies have not been
excluded.

5. ALL_TR Twelve regression coeff. for Apr to Sep
monthly temperature and precipitation
(R).

Same as above.

6. ALL_TR_scr0.05 Same as above. Same as above but with additional basic statistical screen-
ing; i.e., only records with a climate signal (p value < 0.05)
will be assimilated. This procedure removes records with-
out or with very little and uncertain climatic information.

7. ALL_TR_scr0.05_AIC_
NOdup

Maximum of 12 regression coefficients
but only consecutive months are al-
lowed; mixed temperature and precip-
itation signals are still possible.

Same as above, but with the AIC we chose the regression
model under the precondition that only climate from con-
secutive months can influence tree growth, which is more
realistic due to local growing season length. Additionally,
we remove duplicate proxies by only considering the best
proxy (lowest regression residuals) within a 0.1◦×0.1◦ (ca.
10 km) grid. In each grid box we keep both the best mainly
temperature-limited and the best mainly moisture-sensitive
proxy if both exist.

8. ALL_TR_scr0.05_AIC_
NOdup_ClimCovar

Same as above. Same as above but with background error covariance esti-
mate not only from the 30 ensemble members of the current
year. Instead we use a mix of 50 % error covariance coming
from 250 random ensemble members and years.

In contrast to correlation coefficients, which tend to be higher
for the ensemble mean than for the ensemble members, the
RMSESS of single ensemble members tends to be slightly
higher than the RMSESS of the ensemble mean (Fig. 6 in
Bhend et al., 2012).

To evaluate the influence of the input data on the final re-
construction, we conducted the set of experiments described
in Table 1.

3 Results

Temperature correlation coefficients between the analyses
and gridded instrumental data are positive nearly all around
the globe and for all three proxy collections (Fig. 2a–c) be-
cause the transient simulations follow forcings and boundary
conditions and hence show proper multidecadal variability
and a 20th-century warming trend. However, this is not the
case for precipitation, which does not show a warming trend
(Fig. 2d–f). In contrast to the assimilation of PAGES and
NTREND (Fig. 2d, e), we can observe clearly higher cor-
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Figure 2. Pearson correlations coefficients between the analysis and gridded instrumental data in the 20th century. Panels (a), (b) and (c)
show temperature and the (d), (e) and (f) precipitation correlation. This figure shows results from experiments 1 to 3 (Table 1), i.e., after
assimilation of the three proxy data collections using the proxy system model that assumes only growth limitation by temperature.

Figure 3. Temperature correlation improvement of the analysis over the original model simulations, i.e., correlation between analysis and
CRU TS minus correlation between simulations and CRU TS, where red colors indicate an improvement of the analysis. All maps show the
April to September growing season of the Northern Hemisphere.

Clim. Past, 16, 1061–1074, 2020 https://doi.org/10.5194/cp-16-1061-2020
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Figure 4. Same as Fig. 3 for precipitation correlation, where green colors indicate an improvement of the analysis.

relations in the United States if the B14 proxies are assim-
ilated (Fig. 2f). Although these first three experiments only
use a temperature PSM, information can spread to other vari-
ables through the covariance matrix.

To evaluate the differences between the experiments due to
the data assimilation we focus on correlation improvement
over the background (i.e., the model simulations, which al-
ready correlate with the reference data set mainly due to the
specified sea surface temperatures (SSTs) and external forc-
ing). First, we compare the role of the choice of the three in-
put data sets assuming only temperature dependence and no
constraint on the regression model structure (Fig. 3a–c; ex-
periments NTREND_T, PAGES_T and B14_T). The highest
local improvements are reached with the NTREND data set;
however the largest spatial coverage of improvement is found
with the B14 data set. Note that temperature correlation im-
proves with all data sets and decreases nowhere, although
some proxy records in the B14 data set do not contain any
temperature signal. This has been identified with negative re-
gression coefficients for the majority of B14 tree-ring series
in the United States of America. In terms of correlation the
data assimilation scheme appears to weight the input data
appropriately. Looking at precipitation and sea-level pres-
sure correlation improvements (Figs. 4 and 5a–c), we find
hardly any improvements with the NTREND collection. In
contrast, the B14 data set leads to some precipitation correla-
tion improvements over North America, where no NTREND

series are located. Sea-level pressure correlations improve in
some regions such as Europe but decrease in other regions
like most of Asia (Fig. 5c).

