Sensitivity of blocks and cyclones in ERA5 to spatial resolution and definition 1 M. Rohrer^{1,2,*}, O. Martius^{1,2,3}, C. C. Raible^{1,4}, S. Brönnimann^{1,2} 2 3 ¹Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland 4 ² Institute of Geography, University of Bern, Bern, Switzerland 5 ³ Mobiliar Lab for Natural Risks, University of Bern, Bern, Switzerland 6 ⁴Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland 7 8 * Now at: Axis Capital, Zurich, Switzerland 9 Corresponding author: Marco Rohrer (marco.rohrer@protonmail.ch) 10 **Key Points:** 11 12 • Characteristics of blocks and cyclones are generally similar in ERA5 and ERA-interim. • Characteristics are more sensitive to the spatial resolution than the choice of the 13 14 reanalysis, especially for cyclones. • We recommend comparing climate model and reanalysis data using a common 15 16 resolution. 17 #### Abstract ERA5, the fifth-generation reanalysis of the European Center for Medium-Range Weather Forecasts, provides long time series of atmospheric fields at high spatial and temporal resolution. It allows detailed studies of atmospheric flow features such as blocks or cyclones. We investigate characteristics of blocks and cyclones in ERA5 using different algorithms, compare the results to ERA5's predecessor, ERA-interim, and investigate how these characteristics depend on spatial resolution. Generally, ERA5 and ERA-interim characterize blocks and cyclones similarly. For Lagrangian detection and tracking methods, blocks are more robust than cyclones to changes in resolution and reanalysis choice. Eulerian methods are robust to changes in resolution. Thus, ERA5 provides a state-of-the-art reanalysis for the synoptic-scale extratropical circulation. We find that cyclone characteristics are strongly dependent on spatial resolution and therefore recommend that model and reanalysis data should be mapped to a common resolution for verification. ## **Plain Language Summary** Reanalyses are among the most widely used data sets in the geosciences as they provide a state of the atmosphere that is complete in both space and time by combining a state-of-the-art weather prediction model with historical observations. Their applications range from climatological studies to the closer examination of extreme events. Reanalyses are often the primary tool to assess the performance of climate models. Recently, the ERA5 reanalysis was published and thus many users may consider using this new product. However, due to its novelty, ERA5 is not yet investigated extensively. We examine mid-latitudinal atmospheric flow features such as blocks and cyclones and their dependence on input resolution and choice of reanalysis. We find that blocks and cyclones characteristics are very similar in ERA5 and its predecessor ERA-interim. Input resolution often plays a more important role on block and cyclone characteristics than the choice between ERA5 and ERA-interim, particularly in case of cyclone characteristics. For many applications the full resolution of ERA5 may not be necessary, easing the computational requirement to use this high resolution dataset. In case of modeling studies where reanalysis data is compared to modeled data, we recommend using the same resolution. #### **Index terms and key words** AGU index set: 1610 Atmosphere, 3309 Climatology, 3364 synoptic-scale meteorology 6 own keywords: Block, cyclone, reanalysis, resolution, ERA5, ERA-interim ## 1 Introduction Atmospheric blocks and extratropical cyclones are central features of synoptic-scale variability in the mid-latitudes. Blocks are defined as quasi-stationary, persistent anticyclones that divert the storm track, although their exact definition is disputed (Woollings et al., 2018). Cyclones can be defined in various ways, e.g. by a local minimum of sea level pressure or a local maximum in vorticity (e.g., Raible et al., 2008; Neu et al., 2013). They form and move frequently within preferred regions referred to as storm tracks (Shaw et al., 2016). Both phenomena are linked to extreme weather and climate events. Blocks are linked to heat waves (Black et al., 2004), cold spells (e.g., Buehler et al., 2011), and heavy precipitation (e.g., Lau & Kim, 2012; Martius et al., 2013; Lenggenhager & Martius, 2019). Cyclones can lead to heavy precipitation (e.g., Pfahl & Wernli, 2012; Messmer et al. 2015) and strong winds (e.g., Catto, 2016). Several definitions of blocks and cyclones exist (Woollings et al., 2018; Neu et al., 2013; Catto, 2016). Lagrangian methods detect and track blocks and cyclones in space and time (Raible et al., 2008; Neu et al., 2013). Blocks may be identified as regions with a meridional reversal of the geopotential height (Tibaldi & Molteni, 1990; Scherrer et al., 2006), regions with