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Abstract
We present a propositional and a first-order logic for reasoning about higher-order
upper and lower probabilities. We provide sound and complete axiomatizations for
the logics and we prove decidability in the propositional case. Furthermore, we show
that the introduced logics generalize some existing probability logics.

Keywords Probabilistic logic · Upper and lower probabilities · Decidability ·
Completeness theorem

1 Introduction

In the last few decades, uncertain reasoning has become an active topic of investigation
for researchers in the fields of computer science, artificial intelligence and cognitive
science. The frameworks designed for modeling uncertainty often use probability-
based interpretation of knowledge or belief. One particular line of research concerns
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the formalization of reasoning about probability in terms of logic with a well-defined
syntax and semantics (Fagin et al. 1990; Fagin and Halpern 1994; Fattorosi-Barnaba
and Amati 1989; Frish and Haddawy 1994; Halpern 1990; Heifetz and Mongin 2001;
Meier 2012; Ognjanović and Rašković 1999, 2000; Ognjanović et al. 2016; Rašković
et al. 2008).

In order to model some situations of interest, where sharp numerical probabilities
appear too simple for modeling uncertainty, various imprecise probability mod-
els are developed (de Cooman and Hermans 2008; Dubois and Prade 1988; Levi
1980; Miranda 2008; Shafer 1976; Walley 1991, 2000; Zadeh 1978). Some of those
approaches use sets of probability measures instead of one fixed measure, and the
uncertainty is represented by two boundaries, called lower probability and upper
probability (Huber 1981; Kyburg 1961). Given an arbitrary set P of probability mea-
sures, the former one assigns to an event X the infimum of the probabilities assigned
to X by the measures in P , while the later one returns their supremum.

Those two probability notions were previously formalized in the logic developed in
Halpern and Pucella (2002), where lower and upper probability operators are applied
to propositional formulas, and in Savić et al. (2017a), where a first-order logic is also
considered.

In this paper, we use the papers (Halpern and Pucella 2002; Savić et al. 2017a) as
a starting point and generalize them in a way that we reason not only about lower and
upper probabilities an agent assigns to a certain event, but also about her uncertain
belief about other agent’s imprecise probabilities. Thus, we introduce separate lower
and upper probability operators for different agents, and we allow nesting of the
operators, similarly as it has been done in Fagin and Halpern (1994) in the case of
simple probabilities. We first present a propositional variant of this logic, which we
denote by ILUPP,1 and then we extend it to a first-order logic. We prove that ILUPP
is decidable and we propose sound and strongly complete axiomatizations for both
logics.

Our language contains the upper and lower probability operatorsUa≥r and La≥r , for
every agent a and every rational number r from the unit interval (we also introduce the
operators with other types of inequalities, likeUa=r ). Consider the following example:
Suppose that an agent a is planning to visit a city based on the weather reports from
several sources, and she decides to take an action if the probability of rain is at most
1
10 , according to all reports she considers. Since she wishes to go together with b, she
should be sure with probability at least 9

10 that b (who might consult different weather
reports) has the same conclusion about the possibility of rain. In our language, this
situation can be formalized as

Ua
≤ 1

10
Rain ∧ La

≥ 9
10

(
Ub
≤ 1

10
Rain

)
.

We also introduce the notions of lower and upper probability of a (possibly infinite)
set of agents by introducing the operators LG≥s and UG≥s . In our approach we assume

1 The notation is motivated by the logic LUPP from Savić et al. (2017b), where LU P stands for “lower
and upper probability”, while the second P indicates that the logic is propositional. We add I to denote
iteration of upper and lower operators.

123



Multi-agent Logics for Reasoning About Higher-Order Upper… 79

that the agents can share their sets of probabilities in order to obtain a larger set that
is available to all the members of the group.

It is worth clarifying the additional expressive power of our first-order logic, which
we denote by ILUPFO, and it’s comparison with (Savić et al. 2017a). The paper (Savić
et al. 2017a) introduces a logic whose syntax allows only Boolean combinations of
formulas in which lower and upper probability operators are applied to first order
sentences.On the other hand, hereweuse themost general approach, allowing arbitrary
combination of probability operators, so we can express the statement like “according
to the agent a, the lower probability of rain in all cities is at least 13” (L

a
≥ 1

3
∀x Rain(x)),

but also “There exists a city in which it will surely not rain:”

(∃x)Ua=0Rain(x).

The appropriatemodal semantics for our logics consists of a specific class of Kripke
models, in which every world is equipped with sets of probability measures (one set
for each agent).

We propose sound and strongly complete axiomatizations of the logics. Interest-
ingly, we use the same axiomatizations that we used in Savić et al. (2017a), and we
show that they are also complete for the richer logics presented here. Of course, the
instances of the axiom schemata are different, because the sets of formulas of ILUPP
and ILUPFO are larger, due to nesting of lower and upper probability operators, and
due to the presence of more agents. Also, the definition of the syntactical consequence
(proof) � is different, due to the different interpretation of classical formulas. Since
the sets of formulas and the classes of models are different, the proof techniques are
modified. In order to achieve completeness, we use a Henkin-like construction, fol-
lowing some of our earlier developed methods (Doder et al. 2010; Ognjanović and
Rašković 1999; Rašković et al. 2008; Savić et al. 2017a; Tomović et al. 2015).