The correct sign of the anomaly, measured by correlation,
only tells us about one aspect of the reconstruction quality.
To see if the amplitude of the anomaly is also reconstructed
correctly, we look at the RMSESS skill score (see the “Data
and methods” section). Here, we find large differences be-
tween the proxy collections (Fig. 6). With NTREND_T we
find improvements everywhere, whereas B14_T shows more
regions with negative than positive skill (note that we use
PSM with only temperature). The PAGES data set has mainly
positive skill but negative skill in a large region around the
Himalaya and in some parts of North America. This suggest
that using moisture-sensitive proxies to reconstruct tempera-
ture as in B14_T, which works just because temperature and
precipitation are correlated at a given location, is not ideal.
Hence, further experiments with an improved PSM and up-
graded screening procedure were conducted to take the prox-
ies’ temperature or moisture sensitivity better into account
and to find an option to use the PAGES and B14 collection at
locations where no expert-selected proxies are available but
rather keep the quality of the expert-selected data where it is
available.

Before we come to a more sophisticated PSM and more
sophisticated input data screening, we simply combine all
three data sets still using a model with only temperature

https://doi.org/10.5194/cp-16-1061-2020 Clim. Past, 16, 1061–1074, 2020



1068 J. Franke et al.: The importance of input data quality and quantity in climate field reconstructions

Figure 5. Same as Fig. 3 for sea-level pressure correlation, where red colors indicate an improvement of the analysis.

(ALL_T). This experiment performs well. Temperature cor-
relation now reaches levels of the NTREND_T experiment,
where NTREND data are available, and additionally corre-
lation improvements cover the regions where only PAGES
or B14 have data (Fig. 3d). RMSESS values are positive in
most regions, too. However, around India and the Himalaya
negative skill is likely related to the impact of the PAGES
data, whereas negative skill in the US southwest seems to be
the result of B14 data modeled as temperature only. Precip-
itation correlations improved only marginally (Fig. 4d) and
precipitation RMSESS (Fig. 7d) is mostly negative.

The obvious change to improve precipitation reconstruc-
tion skill is to use a PSM that includes precipitation, i.e.,
a multiple regression model with 12 coefficients for tempera-
ture and precipitation influence during the 6 months’ growing
season (experiment ALL_TR). Temperature correlation and
skill remain at the same high level (Figs. 3e and 6e), but pre-
cipitation correlations improve everywhere, particularly over
North America (Fig. 4e). Precipitation RMSESS values be-
come positive in most regions, too (Fig. 7e). The only excep-
tions are the Himalaya region and most of the northeast of
Russia.

So far, we have not excluded any proxies from the data
assimilation. We trust that proxies with no or a weak cli-
mate signal simply have regression coefficients close to zero
and large residuals. This way they hardly affect the analysis.
However, in a regression model with 12 independent vari-

ables and only 70 years of overlapping data, some records
may just by chance get more weight than they deserve.
Therefore, our next step is the introduction of a weak screen-
ing. In a first step, we only assimilate proxies with p val-
ues < 0.05 for the full regression model (ALL_TR_scr0.05).
This removes ca. 16 % of the proxies and hardly affects cor-
relations (Figs. 3f, 4f, 5f) but removes most of the negative
Asian RMSESS values in both temperature and precipitation
(Figs. 6f and 7f).