anomalously high geopotential height (Dole & Gordon, 1983; Buehler et al., 2011), or regions with low potential vorticity (PV; Schwierz et al, 2004). In contrast, Eulerian methods examine properties at a given point as a function of time. Storm tracks, regions with highest cyclonic activity, are often defined by the 2.5-6 day band-pass filtered 500 hPa geopotential height (Z500) field, while blocks can be identified by applying a 10 day low-pass filter to the Z500 field (Blackmon, 1976). The newly available 5th generation reanalysis from the European Center for Medium-Range Weather Forecasts (ECMWF) ERA5 (Hersbach & Dee, 2016) might be particularly well suited for studying blocks and cyclones due to its high spatial resolution. Still, no systematic investigation of block and cyclone characteristics in ERA5 is yet available. Thus, the purpose of this study is to analyze blocks and cyclones in the new ERA5 reanalysis and compare the results with the ERA-interim reanalysis (Dee et al., 2011). Further, we use different dynamical characterization techniques for blocking and cyclones to assess their impact on our results. The different reanalyses and the different techniques have been addressed in a series of studies, e.g., Raible et al. (2008), Neu et al. (2013), Wang et al. (2016) and Rohrer et al. (2018). Additionally, we investigate the impact of remapping the data to lower horizontal resolutions on cyclone and blocking characteristics as reanalysis products are often used in model comparisons (with often lower resolutions). Furthermore, some users will use atmospheric fields at reduced resolution due to data size. Therefore, we compare ERA5 and ERA-Interim at their original resolution (i.e. in the resolution they were originally produced) as well as at lower resolutions. ## 2 Data and Methods 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 We use ERA5 and ERA-interim data from 1979 to 2017 at six-hourly resolution. Compared to ERA-interim, ERA5 ingests more data sources, uses an updated numerical weather prediction model and data assimilation system, and provides higher spatial resolution: T639 and 137 horizontal levels compared to T255 and 60 levels for ERA-interim. We only use the deterministic run of ERA5 due to computational and storage limitations. We use the original resolution, and we bi-linearly remap the data to a resolution of 1° and 2° for blocks. For cyclones, we remap to the T63 resolution by spectrally truncating at wave number 63 instead of the 2° resolution as some cyclone detection and tracking methods apply spectral remapping to the input data (e.g., Hodges, 1995). All three spatial resolutions are used to investigate the dependence of the different identification and tracking algorithms. We employ three Lagrangian blocking algorithms that are variations of the blocking algorithm used by Rohrer et al. (2018): 1) TM2D: A 2-dimensional extension of the Tibaldi & Molteni (1990) blocking definition (Scherrer et al., 2006). The following two criteria must be fulfilled to detect a block: i) Z500 gradient towards pole: $$Z500G_P = \frac{Z500_{\varphi+d\varphi}-Z500_{\varphi}}{d\varphi} < -10 \frac{m}{°lat}$$ (1) ii) Z500 gradient towards equator: $$Z500G_E = \frac{Z500_{\varphi-d\varphi}-Z500_{\varphi-d\varphi}}{d\varphi} > 0 \frac{m}{°lat}$$ (2) ii) Z500 gradient towards equator: $$Z500G_E = \frac{Z500\varphi - Z500\varphi - d\varphi}{d\varphi} > 0 \frac{m}{{}^{\circ}lat}$$ (2) Here, φ denotes latitude and varies from 35° to 75°. $d\varphi$ denotes how far poleward or equatorward the second grid point is located to calculate the gradients. $d\varphi$ is the highest possible multiple of the input resolution that is smaller than 15°. - 2) Z500*: Following Dole & Gordon (1983), we define blocks as regions with a positive Z500 anomaly (Z500*) > 200 m. - 3) VAPV: Similar to Schwierz et al. (2004), blocks are derived from the 150–500 hPa vertically averaged PV (VAPV). Blocks are detected as regions with VAPV anomalies < -1.3 (> 1.3) PVU in the Northern (Southern) hemisphere after a 2-day running mean filter is applied. For Z500* and VAPV the anomalies are subtracted from the 30-day running mean climatology between 1979 and 2017. In all three blocking algorithms, we consider only blocks that are quasi-stationary (i.e. $A_t \ge 0.7 * A_{t+1}$, where A_t denotes the area of a block at time step t) and long-lasting (≥ 5 days). To detect and track cyclones we use two algorithms: - 1) WS06: Wernli & Schwierz (2006) detect cyclones as areas of the largest enclosed SLP contour around a SLP minima. We discard cyclones over elevated terrain (surface pressure <850 hPa) and shorter than one day. The locations of cyclogenesis and cyclolysis must be at least 1000 km apart, and we merge cyclone centers