In addition, we show how to extend the proposed axiomatizations in order to prop-
erly capture the notions of lower and upper probability of an infinite set of agents.

The interesting situation that one axiomatic system is sound and complete for more
than one class of models is not an exception. For example, modal system K is also
sound and complete with respect to the class of all irreflexive models (Hughes and
Cresswell 1984).

We also prove that the satisfiability problem for ILUPP logic is decidable. We com-
bine the method of filtration (Hughes and Cresswell 1984) and a reduction to linear
programming. In the first part of the proof, we show that a formula α is satisfiable in a
world w of an ILUPPmodel if and only if it is satisfiable in a finite model, i.e., a model
with a finite number of worlds, bounded by a number which is a function of the length
of α, and such that the sets of probability measures are finite in every world of the
model. Note that, while in a standard modal framework this is enough to prove decid-
ability, since for every natural number k there are only finitely many modal models
with k worlds, this is not the case for our logic. Indeed, since our models involve sets
of probability measures, for every finite set of k worlds, there are uncountably many
probability measures defined on them, and uncountably many models with k worlds.
However, in the second part of the proof we use a reduction to linear programming to
solve the probabilistic satisfiability in a finite number of steps.
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Finally, we show that the logics proposed in this paper generalize the logics for
reasoning about sharpprobabilities fromOgnjanović andRašković (2000),Ognjanović
et al. (2016). Indeed, we use an additional axiom scheme to restrict the class of our
models to the models isomorphic to those from Ognjanović and Rašković (2000),
Ognjanović et al. (2016). We also formally infer all the axioms from Ognjanović and
Rašković (2000), Ognjanović et al. (2016) using our extended axiomatization.

The paper is organized as follows: in Sect. 2 we introduce the set of formulas of
the logic ILUPP and we define the corresponding semantics. Then, in Sect. 3 we prove
that the satisfiability problem for the logic ILUPP is decidable. In Sect. 4 we provide an
axiomatic system ILUPP, and we prove that the axiomatization is strongly complete.
The first-order logic ILUPFO is presented in Sect. 5. In Sect. 6, we show how to extend
the presented axiomatic systems in case of infinite number of agents and we discuss
decidability issues. We show that the proposed logics generalize the probability logics
from Ognjanović and Rašković (2000), Ognjanović et al. (2016) in Sect. 7. Finally,
Sect. 8 contains some concluding remarks.

2 The Logic ILUPP

In this section we introduce the syntax and the semantics of the logic ILUPP.
Let Σ = {a, b, . . .} be a finite, non-empty set of agents. Let S = Q∩ [0, 1] and let

L = {p, q, r , . . .} be a denumerable set of propositional letters. The language of the
logic ILUPP consists of the elements of set L, propositional connectives ¬ and ∧, and
– the list of upper probability operators Ua≥s , for every a ∈ Σ and s ∈ S,
– the list of lower probability operators La≥s , for every a ∈ Σ and s ∈ S.

Definition 1 (Formula) The set ForILUPP of formulas is the smallest set containing all
elements of L and that is closed under following formation rules: if α, β are formulas,
then La≥sα, Ua≥sα, ¬α and α ∧ β are formulas as well. The formulas from ForILUPP
will be denoted by α, β, . . .

Intuitively, Ua≥sα means that according to an agent a, upper probability that a
formula α is true is greater or equal to s and analoguosly La≥sα means that according
to an agent a lower probability that a formula α is true is greater or equal to s.

Note that we use conjunction and negation as primitive connectives, while ∨,→
and↔ are introduced in the usual way. We also use abbreviations to introduce other
types of inequalities:

– Ua
<sα is ¬Ua≥sα, Ua≤sα is La≥1−s¬α, Ua=sα is Ua≤sα ∧Ua≥sα, Ua

>sα is ¬Ua≤sα,
– La

<sα is ¬La≥sα, La≤sα is Ua≥1−s¬α, La=sα is La≤sα ∧ La≥sα, La
>sα is ¬La≤sα.

For example, the expression

p ∧Ua=0.9Lb=0.3(p ∨ q)

is a formula of our language.
Furthermore, we introduce the additional operators LG≥s and UG≥s that can speak

about upper/lower probability of a group of agents G. We assume that the agents can
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share their sets of probabilities in order to obtain a larger set that is available to all the
members of the group. Naturally, upper probability of an event w.r.t. that set will be at
least upper probability of an individual agent; similarly, its lower probability is at most
lower probability of a member of the group. Following that intuition, we introduce the
abbreviations:

– LG≥sα is the formula
∧

a∈G La≥sα,
– UG≥sα is the formula

∨
a∈G Ua≥sα.

We also introduce the corresponding operators with other types of inequalities, in
the same way as we have done it for individual agents.

This formalization is in tune with the intuition behind the example given in the
introduction, where the agent a is reasoning in a skeptical way: she will visit a city as
the probability of rain is at most 1

10 , according to all weather reports she considers.
Then, if the agent b shares a new, more negative report coming from a different source
(e.g. probability of rain is 1

5 ), a can revise her decision based on the updated upper
probability.

At first glance, the asymmetry between LG≥s and UG≥s (conjunction vs disjunction)
might look counter-intuitive. On the contrary, we believe that using the same type of
connective (e.g. conjunction, which would be in the spirit of the epistemic operator
EG “everyone in the group G knows”) would not fit the general intuition behind upper
and lower probabilities: if increasing (resp. decreasing) upper probability comes from
enlarging (narrowing) the set of probabilities, then lower probability should decrease
(increase).2 Moreover, we will see that our definition of LG≥s andUG≥s implies that the
groups semantically behave like individual agents.