This result appears to be good, but this could also be a re-
sult of overfitting the regression model because any combi-
nation of growing season months was allowed to affect tree
growth. It would not make physiological sense if a tree were
limited, for instance, by May, July and September tempera-
tures but not by June and August temperatures. Hence, the
next step is to further constrain the model. The tree growth
should be affected by climate conditions in a locally varying
growing season of consecutive months. We fit all possible
combinations of temperature and precipitation influences in
consecutive months and choose the model with the lowest
AIC (note that additionally duplicates are removed; exper-
iment ALL_TR_scr0.05_AIC_NOdup). As a result of this
more physically based growth model, reconstruction skill de-
creases slightly in some regions with a high number of pale-
odata such as in parts of China and parts of North America
(Figs. 6g and 7g). Because we only identify a few duplicate
records, this suggests that the previously noted improvement
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Figure 6. Temperature RMSESS skill score, where red colors indicate an improvement of the analysis.

in RMSESS was indeed partly due to overfitting. Neverthe-
less, temperature and precipitation correlations remain on the
same high level everywhere (Figs. 3g, 4g). Sea-level correla-
tion changes are still small and negative in China and on the
west coast of North America (Fig. 5g).

Recently, Valler et al. (2019) were able to show that ma-
jor improvements of the method used in this study can
be achieved by using a background error covariance ma-
trix, which is not only calculated from the 30 ensemble
members for the current year (Franke et al. 2017a) but
blended with a climatological error covariance matrix based
on random years and ensemble members from the original
model simulations (see the “Data and methods” section; ex-
periment ALL_TR_scr0.05_AIC_NOdup_ClimCovar). Us-
ing improved covariance information increases RMSESS
values again, and a much smaller number of grid boxes
with negative skill remains. Moreover, the largest effects of
the better error covariance estimation appear in variables
that have not been assimilated such as sea-level pressure
(Fig. 5h). This is very important because one of the reasons
for using data assimilation instead of traditional statistical re-
construction techniques is the possibility of gaining knowl-
edge about further variables in a physically consistent way,
which allows for a better dynamic interpretation of the iden-
tified climatic variations.

4 Discussion

Correlations of the reconstructions with temperature im-
proved as would be expected after the assimilation of the
three data sets and using a temperature PSM. We calcu-
late the regression coefficients based on instrumental tem-
perature. Hence, all proxies that correlate in some way with
instrumental temperature will be used to update the anal-
ysis temperature. The analysis has the highest correlation
improvements with instrumental temperature if the proxies
themselves have the highest correlations, which is the case
for the NTREND data set with the best temperature proxies
only. Correlation improvements are lower but cover a larger
area with the B14 collection.

Note that correlation improvements can be a result of
a negative relationship between tree-ring width and instru-
mental temperature if local growth is moisture-limited and
growing season temperature and precipitation are negatively
correlated. This can be a benefit because through the co-
variance we use the extra information that dry summers are
also warm and vice versa. Hence, we find much better pre-
cipitation correlation with the B14 collection than with the
NTREND data set. However, using moisture-sensitive trees
to update temperature fields may cause problems. Precipi-
tation variability shows high interannual variability in many
locations but neither the same interdecadal to multidecadal
variability as temperature nor its centennial trend (Hartmann
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Figure 7. Precipitation RMSESS skill score, where greens colors indicate an improvement of the analysis.

et al., 2013; Landrum et al., 2013). Although not an issue
addressed in this work, another study suggests that including
the unscreened B14 records and modeling them using a simi-
lar approach as presented herein (including both temperature
and moisture influences) can lead to problems in the repre-
sentation of longer than interannual scales in temperature re-
constructions (Tardif et al., 2019).