that are closer than 1000 km. For further details and refinements about the algorithm refer to Sprenger et al. (2017). - 2) B97: Blender et al. (1997) define cyclones as minima at the 1000 hPa geopotential height level (Z1000). Minima are ignored if they are over elevated terrain (>1000 m) or if more than 50% of the grid points in an area within the estimated cyclone radius around the center are over elevated terrain. Only cyclones with a mean horizontal gradient of at least 30 m / 1000 km are detected. Cyclones require a minimum distance of 1000 km and a minimum duration of one day to be retained in the catalog. Some modifications are explained in Raible et al. (2018). For the TM2D, Z500*, VAPV and WS06 algorithms, binary cyclone or blocking fields are available. We use the Jaccard index, J (Jaccard, 1908), to investigate how similar ERA5 and ERA-interim are. J is the overlap area divided by the union area of a given feature in two reanalyses A and B during time step t: $J(t) = \frac{A(t) \cap B(t)}{A(t) \cup B(t)}$. Time steps with no blocks are set to J(t) = 1. Aggregated over time, we can infer the similarity between two datasets. We use this index for a crude comparison of the similarity between ERA5 and ERA-interim with two other reanalyses, CFSR (Saha et al., 2010) and MERRA-2 (Gelaro et al., 2017). We filter the Z500 field to obtain an alternative Eulerian perspective of blocks and cyclones. Following Blackmon (1976), we retain time scales between 2.5–6 days for cyclones (Z500bp), while for blocks Z500 frequencies between 10-90 days are retained (Z500lp). #### 3 Results #### 3.1 Blocking characteristics In Figure 1, we compare annual blocking frequencies (denoted as the number of blocked time steps divided by the total number of time steps per grid point) for the different algorithms and reanalyses. All settings detect three blocking maxima in the North Atlantic, the North Pacific, and the South Pacific. Relative blocking frequencies vary depending on the algorithm. Compared to Z500*, VAPV and TM2D detect few blocks in the Southern Hemisphere. In the Northern Hemisphere, the location of the blocking maxima varies depending on the algorithm. TM2D detects more blocks in the low latitudes, which are rather an imprint of the subtropical high pressure belt (Treidl et al., 1981). The Eulerian method for blocks, Z500lp, shows a similar distribution in the mid-latitudes as Z500* and VAPV with maxima over the Aleutians and the British Islands. Besides blocking frequency, other characteristics of blocks show differences between the algorithms (Figure 2). Blocks tend to last longer in Z500* compared to VAPV and TM2D. This is also evident from the mean blocking duration of 10.2 days in Z500* compared to roughly 8.5 days in VAPV and TM2D. The mean area of a block in Z500* is largest (~ $5*10^6$ km²) compared to TM2D ($\sim 3.5*10^6$ km²) and VAPV ($\sim 3*10^6$ km²). Note that all these measures (blocking frequency, duration, and area) depend on the subjective choices of thresholds for each block algorithm. ERA-interim and ERA5 show very similar climatological annual blocking frequencies at a 2° resolution. Relative differences are small (<3%) for the main blocking areas, but can be much larger in areas with few blocks. Absolute differences in blocking frequency between ERA5 and ERA-interim are small (mostly <0.005). Concerning other characteristics of blocks we find again only small differences (<3%) when comparing ERA5 with ERA-interim (Figure 2; Table 1). Block detection algorithms are relatively insensitive to the input resolution of ERA5 (Figure 1). The only notable difference is between 2° and 1° resolution for TM2D. The increase is related to the blocking definition, which limits the latitudinal extent of a block to the biggest possible multiple of the input resolution that is no larger than 15°. Hence, we obtain a maximum latitudinal extent of 14° for a 2° resolution and a maximum of 15° for 1° resolution, i.e. a block at 1° resolution is potentially ~7% (15°/14°) larger than at 2° resolution. This also affects other block characteristics such as the mean duration that increases from 8.3 to 8.7 days from original to 1° and 2° resolution. Other than that, block duration, block area and block intensity show no substantial differences between different input resolutions (Figure 2). Differences are only visible in the extreme tails of the distributions with very few blocks (note the logarithmic scale). The global number of blocks and the number of blocking time steps for the Lagrangian methods increases with increasing resolution in ERA5 and ERA-interim (Table 1). This is expected as genesis (lysis) of blocking events tend to be detected earlier (later) in higher resolutions. The outcome of the