In the last section, we discuss the alternative possibility for defining lower and
upper probability of a group.

The semantics of the logic ILUPP is based on the possible-world approach. Every
world is equipped with an evaluation function on propositional letters, and one gen-
eralized probability space for each agent.

Definition 2 (ILUPP-structure) An ILUPP-structure is a tuple 〈W , LU P, υ〉, where:
– W is a nonempty set of worlds,
– LU P assigns, to everyw ∈ W and every a ∈ Σ , a space, such that LU P(a, w) =
〈W (a, w), H(a, w), P(a, w)〉, where:
– ∅ �= W (a, w) ⊆ W ,
– H(a, w) is an algebra of subsets of W (a, w), i.e. a set of subsets of W (a, w)

such that:
– W (a, w) ∈ H(a, w),
– if A, B ∈ H(a, w), then W (a, w)\A ∈ H(a, w) and A ∪ B ∈ H(a, w),

– P(a, w) is a set of finitely additive probability measures defined on H(a, w),
i.e. for every μ(a, w) ∈ P(a, w), μ(a, w) : H(a, w) −→ [0, 1] and the
following conditions hold:

2 Also, note that the notions conjunctive and disjunctive are relative in this specific context, since the type
of connective is closely related to the type of inequality that an operator uses. For example, the definition
UG≥sα ≡

∨
a∈G Ua≥sα is equivalent to the “conjunctive’ definition UG≤sα ≡

∧
a∈G Ua≤sα.
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• μ(a, w)(W (a, w)) = 1,
• μ(a, w)(A ∪ B) = μ(a, w)(A)+ μ(a, w)(B), whenever A ∩ B = ∅.

– υ : W × L −→ {true, f alse} provides for each world w ∈ W a two-valued
evaluation of the primitive propositions.

Now we define satisfiability of the formulas from ForILUPP in the worlds of ILUPP-
structures. As we mentioned in the introduction, for any set P of probability measures
defined on given algebra H , the lower probabilitymeasure P� and the upper probability
measure P� are defined by

– P�(X) = inf{μ(X) | μ ∈ P} and
– P�(X) = sup{μ(X) | μ ∈ P},

for every X ∈ H . It is easy to check that

P�(X) = 1− P�(Xc), (1)

for every X ∈ H . In the context of the definition of an ILUPP-structure, we will denote
P�(a, w)([α]aM,w) = inf{μ([α]aM,w) | μ ∈ P(a, w)} and P�(a, w)([α]aM,w) =
sup{μ([α]aM,w) | μ ∈ P(a, w)}, where [α]aM,w = {u ∈ W (a, w) | M, u |� α}.
Definition 3 (Satisfiability relation) For every ILUPP structure M = 〈W , LU P, υ〉
and every w ∈ W , the satisfiability relation |� fulfills the following conditions:

– if p ∈ L, M, w |� p iff υ(w)(p) = true,
– M, w |� ¬α iff it is not the case that M, w |� α,
– M, w |� α ∧ β iff M, w |� α and M, w |� β,
– M, w |� Ua≥sα iff P�(a, w)([α]aM,w) ≥ s,
– M, w |� La≥sα iff P�(a, w)([α]aM,w) ≥ s.

We will omit M when it’s clear from context. Obviously, the operators indexed by
groups satisfy the conditions:

– M, w |� LG≥sα iff M, w |� La≥sα for all a ∈ G,
– M, w |� UG≥sα iff M, w |� Ua≥sα for some a ∈ G.

Remark 1 Our logic has two types of basic operators for describing lower and upper
probabilities. However, from the semantical point of view, lower probabilities can be
inferred from upper probabilities, according to the Eq. (1). That fact will impact the
presentation of the results in this paper. For example, in the proofs that use induction
on the complexity of a formula to prove its semantical properties, the case when the
formula is of the form La≥sα is an easy consequence of the case when we consider
Ua≥sα (as an illustration, see the last paragraph of the proof of Theorem 2). Another
consequence of the Eq. (1) is that the canonical model (Definition 1), used for the
proof of completeness, can be defined using upper probabilities only.

It can be shown that satisfiability of the operators indexed by groups can be char-
acterized by the set of probability measures that collect all the measures of individual
members of the group. Indeed, if P(G, w) denotes the set

⋃
a∈G P(a, w), we can

observe that
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– M, w |� UG≥sα iff P�(G, w)([α]aM,w) ≥ s,

– M, w |� LG≥sα iff P�(G, w)([α]aM,w) ≥ s.

It is clear from these two conditions that the behavior of the operators indexed by
groups is similar to behavior of operators for individual agents. Indeed, they also
represent upper and lower probability of a set of probabilities.

Note that this semantical interpretation of satisfiability does not use the fact that
G is finite, and it will also be applicable in Sect. 6, where we will consider infinite
groups of agents.

The possible problem with Definition 3 is that it might happen that for some M , w
, a and α the set [α]aM,w doesn’t belong to W (a, w). For that reason, we will consider
only so called measurable structures.