The regression model is calibrated on the interan-
nual timescale assuming that TRW limitations are time-
independent. However, this may not be the case (Babst
et al. 2019), and therefore decadal-to-multidecadal vari-
ability may be less well represented. A similar argument
holds for the update introduced by the model covariance
matrix, which, although state-dependent, may yield opti-
mal estimates only for seasonal and not decadal timescales.
However, our approach avoids these pitfalls in two ways.
First, at multidecadal and longer timescales, the model
takes over, and therefore relations in our reconstructions
are not constrained to be stationary across timescales. Fur-
thermore, with our approach, the stationarity assumption
is restricted to the regression model; thus it is a local
stationarity – no further stationarity assumption concern-
ing spatial variability is introduced except for experiment
ALL_TP_scr0.05_AIC_NOdup_ClimCovar, where 50 % of
the background error covariance matrix is climatological and
thus stationary. Most other approaches assume stationary
spatial covariances.

Theoretically, it would be optimal to assimilate all avail-
able data and let each record be weighted based on its error.
However, the true observation error is unknown and its es-
timation is uncertain. In our case, we use a multiple regres-
sion proxy system model with 6 or 12 variables (6 months
of temperature and optionally 6 months of precipitation) in
a 70-year period of overlapping instrumental data and proxy
measurements to estimate regression coefficients. This rather
short period and large number of independent variables can
lead to overfitting the model and thus underestimating the ob-
servation error, which is defined by the regression residuals.
Together with the low signal-to-noise ratio of many tree-ring
chronologies, this can lead to an over- or under-correction of
the model field in the assimilation step. An additional exper-
iment with doubled observation error (not shown) increases
RMSESS values clearly. This suggests that PSM overfitting
and consequently regression residuals that are too small are
part of the reason for the negative RMSESS skill scores in
the B14_T experiment in contrast to the NTREND_T exper-
iment (Fig. 4a and c).

In the following experiments (ALL_TR_scr0.05, ALL_
TR_scr0.05_AIC_NOdup, ALL_TR_scr0.05_AIC_NOdup_
ClimCovar) we tried to reduce the consequences of uncer-
tain error estimates step by step. Excluding proxies without
a significant climate signal (p < 0.05) for the full regression
model clearly improves the RMSESS skill score for temper-
ature and precipitation in large parts of Asia (Figs. 6f and 7f).
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This highlights the negative effects of spurious correlation –
even if it is very weak – on the analysis. Hence, screening
the data appears to be important, especially in data-sparse
regions, where there is no chance for better records with
smaller errors to correct errors introduced due to spurious
covariances. In other reconstruction methods, for instance
principal component regression or the search for the best
analogs, screening of records will additionally be necessary
to avoid spatial biases due to non-homogeneous proxy dis-
tributions (Bradley, 1996; Rutherford et al., 2005). However,
this is negligible in the data assimilation framework because
the number of assimilated records has a regional instead of
global impact and because the method provides a measure of
uncertainty in the form of ensemble spread at each grid cell.

In the experiment, in which we only allow for a single
growing season (ALL_TR_scr0.05_AIC_NOdup) per year
instead of a statistically optimal selection of months and re-
move duplicate records that are in more than one of the data
collections, correlations improve slightly but RMSESS de-
creases slightly. Obviously, we continue with this more re-
alistic setup, but note that the choice of what is “best” de-
pends on the chosen statistic or the reconstruction charac-
teristics that are desired by the user. For instance, correla-
tion just measures covariance, whereas RMSESS is based on
squared errors and hence penalizes especially large biases;
i.e., it favors an underestimation of variability over an over-
estimation.

Finally, we introduce an improved background er-
ror covariance estimation scheme (ALL_TR_scr0.05_
AIC_NOdup_ClimCovar, Valler et al. 2019). Because assim-
ilated information is spread in space and in between variables
through the covariance matrix, it is important to estimate co-
variances well. Estimating covariance from both the 30 mem-
bers at the current time step and from climatology and then
blending both kinds of information especially improves our
results for variables which have not been assimilated such as
sea-level pressure (Fig. 5h).