Eulerian method Z500lp is insensitive to the input resolution. In summary, differences between ERA-interim and ERA5 at the same resolution are comparable or smaller than the differences between different resolutions for the same reanalysis. Relating these differences to the inter-annual variability of blocks reveals that inter-annual variability is orders of magnitude larger than the differences found here (not shown). # Blocks and Cyclones (1979-2017) Figure 1: Climatological distribution (1979-2017) of blocks and cyclones in ERA-interim and ERA5 using different algorithms (TM2D, Z500*, VAPV and Z500lp, first four rows) and, for ERA5, different input resolutions. The lower three rows show the cyclone distributions determined by Z500bp, WS06 and B97. For WS06 we show the cyclone frequency defined as cyclone presence at a grid point using the outer contour as area. For B97 the cyclone frequency is defined as cyclone presence at the grid point (without normalizing it to a unit area; Raible et al. 2018), i.e., first each grid point within the radius of a cyclone (using a two dimensional Gaussian fit to the center) is assigned to be occupied by the cyclone for on time step. Summing over all time steps for each grid point and dividing by the total number of time steps results in cyclone frequency at each grid point in %. The value of the black 95^{th} percentile contour is given in the lower right of each panel. Figure 2: The probability distribution function for block duration, block area and block intensity for different blocking algorithms (upper part). The lower part shows the probability density function for cyclone duration, central pressure-geopotential height and the distance travelled between cyclone genesis to lysis. ERA5 is shown in red, ERA-interim in blue. The line type distinguishes different input resolutions. For presentational reasons the y axis only shows the exponent of the logarithmic scale (i.e. -3 denotes 10^{-3}). #### 3.2 Cyclone characteristics 193 194 195 196 197 198 199 200 201 202 203 All algorithms identify the storm tracks over the North Atlantic, North Pacific and a band of high cyclone frequency around the Southern Ocean (Figure 1), but local differences can be large. The Eulerian measure for cyclones, Z500bp, shows similar location of high cyclone activity as WS06 and B97. Note again, that the absolute values of cyclone frequency cannot be directly compared due to the different definitions used (i.e., WS06 uses the outer contour whereas B97 applies a two-dimensional Gaussian fit to estimate the area of a cyclone). Comparing the two ECMWF reanalyses (in T63 resolution) shows that all methods (WS06, B97 and Z500bp) identify a similar spatial cyclone frequency climatology in both reanalyses (Figure 1). Correspondingly, the number of cyclones is relatively similar in ERA5 and ERA-interim for the T63 resolution (Table 1). We find 4% more (8% fewer) cyclones for WS06 (B97) in ERA5 compared to ERA-interim for the T63 resolution. If we only consider deep cyclones (SLP minimum < 960 hPa for WS06; Z1000 minimum < 400 m for B97 at least once in their lifetime), we find 2% (3%) more cyclones using WS06 (B97) in ERA5 than ERA-interim. The other cyclone characteristics differ only slightly between the two reanalyses (Figure 2). Cyclones in ERA5 tend to be shorter-lived (on average 0.2 days shorter) and cover smaller distances than cyclones in ERA-interim. This is more evident for the B97 method than WS06. The intensity measure (central SLP or central Z1000) is similar in both reanalyses (Figure 2). WS06 and, to an even greater extent, B97 are sensitive to changes in input resolution, whereas Z500bp is insensitive. For WS06, we find a decrease of cyclone frequency by 10% with increasing input resolution (Figure 1) while the number of cyclones (and cyclone time steps) increases from T63 to 1° resolution by 10% and then decreases by 5% for the original resolution of ERA5 (Table 1). The latter contrasts with ERA-interim showing a steady increase. The ERA-interim behavior is expected as with higher resolution weaker cyclone can exceed threshold of the WS06 method and genesis (lysis) of cyclones can be detected earlier (later; Blender and Schubert, 2000). The ERA5 behavior is unexpected for the number of cyclones and the cyclone time steps (i.e. the sum of time steps of all cyclones). One reason potentially lies in the merging of cyclone centers as one can see an increase in cyclone time steps from T63 to the original resolution for the nonfiltered case (only topography is accounted for, but no constraint on travel distance or duration) but a decrease after filtering (Table 1). Another factor may be the changed topography in the different resolutions. Another counterintuitive result is the