Definition 4 (Measurable structure) The structureM is measurable if for every a ∈ Σ

and every w ∈ W , H(a, w) = {[α]w | α ∈ ForILUPP}. The class of all measurable
structures of the logic ILUPP will be denoted by ILUPPMeas .

Next we define satisfiability of an ILUPP-formula.

Definition 5 (Satisfiability of a formula) A formula α ∈ ForILUPP is satisfiable if there
is a world w in an ILUPPMeas-model M such that w |� α; α is valid if it is satisfied in
every world in every ILUPPMeas-model M . A set of formulas T is satisfiable if there
is a world w in an ILUPPMeas-model M such that w |� α for every α ∈ T .

3 Decidability of ILUPP

In this section, we prove our main technical result. Recall the satisfiability problem:
given an ILUPP-formula α, we want to determine if there exists a world w in an
ILUPPMeas-model M such that w |� α. Decidability for ILUPP will be proved in two
steps:

– first, we show that an ILUPP-formula is satisfiable iff it is satisfiable in ameasurable
structures with a finite number of worlds,

– second, we show that we can consider only finite measurable structures, i.e., mea-
surable structure with finite number of worlds and with finite sets of probability
measures in every world and for every agent, and

– third, we reduce the satisfiability problem in those finite models to a decidable
linear programming problem.

In the first part of the proof, we will use the method of filtration (Hughes and
Cresswell 1984). Like the previous papers on the logical formalization of upper and
lower probabilities (Halpern and Pucella 2002; Savić et al. 2017a), we also use the
characterization theorem by Anger and Lembcke (1985). It uses the notion of (n, k)-
cover.

Definition 6 ((n, k)-cover) A set A is said to be covered n times by a multiset
{{A1, . . . , Am}}of sets if every element of A appears in at leastn sets from A1, . . . , Am ,
i.e., for all x ∈ A, there exists i1, . . . , in in {1, . . . ,m} such that for all j ≤ n, x ∈ Ai j .
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An (n, k)-cover of (A,W ) is a multiset {{A1, . . . , Am}} that covers W k times and
covers A n + k times.

Now we can state the characterization theorem.

Theorem 1 (Anger and Lembcke 1985) Let W be a set, H an algebra of subsets of
W , and f a function f : H −→ [0, 1]. There exists a set P of probability measures
such that f = P� iff f satisfies the following three properties:

(1) f (∅) = 0,
(2) f (W ) = 1,
(3) for all natural numbers m, n, k and elements A1, . . . , Am in H, if the multiset
{{A1, . . . , Am}} is an (n, k)-cover of (A,W ), then k + n f (A) ≤∑m

i=1 f (Ai ).

Let SF(α) denote the set of all subformulas of a formula α, i.e.

SF(α) = {β | β is a subformula of α}.

Theorem 2 If a formula α is satisfiable, then it is satisfiable in an ILUPPMeas-model
with at most 2|SF(α)| worlds.

Proof Suppose that a formula α holds in some world of the model M = 〈W , LU P, υ〉
and let k = |SF(α)|. By≈, we will denote an equivalence relation overW 2, such that

w ≈ u if and only if for every β ∈ SF(α),w |� β iff u |� β.

Since there are finitely many subformulas of α, we know that the quotient set

W/≈ = {Cwi | wi ∈ W }

is finite, where

Cwi = {u ∈ W | u ≈ wi }

is the class of equivalence of wi . More precsely,

|W/≈| ≤ 2k .

Next, from each class of equivalence Cwi , we choose an element wi .
Consider a tuple M = 〈W , LU P, υ〉, where:
– W = {w1, w2, . . .},
– For every a and for every wi LU P(a, wi ) = 〈W (a, wi ), H(a, wi ), P(a, wi )〉 is
defined as follows:

– W (a, wi ) = {w j ∈ W | (∃u ∈ Cw j )u ∈ W (a, wi )}
– H(a, wi ) = 2W (a,wi )

– P(a, wi ) is any set of finitely additive measures, such that for every D ∈
H(a, wi ), P

�
(a, wi )(D) = P�(a, wi )(

⋃
w j∈D(Cw j ∩W (a, wi )))
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– υ(wi )(p) = υ(wi )(p), for every primitive proposition p ∈ L.
First, we have to prove that P

�
(a, wi ) satisfies the conditions (1)–(3) from Theo-

rem 1, which will guarantee the existence of the sets P(a, wi ), for every agent a and
each wi ∈ W .

(1) P
�
(a, wi )(∅) = P�(a, wi )(

⋃
w j∈∅(Cw j ∩W (a, wi ))) = P�(a, wi )(∅) = 0;

(2) P
�
(a, wi )(W (a, wi )) = P�(a, wi )(

⋃
w j∈W (a,wi )

(Cw j ∩ W (a, wi ))) = P�

(a, wi )(W (a, wi )) = 1;
(3) Let {{D1, . . . , Dm}} be an (n, k)-cover of (D,W (a, wi )). That means:

(i) every element from D appears in at least n + k sets from D1, . . . , Dm ;
(ii) every element from W (a, wi ) appears in at least k sets from D1, . . . , Dm .

Therefore,

(iii) every element from (
⋃

u∈D(Cu ∩W (a, wi )) appears in at least n+ k sets from⋃
u∈D1

(Cu ∩W (a, wi )), . . . ,
⋃

u∈Dm
(Cu ∩W (a, wi ));

(iv) every element from W (a, wi ) appears in at least k sets from
⋃

u∈D1
(Cu ∩

W (a, wi )), . . . ,
⋃

u∈Dm
(Cu ∩W (a, wi )).