In reality, climate signals in tree-ring proxies may be
even more complicated than a function of moisture availabil-
ity and growing season temperature. Limiting factors may
change over time (Babst et al., 2019) or light availability
may be important may and not always be highly correlated
with temperature; i.e., more diffuse light after volcanic erup-
tions may stimulate growth (Stine and Huybers, 2014). More
sophisticated proxy system forward models such as VS-Lite
(Tolwinski-Ward et al., 2011) could be used in data assimila-
tion (Acevedo et al., 2016; Dee et al., 2016). In fact, we have
applied VS-lite to all TRW records in B14 (Breitenmoser et
al., 2014). Although these models are more realistic and rep-
resent for instance non-linear responses, they introduce new
problems mainly related to model biases. This currently pre-
vents them from being used more broadly (Dee et al., 2016).

Finally, we tested the order of assimilated data because we
assimilate data serially. In combination with using covari-
ance localization, the order could influence the final recon-

struction (Greybush et al., 2011). Assimilating the data from
the best to worst record in terms of regression residuals and
in opposite order from worst to best hardly influenced corre-
lation and RMSESS skill scores (not shown). Hence, we con-
tinue to assimilate records starting with the best ones, similar
to traditional reanalysis, which sorts observations from the
largest to smallest expected variance reduction in the reanal-
ysis (Slivinski et al., 2019; Whitaker et al., 2008).

Although our results are specifically valid only for the data
assimilation method used herein, it is likely that methods
with a similar structure, i.e., PSMs and variations of Kalman
filters, will have similar sensitivities to the selection of in-
put data (Tardif et al., 2019). We expect that they are even
valid for most climate field reconstruction techniques be-
cause the basic principles of transferring proxy information
to climatic variables and dealing with errors share common
concepts across these methods. Even though all such meth-
ods include some routines to separate climatic information
from non-climatic noise, in practice results can almost al-
ways be improved by pre-selecting the records with the high-
est information content, independent of the reconstruction
technique applied (Neukom et al., 2019a, b; Smerdon and
Pollack, 2016 and references therein). This suggests that our
results are qualitatively transferrable to climate field recon-
struction methods in general.

5 Conclusions

In this study, we use existing proxy data collections to gen-
erate climate field reconstructions, as is common practice.
We are aware that this is not, in all cases, the main aim for
which these data collections were compiled. Hence, we want
to highlight the consequences of using the data set for field
reconstructions. These results are not meant to rank any data
set above another. Disadvantages of a data set in our setup
are most probably the result of unintended usage.

How to choose input data for paleodata assimilation? We
address this question by comparing three paleodata compila-
tions of different sizes as well as using all data sets together
in combination with various screening approaches.

Just using a large collection of proxy data (B14) does not
lead to a skillful reconstruction. In contrast, just using a small
expert selection of the best temperature proxies (NTREND)
leads to a good high-latitude temperature reconstruction but
wastes the potential of modern data assimilation techniques
to reconstruct the four-dimensional multi-variate state of the
atmosphere. However, simply combining all available in-
put data and leaving the weighting completely to a statisti-
cal model does not lead to optimal results either. Rejecting
records without a clear climatic signal, removing duplicates
and using a physically plausible PSM altogether lead to a bet-
ter reconstruction.

Hence the answer to our research question of whether it is
better to assimilate all available proxy data or just the best
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expert selection has to be answered as follows: neither of the
two is optimal. We achieve the best results in terms of cor-
relation and RMSESS if we use a large collection of proxy
records. However, to make proper use of input data which
were not screened by experts it is crucial to

1. use proxy system models that properly represent the pa-
leodata, here taking possible temperature and moisture
limitations of tree growth into account.

2. use correct physical assumptions, in our case about tree
growth, to avoid statistical overfitting.

3. remove input data with random, not significant climate
signals.

4. care about overfitting (underestimation of errors)

For a future project, it would be very interesting to study how
different reconstruction methods handle these three differ-
ently screened data sets to see if these results are valid for
other reconstructions methods, too.
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