opposing change of the cyclone frequency decreasing from T63 to 1° resolution compared to the increase of cyclone time steps. The reason lies in the definition of cyclone frequency per grid point without any normalization to a unit area, i.e. the area of a grid point is reduced stronger than the time steps of cyclone increases. The other cyclone characteristics show that WS06 cyclones tend to be shorter with increasing input resolution (3.5 days for T63 resolution, 3.2 days for original resolution; Figure 2). The mean cyclone trajectory length also decreases from 3022 km to 2858 km from a T63 to original resolution in ERA5 (Figure 2). B97 shows a different dependence on input resolution. For ERA5 the cyclone frequency decreases between T63 and 1° resolution particularly in the Northern Hemisphere (Figure 1). Further increasing the resolution to the original resolution of ERA5 increases cyclone frequency again: it is roughly 8% higher than for T63 resolution. The cyclone frequency is particularly enhanced close to high topography for the original resolution of ERA5. In contrast to WS06, the number of cyclones and the cyclone time steps steadily increase with resolution for both reanalyses (Table 1). For ERA5, we find a doubling of detected cyclones between T63 and original input resolution. Again the reduced cyclone frequency from T63 to 1° resolution is unexpected given an increase in the number of time steps. The reason is again the definition of the cyclone frequency without normalizing it to a unit area. This effect is however overcompensated be the strong increase in the time steps of cyclones when comparing the resolution 1° and the original resolution of ERA5 explaining thus the increase of cyclone frequency. From the other cyclone characteristics, cyclone duration and distance are sensitive to the input resolution for both reanalyses (Figure 2). B97 cyclones are on average shorter (from 3.4 days at T63 to 2.4 days at original resolution) and travel shorter distances (from 3753 km in T63 to 2550 km at 1° to 2404 km in original resolution). The differences found between reanalyses and between different input resolutions are larger than the inter-annual variations of global cyclone counts. Table 1: Number of blocks and cyclones detected globally in ERA5 and ERA-interim between 2000 and 2017 using different blocking (upper part) and cyclone (lower part) algorithms and resolutions. WS06deep presents results for deep cyclones only (i.e. cyclones with a SLP minimum < 960 hPa respectively. For B97deep <-400m). Also the number of block or cyclone time steps per algorithm is given. For WS06 additionally the number of cyclone time steps before any filtering is given. | Algorithm | | ERA5 | | | ERA-interim | | | |------------------|-----------|-----------|------------|------------|-------------|------------|------------| | Resolution | Type | Orig | 1° | 2 ° | Orig | 1° | 2 ° | | VAPV | Blocks | 4585 | 4528 | 4310 | - | 4412 | 4234 | | TM2D | Blocks | 3563 | 3502 | 3437 | 3631 | 3488 | 3389 | | Z500* | Blocks | 2491 | 2482 | 2465 | 2495 | 2489 | 2462 | | | | | | | | | | | VAPV | Timesteps | 156 702 | 154 631 | 146 735 | - | 149 950 | 142 816 | | TM2D | Timesteps | 124 747 | 122 460 | 114 768 | 126 863 | 121 461 | 112 887 | | Z500* | Timesteps | 101 754 | 101 229 | 99 635 | 102 366 | 101 761 | 100 131 | | | | | | | | | | | Resolution | | Orig | 1 ° | T63 | Orig | 1 ° | T63 | | WS06 | Cyclones | 83 656 | 88 334 | 80 059 | 86 195 | 85 183 | 76 701 | | WS06deep | Cyclones | 13 726 | 14 088 | 12 637 | 14 030 | 13 725 | 12 361 | | B97 | Cyclones | 198 440 | 150 691 | 94 554 | 135 854 | 127 706 | 102 357 | | B97deep | Cyclones | 4148 | 3655 | 2199 | 3176 | 2894 | 2134 | | | | | | | | | | | WS06 | Timesteps | 1 073 444 | 1 170 977 | 1 132 062 | 1 203 202 | 1 201 374 | 1 096 298 | | WS06 (no filter) | Timesteps | 2 487 269 | 2 565 175 | 2 339 972 | 2 392 562 | 2 356 335 | 2 209 104 | | B97 | Timesteps | 2 129 026 | 1 741 991 | 1 507 054 | 1 678 702 | 1 588 450 | 1 450 087 | ## 3.3 Similarity between different reanalysis products Figure 3 shows the 180-day running mean Jaccard index for all algorithms that detect features based on binary fields (TM2D, Z500*,VAPV and WS06) for 2° or T63 resolution. A linear regression finds a significantly increasing trend of the annually averaged Jaccard index for all algorithms between 1979 and 2017 at a significance level of 0.05. For VAPV and WS06 the Jaccard index is 0.03–0.05 lower during summer compared to other seasons. Blocks show a larger overlap than WS06, with Z500* showing a higher Jaccard index than the other two blocking algorithms, probably partially related to the average spatial extend of the detected feature in the different algorithms. Averaged over time, we