Hence, by definition, we obtain that a multiset

⎧⎨
⎩

⎧⎨
⎩

⋃
u∈D1

(Cu ∩W (a, wi )), . . . ,
⋃

u∈Dm

(Cu ∩W (a, wi ))

⎫⎬
⎭

⎫⎬
⎭

is an (n, k)-cover of

(⋃
u∈D

(Cu ∩W (a, wi )),W (a, wi )

)
.

Hence, using the fact that P�(a, wi ) is an upper probability, from Theorem 1, we
have that

k + nP�(a, wi )

(⋃
u∈D

(Cu ∩W (a, wi ))

)
≤

m∑
j=1

P�(a, wi )

⎛
⎝ ⋃

u∈Dj

(Cu ∩W (a, wi ))

⎞
⎠ ,

and therefore

k + nP
�
(a, wi )(D) ≤

m∑
j=1

P
�
(a, wi )(Dj ).

Using induction on the complexity of a formula from the set SF(α), we can prove
that for every w ∈ W and every β ∈ SF(α),

M, w |� β if and only if M, w |� β.
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If a formula is a propositional letter or obtained using Boolean connectives, the claim
is trivial. So, let us consider the case when β = Ua≥sγ :

M, w |� Ua≥sγ iff

P�(a, w)({u ∈ W (a, w) | M, u |� γ }) ≥ s iff

P�(a, w)

⎛
⎝ ⋃

M,u|�γ

Cu ∩W (a, w)

⎞
⎠ ≥ s iff (ind. hyp.)

P
�
(a, w)({u ∈ W

�
(a, w) | M, u |� γ }) ≥ s iff

M, w |� Ua≥sγ.

At the end, let β = La≥sγ :

M, w |� La≥sγ iff

P�(a, w)({u ∈ W (a, w) | M, u |� γ }) ≥ s iff (Eq. (1))

1− P�(a, w)({u ∈ W (a, w) | M, u |� ¬γ }) ≥ s iff

1− P�(a, w)

⎛
⎝ ⋃

M,u|�¬γ

Cu ∩W (a, w)

⎞
⎠ ≥ s iff (ind. hyp.)

P
�
(a, w)({u ∈ W

�
(a, w) | M, u |� ¬γ }) ≤ 1− s iff

M, w |� Ua≤1−s¬γ iff

M, w |� La≥sγ.

��
In the second part of the proof, we use the following result of Halpern and Pucella

(2002).

Theorem 3 (Halpern and Pucella 2002) Let P be a set of probability measures defined
on an algebra H over a finite set W . Then there exists a set P ′ of probability measures
such that, for each X ∈ H, P∗(X) = (P ′)∗(X). Moreover, there is a probability
measure μX ∈ P ′ such that

μX (X) = P∗(X).

As a direct consequence of Theorems 2 and 3, we obtain the following result.

Lemma 1 If a formula α is satisfiable, then it is satisfiable in an ILUPPMeas-model
with at most 2|SF(α)| worlds and for every agent a ∈ Σ and every w ∈ W, H(a, w) =
2W (a,w) and

|P(a, w)| = |H(a, w)|.
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Furthermore, for each X ∈ H(a, w), there exists a μX ∈ P(a, w) such that

μX (a, w)(X) = P∗(a, w)(X).

This lemma plays an important role in our proof of decidability. In the proof we
will use the following notation: If α is an arbitrary formula, then

SF(α) = {β1, . . . , βk}.

In every w ∈ W , exactly one of the formulas of the following form:

± β1 ∧ · · · ∧ ±βk (2)

holds, where ±βi denotes βi or ¬βi . We will call that formula the characteristic
formula for a world w. Also by β ∈ (α j )

+ we will denote that β is a conjunct in α j

and by β ∈ (α j )
− we will denote that ¬β is a conjunct in α j .

Theorem 4 Satisfiability problem for ILUPPMeas is decidable.

Proof Let M = 〈W , LU P, υ〉 be an ILUPPMeas-model and α an arbitrary formula.
If k is the cardinality of the set SF(α), by Lemma 1 we know that there exists an
ILUPPMeas-model M with

(1) at most 2k worlds and
(2) at most 22

k
probabilistic measures (for any agent and any world) such that for

each measurable set X , there exists a probabilistic measure μX with

μX (a, w)(X) = P∗(a, w)(X),

such that α holds in some world of the model M iff α holds in some world of a model
M . Let us denote by ILUPPMeas(k) the set of all measurable models which satisfy the
conditions (1) and (2). Clearly, in order to check if α is satisfiable, it is sufficient to
check if α is satisfied in a model from ILUPPMeas(k).

For every l ≤ 2k , we will consider models with

– l worlds, w1, . . . , wl , and
– for every agent a and every world w, sets of probability measures P(a, w), such
that |P(a, w)| = 2|W (a,w)|, for every W (a, w) ⊆ {w1, . . . wl}.

Recall that in each of these worlds, exactly one characteristic formula holds. Thus,
without loss of generality, in this proof we identify worlds with their corresponding
characteristic formulas. We will denote by αi the characteristic formula for a world
wi .

