Harambam, Jaron; Bountouridis, Dimitrios; Makhortykh, Mykola; Van Hoboken, Joris (2019). Designing for the better by taking users into account: a qualitative evaluation of user control mechanisms in (news) recommender systems. In: RecSys 2019. Proceedings of the 13th ACM Conference on Recommender Systems (pp. 69-77). New York: ACM 10.1145/3298689.3347014
Text
p69-harambam.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (995kB) |
Recommender systems (RS) are on the rise in many domains. While they offer great promises, they also raise concerns: lack of transparency, reduction of diversity, little to no user control. In this paper, we align with the normative turn in computer science which scrutinizes the ethical and societal implications of RS. We focus and elaborate on the concept of user control because that mitigates multiple problems at once. Taking the news industry as our domain, we conducted four focus groups, or moderated think-aloud sessions, with Dutch news readers (N=21) to systematically study how people evaluate different control mechanisms (at the input, process, and output phase) in a News Recommender Prototype (NRP). While these mechanisms are sometimes met with distrust about the actual control they offer, we found that an intelligible user profile (including reading history and flexible preferences settings), coupled with possibilities to influence the recommendation algorithms is highly valued, especially when these control mechanisms can be operated in relation to achieving personal goals. By bringing (future) users' perspectives to the fore, this paper contributes to a richer understanding of why and how to design for user control in recommender systems.
Item Type: |
Conference or Workshop Item (Paper) |
---|---|
Division/Institute: |
03 Faculty of Business, Economics and Social Sciences > Social Sciences > Institute of Communication and Media Studies (ICMB) |
UniBE Contributor: |
Makhortykh, Mykola |
Subjects: |
000 Computer science, knowledge & systems 000 Computer science, knowledge & systems > 070 News media, journalism & publishing 300 Social sciences, sociology & anthropology |
ISBN: |
978-1-4503-6243-6 |
Series: |
Proceedings of the 13th ACM Conference on Recommender Systems |
Publisher: |
ACM |
Language: |
English |
Submitter: |
Mykola Makhortykh |
Date Deposited: |
30 Sep 2019 17:12 |
Last Modified: |
05 Dec 2022 15:31 |
Publisher DOI: |
10.1145/3298689.3347014 |
Uncontrolled Keywords: |
Recommender Systems, Personalization, User Interfaces, User-Centered Design, Human factors, Interaction paradigms. |
BORIS DOI: |
10.7892/boris.133567 |
URI: |
https://boris.unibe.ch/id/eprint/133567 |