find lower values between ERA5 and CFSR or MERRA-2 than between ERA5 and ERA-interim. For example, the Jaccard index for TM2D (WS06) drops from 0.79 (0.61) between ERA5 and ERA-interim to 0.73-0.74 (0.55-0.56) for any combination of ERA5, ERA-interim, CFSR and MERRA-2 (not shown). Figure 3: Jaccard Index for TM2D, Z500, VAPV and WS06 as a measure of the spatial overlap of features between ERA5 and ERA-interim over time. A 180-day running mean for better readability. The dashed line denotes time average between 1979 and 2017. #### 4 Discussion and conclusion We applied different Lagrangian and Eulerian algorithms to automatically detect blocks and cyclones in the ERA5 reanalysis and compared results to ERA-interim. Further, we remap the two reanalyses to different spatial resolutions to investigate the sensitivity of cyclone and block characteristics to the spatial resolution. Overall, blocking characteristics in ERA5 and ERA-interim are very similar (< 3% difference) and results are insensitive to the resolution with the exception of the TM2D algorithm. This example shows that the climatology of blocks can depend on the employed blocking algorithm in case resolution dependent parameters are present. Different algorithms highlight different aspects of blockings and thus blocking characteristics vary substantially. For cyclones, the dependence on the employed reanalysis is much higher than for blocks, and this dependence increases with higher resolutions. Moreover, different algorithms show different dependencies. The Eulerian method using bandpass filtered geopotential height at 500 hPa is insensitive to the reanalysis and resolution. The counterintuitive behavior of cyclone frequency for the Lagrangian methods, WS06 and B97, to resolution changes is explained by the specific definition of cyclone frequency. Additionally, cyclones become shorter-lived with increasing resolution. A striking difference between WS06 and B97 method is the sensitivity of the number of cyclones (or time steps) to the input resolution. B97 identifies more cyclones with increasing resolution, being in line with Blender and Schubert (2000) and Wang et al. (2016) who also found that higher spatial resolutions lead to higher cyclone counts. This is expected as weaker cyclones and early and late states within a cyclone lifetime are better represented so that thresholds of the method are exceeded more often. In contrast, the number of cyclones detected with WS06 decreases when increasing the resolution from 1° to the original 0.28° resolution of ERA5. Comparing results before and after filtering of the WS06 method we find that the merging of cyclone centers is important for this unexpected result. Thus, the merging in WS06 leads to a more consistent behavior between resolutions and reanalysis datasets, but it does so at the expense of losing secondary cyclogenesis, an important process for extreme cyclones (e.g., Ludwig et al., 2015). B97, on the other hand, shows a dramatic increase in the number of cyclones for the original resolution of ERA5 (factor of 2 compared to T63 resolution). Together with the fact that the mean cyclone duration and distance decreases stronger for the B97 than for the WS06 method we hypothesize that too many weak heat low, lee cyclones and potentially artificial lows are included in B97. Indeed, the authors of B97 recommend adjusting thresholds when using a data set with a different resolution than the one used to develop the method. Many cyclone detection algorithms were developed when resolutions around 1-2° were the state of the art, and they may not cope well with the added detail (and noise) that modern high-resolution datasets provide (e.g. Blender et al., 1997; Hodges, 1995; Murray & Simmonds, 1991, Wernli and Schwierz, 2006). Based on these results, we recommend remapping datasets to a common resolution before any comparison. This is also important in the context of climate model evaluations that often rely on reanalyses as validation datasets. Moreover, users of Lagrangian methods should be cautious as sensitivity of some methods to resolution requires adjustments of the scheme (B97), and some processes are ignored by the method, e.g. secondary cyclogenesis for WS06. We have shown that comparing reanalyses and/or model data at a common resolution of T63 or even lower may be beneficial to avoid problems that can arise at higher resolutions. As a bonus, storage and computational requirements become much smaller at low resolutions. While for cyclones results may only be comparable at low resolutions, blocks are comparable at any input resolution. We find blocks are more similar than cyclones in ERA5 and ERA-interim, presumably because cyclones are smaller, non-stationary features that are harder to