Note that it is not the case that any formula of the form (2) is a characteristic formula
of some world, since it might be propositionally inconsistent. We can formally check
if the formula αi of the form (2) is propositionally consistent using the following test:
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(a) In αi we replace every occurrence of a formula starting with a probabilistic oper-
ator with an atomic proposition (all the occurrences of the same formula are
assigned the same atomic proposition). Then we obtain a propositional formula,
α′i . Using any algorithm for propositional satisfiability we check whether α′i is
satisfiable. If α′i passes the test, then αi is consistent.

We check if α is satisfied in a model from ILUPPMeas(k) using the following pro-
cedure:

(1) The procedure sets:

– The number of worlds l such that 1 ≤ l ≤ 2k (i.e., W = {w1, . . . , wl});
– l formulas α1, . . . , αl (not necessarily different) of the form

±β1 ∧ · · · ∧ ±βk,

where SF(α) = {β1, . . . , βk} such each formula passes the consistency test
(a), and such that α is a conjunct of at least one αi ;

– an arbitrary subset of worlds W (a, wi ) ⊆ {w1, . . . wl}, for every agent a and
every wi ∈ W ;

(2) Using the test described below, the procedure checks if there is a model M =
〈W , LU P, υ〉 of α from ILUPPMeas(k) with the set of worldsW = {w1, . . . , wl}
and their corresponding characteristic formulas α1, . . . , αl , and such that LU P
contains all W (a, wi )’s

(3) If the test succeeds, the formula α is satisfiable, and the procedure terminates,
otherwise procedure sets different values at step (1) and repeats the test.

(4) If the test fails for all the possibilities for l, α1, . . . , αl and W (a, wi )’s (for every
a and wi ), the formula α is not satisfiable.

Now it remains to describe the test (from step 2) which, for given

– number of worlds l (1 ≤ l ≤ 2k),
– characteristic formulas α1, . . . , αl of l worlds, and
– sets of worlds W (a, wi ) ⊆ {w1, . . . wl}

checks if there is a model of α from ILUPPMeas(k), where W = {w1, . . . wl}, with
those characteristic formulas of worlds and those W (a, wi )’s in LU P . In the test we
do not determine probability values precisely; we simply check if there are probability
measures such that the probabilistic constraints are satisfied in corresponding worlds.

The test translates the problem to the problem of satisfiability of a set of linear equa-
tions and inequalities. Since the models from ILUPPMeas(k) have finite sets of worlds,
all the subsets of W (a, wi ) will be measurable. Also, note that every μ(a, wi ) ∈
P(a, wi ) is of the formμX (recall thatμX is such thatμX (a, w)(X) = P∗(a, w)(X)).
The test considers the following set of linear equations and inequalities:

(1) yX ,a
wi ,w j

≥ 0, for each μX (a, wi ) ∈ P(a, wi ) (i.e., for every X ⊆ W (a, wi )) and
j = 1, . . . , l;

(2)
∑

w j∈W (a,wi )
yX ,a
wi ,w j

= 1, for every μ(a, wi ) ∈ P(a, wi ) (i.e., for every X ⊆
W (a, wi ));
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(3)
∑

w j∈X yX ,a
wi ,w j

≥∑
w j∈X yY ,a

wi ,w j
, for every X ,Y ⊆ W (a, wi );

(4)
∑

w j :β∈(α j )
+ yX ,a

wi ,w j
≥ s, if Ua≥sβ ∈ αi , X = {w j | β ∈ (α j )

+};
(5)

∑
w j :β∈(α j )

+ yX ,a
wi ,w j

< s, if ¬Ua≥sβ ∈ αi , X = {w j | β ∈ (α j )
+};

(6)
∑

w j :β∈(α j )
− yX ,a

wi ,w j
≤ 1− s, if La≥sβ ∈ αi , X = {w j | β ∈ (α j )

−};
(7)

∑
w j :β∈(α j )

− yX ,a
wi ,w j

> 1− s, if ¬La≥sβ ∈ αi , X = {w j | β ∈ (α j )
−},

where yX ,a
wi ,w j

represents μX (a, wi )({w j }).
– The first inequality states that all the measures must be nonnegative.
– The second equality assures that the probability of the set of all possible worlds
has to be equal to 1.

– The third inequality corresponds to the fact that μX (a, w)(X) = P∗(a, w)(X)

and therefore

μX (a, w)(X) ≥ μ(a, w)(X), for all μ(a, w) ∈ P(a, w).

– For the fourth and fifth inequality, note that if X = {w j | β ∈ (α j )
+}

∑
w j :β∈(α j )

+
μX (a, wi )({w j }) = P∗(a, wi )([β]awi

),

so these inequalities reflect the appropriate constraints.
– In order to understand sixth and seventh inequality, first recall the equality con-
necting upper and lower probabilty:

P∗([¬β]awi
) = 1− P∗([β]awi

).

Next, note that if X = {w j | β ∈ (α j )
−}

∑
w j :β∈(α j )

−
μX (a, wi )({w j }) = P∗(a, wi )([¬β]awi

).

Consequently, if

P∗([β]awi
) ≥ s,

then

P∗([¬β]awi
) ≤ 1− s,

and similarly for the case when P∗([β]awi
) < s.