consistently track. We also find that ERA5 and ERA-interim are more similar recently for all examined algorithms, indicating that ERA5 and ERA-interim are less certain going back in time. Moreover, ERA5 and ERA-interim are more similar (i.e. the time averaged Jaccard index is higher) compared to CFSR or MERRA-2, arguably related to their similar reanalysis setup. Still, due to the numerous updates in ERA5 the two ECMWF reanalyses do not match. Therefore we advise to use several reanalysis products, particularly in the case of cyclones, as also shown by Tilinina et al. (2013), Wang et al. (2016) and Rohrer et al. (2018; 2019). Other intercomparison studies show that other variables, especially smaller scale and parameterized variables depend more strongly on the chosen reanalysis (e.g. Horton and Brönnimann, 2018; Sun et al., 2018). In conclusion, block characteristics in ERA5 are similar to ERA-interim. For extratropical cyclones larger differences are discernible, particularly at higher horizontal input resolution and depending on the cyclone detection algorithm employed. Using the Jaccard index we find that agreement back to 1979 slightly but significantly decreases. We recommend that modeling and reanalysis intercomparison studies remap to a common, if feasible preferentially rather low resolution before applying algorithms to detect and track blocks and cyclones. ## 346 **Acknowledgements** - This study was supported by the Swiss National Science Foundation under Grant 143219. - 348 We acknowledge ECMWF and Copernicus Climate Change Service information for ERA5 and - 349 ERA-interim data. We thank Michael Sprenger and Heini Wernli for providing the Wernli and - 350 Schwierz (2006) cyclone tracking algorithm and their valuable comments. #### References 351 352 355 358 359 360 361 363 364365 368 374 377 380 - Bengtsson, L., Hagemann, S., & Hodges, K. I. (2004). Can climate trends be calculated - from reanalysis data? Journal of Geophysical Research D: Atmospheres, 109, 1–8. - 354 http://doi.org/10.1029/2004JD004536 - Black, E., Blackburn, M., Harrison, G., Hoskins, B., & Methven, J. (2004). Factors - contributing to the summer 2003 European heatwave. Weather, 59, 217–223. - 357 <u>http://doi.org/10.1256/wea.74.04</u> - Blackmon, M. L. (1976). A climatological spectral study of the 500 mb geopotential - height of the Northern Hemisphere. Journal of the Atmospheric Sciences, 33, 1607–1623. - Blender, R., Fraedrich, K., & Lunkeit, F. (1997). Identification of cyclone-track regimes in the North Atlantic. Quarterly Journal of the Royal Meteorological Society, 123, 727–741. - 362 http://doi.org/10.1002/qj.49712353910 - Blender, R., & Schubert M. (2000). Cyclone tracking in different spatial and temporal resolutions. Monthly Weather Review, 128, 377-384. - Buehler, T., Raible, C. C., & Stocker, T. F. (2011). The relationship of winter season - North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A, 63, 212–222. http://doi.org/10.1111/j.1600-0870.2010.00492.x - Catto, J. L. (2016). Extratropical cyclone classification and its use. Reviews of - 369 Geosphysics, 54, 486–520. http://doi.org/10.1002/2016RG000519 - Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. - 371 (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation 372 system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. - 373 <u>http://doi.org/10.1002/qj.828</u> - Dole, R. M. & Gordon, N. D. (1983). Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation structure. Monthly Weather Review, 114, 178–207. - Hemisphere wintertime circulation structure. Monthly Weather Review, 11 http://doi.org/10.1175/1520-0493(1986)114<0178:PAOTEN>2.0.CO;2 - Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. (2017). - 378 The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). - Journal of Climate, 30, 5419–5454. http://doi.org/10.1175/JCLI-D-16-0758.1 - Hersbach, H., & Dee, D. P. (2016). ERA5 reanalysis is in production. ECMWF - Newsletter, Number 147, 7. - Hodges, K. I. (1995). Feature tracking on the unit sphere. Monthly Weather Review, 123, 3458-3465. - Horton, P., & Brönnimann, S. (2018). Impact of global atmospheric reanalyses on - statistical precipitation downscaling. Climate Dynamics, 52, 5189 5211. - 386 <u>http://doi.org/10.1007/s00382-018-4442-6</u> - Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société - Vaudoise des Sciences Naturelles, 44, 223–270. - Lau, W. K. M., & Kim, K.