The equations and inequalities 1–7 form a finite system of linear equalities and
inequalities and it is well known that solving this system is decidable. If this system
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has a solution, then there exists a probabilistic space in each world and for every agent.
Indeed, it can be defined in the following way:

μX (a, wi )(S) =
∑
w j∈S

yX ,a
wi ,w j

for every S ⊆ W (a, wi ). The opposite also holds: if the system doesn’t have solutions,
then the probabilistic spaces (in each world and for every agent) cannot exist. Indeed,
otherwise we could use the probability measures μX (a, wi ) to define the solution of
the system in the following way: yX ,a

wi ,w j
= μX (a, wi )({w j }).

Also note that because of the condition (a) above, we know that a valuation can be
defined. Namely, there are no classical propositional contradictions in characteristic
formulas and therefore there exists a valuation that gives adequate truth values to
the propositional letters that appear in formulas and for all the other variables we
can set arbitrary truth value, e.g. ⊥. Moreover, in every world w of the model, the
characteristic formula of the world holds in w. Since α is a conjunct of at least one of
the corresponding characteristic formulas, we have that α is satisfiable.

Note that in the previously describedmethodweconsider onlyfinitelymany systems
of linear equation and inequalities. Therefore, the satisfiability problem is decidable.

��

Furthermore, α is valid if and only if ¬α is not ILUPPMeas-satisfiable, so we have
also that problem of a validity of a formula is decidable as well.

4 A Complete Axiomatization of ILUPP

Having settled the decidability issue for the logic ILUPP, we turn to the problem of
developing an axiomatic system for the logic ILUPP. That system will be denoted by
AxILUPP.

We start with the observation that, like any other real-valued probabilistic logic,
ILUPP is not compact. Indeed, consider the set of formulas T = {¬U=0α}∪{U< 1

n
α | n

is a positive integer }. Obviously, every finite subset of T is ILUPPMeas-satisfiable, but
the set T is not. Consequently, any finitary axiomatic system would be incomplete
(van der Hoek 1997). In order to achieve completeness, we use two infinitary rules of
inference, with countably many premises and one conclusion.

In order to axiomatize upper and lower probabilities, we need to completely
characterize them with a small number of properties. There are many complete char-
acterizations in the literature, and the earliest appears to be by Lorentz (1952). We
will use Theorem 1 from the previous section.

For the logic ILUPP, we use the axiomatic system for the logic LUPP from Savić
et al. (2017a). We only need to modify the form of the axioms due to presence of
multiple agents. Apart from that, it should be also mentioned that the instances of
axioms are different, since in Savić et al. (2017a) the operators of upper and lower
probability are applied to classical formulas only, while here their nesting is allowed.
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Axiom schemes

(A1) all instances of the classical propositional tautologies
(A2) Ua≤1α ∧ La≤1α
(A3) Ua≤rα→ Ua

<sα, s > r
(A4) Ua

<sα→ Ua≤sα
(A5) (Ua≤r1α1 ∧ · · · ∧Ua≤rmαm)→ Ua≤rα, if α→∨

J⊆{1,...,m},|J |=k+n
∧

j∈J α j and∨
J⊆{1,...,m},|J |=k

∧
j∈J α j are instances of the classical propositional tautolo-

gies, where r =
∑m

i=1 ri−k
n , n �= 0

(A6) ¬(Ua≤r1α1 ∧ · · · ∧Ua≤rmαm), if
∨

J⊆{1,...,m},|J |=k
∧

j∈J α j is an instance of the
classical propositional tautology and

∑m
i=1 ri < k

(A7) La=1(α→ β)→ (Ua≥sα→ Ua≥sβ)

Inference Rules

(1) From α and α→ β infer β

(2) From α infer La≥1α
(3) From the set of premises

{
α→ Ua

≥s− 1
k
β | k ∈ N,≥ 1

s

}

infer α→ Ua≥sβ
(4) From the set of premises

{
α→ La

≥s− 1
k
β | k ∈ N, k ≥ 1

s

}

infer α→ La≥sβ.

The axioms A5 and A6 together capture the third condition from the Theorem 1.
Indeed, as explained in Savić et al. (2017a), “{{A1, . . . , Am}} covers a set A n times”
can be formally written as A ⊆ ⋃

J⊆{1,...,m},|J |=n
⋂

j∈J A j . Thus, the condition that
α→∨

J⊆{1,...,m},|J |=k+n
∧

j∈J α j is an instance of a propositional tautology ensures
that [α] is covered n + k times by a multiset {{[α1], . . . , [αm]}}, while the condition
that

∨
J⊆{1,...,m},|J |=k

∧
j∈J α j is a propositional tautology gives us that W = [�] is

covered k times by a multiset {{[α1], . . . , [αm]}}.
The rules (3) and (4) are infinitary rules of inference and intuitively state that if an

upper/lower probability is arbitrary close to a rational number s then it is at least s.
Now we define some proof theoretical notions.

– � α (α is a theorem) iff there is an at most denumerable sequence of formulas
α1, α2, . . . , α, such that every αi is an axiom or it is derived from the preceding
formulas by an inference rule;

– T � α (α is derivable from T) if there is an at most denumerable sequence of
formulas α1, α2, . . . , α, such that every αi is an axiom or a formula from the set
T , or it is derived from the preceding formulas by an inference rule, with the
exception that Inference Rule 2 can be applied only to the theorems;
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– T is consistent if there is at least one formula α ∈ ForILUPP that is not deducible
from T , otherwise T is inconsistent;

– T is maximal consistent set if it is consistent and for every α ∈ ForILUPP, either
α ∈ T or ¬α ∈ T ;

– T is deductively closed if for every α ∈ ForILUPP, if T � α, then α ∈ T .