-M. (2012). The 2010 Pakistan flood and Russian heat wave: Teleconnection of hydrometeorological extremes. Journal of Hydrometeorology, 13, 392–403. http://doi.org/10.1175/JHM-D-11-016.1 - Lenggenhager, S., & Martius, O. (2019). Atmospheric blocks modulate the odds of heavy precipitation events in Europe. Climate Dynamics. https://doi.org/10.1007/s00382-019-04779-0 - Ludwig, P., Pinto, J. G., Hoepp, S. A., Fink, A. H. and Gray, S. L. (2015). Secondary cyclogenesis along an occluded front leading to damaging wind gusts: Windstorm Kyrill, January 2007. Monthly Weather Review, 143, 1417-1437. - Martius, O., Sodemann, H., Joos, H., Pfahl, S., Winschall, A., Croci-Maspoli, M., et al. (2013). The role of upper-level dynamics and surface processes for the Pakistan flood of July 2010. Quarterly Journal of the Royal Meteorological Society, 139, 1780–1797. http://doi.org/10.1002/qj.2082 - Messmer, M., Gómez-Navarro, J. J., & Raible, C. C. (2015). Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe. Earth System Dynamics, 6, 541–553. http://doi.org/10.5194/esd-6-541-2015 - Murray, R. J., & Simmonds I. (1991). A numerical scheme for tracking cyclone centers from digital data. Part I: Development and operation of the scheme. Australian Meteorlogical Magazine, 39, 155-166. - Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R., Caballero, R., et al. (2013). IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bulletin of the American Meteorological Society, 94, 529–547. http://doi.org/10.1175/BAMS-D-11-00154.1 - Pfahl, S., & Wernli, H. (2012). Quantifying the relevance of cyclones for precipitation extremes. Journal of Climate, 25, 6770–6780. http://doi.org/10.1175/JCLI-D-11-00705.1 - Rohrer, M., Brönnimann, S., Martius, O., Raible, C. C., Wild, M., & Compo, G. P. (2018). Representation of extratropical cyclones, blocking anticyclones, and alpine circulation types in multiple reanalyses and model simulations. Journal of Climate, 31, 3009–3031. http://doi.org/10.1175/JCLI-D-17-0350.1 - Rohrer, M., Brönnimann, S., Martius, O., Raible, C. C., & Wild, M. (2019). Decadal variations of blocking and storm tracks in centennial reanalyses. Tellus A, 71, 1-21. https://doi.org/10.1080/16000870.2019.1586236 - Raible, C. C., Della-Marta, P., Schwierz, C., Wernli, H., & Blender, R. (2008). Northern Hemisphere extratropical cyclones: A comparison of detection and tracking methods and different reanalyses, Monthly Weather Review, 136, 880-897. - Raible, C. C., Messmer, M., Lehner, F., Stocker, T. F., & Blender, R. (2018). Extratropical cyclone statistics during the last millennium and the 21st century. Climate of the Past, 14, 1499-1514. - Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., et al. (2010). The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91, 1015–1057. http://doi.org/10.1175/2010BAMS3001.1 - Scherrer, S. C., Croci-Maspoli, M., Schwierz, C., & Appenzeller, C. (2006). Twodimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. International Journal of Climatology, 26, 233–249. - 432 <u>http://doi.org/10.1002/joc.1250</u> Schwierz, C., Croci-Maspoli, M., & Davies, H. C. (2004). Perspicacious indicators of atmospheric blocking. Geophysical Research Letters, 31, L06125. http://doi.org/10.1029/2003GL019341 - Shaw, T. A., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C. I., Hwang, Y.-T., et al. (2016). Storm track processes and the opposing influences of climate change. Nature Geoscience, 9, 656–664. http://doi.org/10.1038/ngeo2783 - Sprenger, M., Fragkoulidis, G., Binder, H., Croci-Maspoli, M., Graf, P., Grams, C. M., et al. (2017). Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim. Bulletin of the American Meteorological Society, 98, 1739–1748. http://doi.org/10.1175/BAMS-D-15-00299.1 - Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K.-L. (2018). A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Reviews of Geophysics, 56, 79–107. http://doi.org/10.1002/2017RG000574 - Tibaldi, S., & Molteni, F. (1990). On the operational predictability of blocking. Tellus A, 42, 343–365. http://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x - Tilinina, N., Gulev, S. K., Rudeva, I., Koltermann, P., Tilinina, N., Gulev, S. K., et al. (2013). Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. Journal of Climate, 26, 6419–6438. http://doi.org/10.1175/JCLI-D-12-00777.1 - Treidl, R. A., Birch, E. C., & Sajecki, P. (1981). Blocking action in the Northern Hemisphere: A climatological study. Atmosphere-Ocean, 19, 1–23. https://doi.org/10.1080/07055900.1981.9649096 - Wang, X. L., Feng, Y., Chan, R., & Isaac, V. (2016). Inter-comparison of extra-tropical cyclone activity in nine reanalysis datasets. Atmospheric Research, 181, 133–153. http://doi.org/10.1016/j.atmosres.2016.06.010 - Wernli, H., & Schwierz, C. (2006). Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. Journal of Atmospheric Sciences, 63, 2486–2507. - Woollings, T., Barriopedro, D., Methven, J., Son, S.-W., Martius, O., Harvey, B., et al. (2018). Blocking and its response to climate change. Current Climate Change Reports, 4, 287–300. http://doi.org/10.1007/s40641-018-0108-z