Note that T is inconsistent iff T � ⊥. Also, it is easy to check that every maximal
consistent set is deductively closed.

Due to similarity between this axiomatic system and the axiomatization from Savić
et al. (2017a), many parts of the proof of completeness theorem are similar to the
proofs that we already presented in Savić et al. (2017a), but there are also several
differences, since the sets of formulas are not the same and the models are different. In
the rest of this section, we present novel proofs and also reuse some ideas from Savić
et al. (2017a) for readability, while we omit some parts that are identical to the proofs
from Savić et al. (2017a).

Theorem 5 (Deduction Theorem) Let α, β ∈ ForILUPP and T a set of formulae. Then
T , α � β implies T � α→ β.

Proof By transfinite induction on the length of the proof of β. The cases when � β,
β = α or β is obtained by modus ponens are standard. So, let β = La≥1γ be obtained
from T ∪{α} by an application of Rule (2). Since the application of the inference Rule
(2) is restricted to theorems only, we have:

(1) � γ

(2) T � γ

(3) T � La≥1γ by Rule (2)
(4) T � La≥1γ → (α→ La≥1γ ) propositional reasoning
(5) T � α→ La≥1γ by Rule (1).

Now, let us consider the case where β = β1→ La≥sγ is obtained from T ∪ {α} by
an application of Rule (4). Then:

(1) T , α � β1→ La
≥s− 1

k
γ , for all k ≥ 1

s

(2) T � α→ (β1→ La
≥s− 1

k
γ ), by the induction hypothesis

(3) T � (α ∧ β1)→ La
≥s− 1

k
γ , propositional reasoning

(4) T � (α ∧ β1)→ La≥sγ , by Rule (4)
(5) T � α→ β, propositional reasoning.

Finally, the case where β = β1 → Ua≥sγ is obtained from T ∪ {α} by an application
of Rule (3) is analogous.

It is easy to check that the axiomatic system AxILUPP is sound with respect to the
class of ILUPPMeas-models.

We prove that the axiomatization AxILUPP is complete, using a Henkin-like con-
struction. Due to the presence of infinitary rules, the standard completion technique
(Lindenbaum’s theorem) has to be modified in the following way: if the current theory
is inconsistent with the current formula and that formula can be derived by one of
infinitary inference rules, than one of the premises must be blocked (see the proof of
Theorem 6).
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Definition 1 (Canonical Model) Canonical model MCan = 〈W , LU P, υ〉 where:
– W = {w | w is a maximal consistent set of formulas},
– for every world w and every propositional letter p, υ(w)(p) = true iff p ∈ w,
– for every a ∈ Σ and w ∈ W , LU P(a, w) = 〈W (a, w), H(a, w), P(a, w)〉 is
defined in the following way:

– W (a, w) = W ,
– H(a, w) = {{u | u ∈ W (a, w), α ∈ u} | α ∈ ForILUPP},
– P(a, w) is any set of probability measures such that

P�(a, w)({u | u ∈ W (a, w), α ∈ u}) = sup{s | U≥sα ∈ w}.
Lemma 2 For every a ∈ Σ , every w ∈ W and every formula α,

{u | u ∈ W (a, w), α ∈ u} = [α]aw.

Proof We prove the statement by proving that α ∈ u iff u |� α by induction on the
length of α. If α = p the claim follows by definition of the canonical model. Cases
when α = ¬β or α = β ∧ γ are trivial. Let us consider the case when α = Ua≥sβ. If
α ∈ u then

sup{r | Ua≥rβ ∈ u} = P�(a, u)({v | v ∈ W (a, u), β ∈ v}) ≥ s,

and so u |� α. Now, suppose that u |� Ua≥sβ, i.e.

sup{r | Ua≥rβ ∈ u} ≥ s.

(a) If sup{r | Ua≥rβ ∈ u} > s, then by the properties of supremum and monotonicity
of P�(a, u) we obtain U≥sα ∈ u.

(b) If sup{r | Ua≥rβ ∈ u} = s, then, as a direct consequence of inference Rule 3, we
have that Ua≥sα ∈ u.

The case when α = La≥sβ can be proved using Eq. (1). ��
Lemma 3 MCan is a well defined measurable structure.

Proof From the Lemma 2 and the fact that P�(a, w) is an upper probability measure
[(the proof that P�(a, w) is an upper probability measure follows from Theorem 1
and the axioms A5 and A6 and it is essentially the same as the proof of the Lemma 3
in Savić et al. (2017a)] we obtain that MCan is a well defined measurable structure. ��
Theorem 6 (Lindenbaum’s theorem) Every consistent set of formulas can be extended
to a maximal consistent set.

We assume an enumeration α0, α1, . . . of all formulas and define the chain of sets Ti ,
i = 0, 1, 2, . . . and the set T � in the following way:

(1) T0 = T ,
(2) for every i ≥ 0,
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(a) if Ti ∪ {αi } is consistent, then Ti+1 = Ti ∪ {αi }, otherwise
(b) if αi is of the form β → Ua≥sα, then Ti+1 = Ti ∪ {¬αi , β → ¬Ua

≥s− 1
n
α}, for

some positive integer n, so that Ti+1 is consistent, otherwise
(c) if αi is of the form β → La≥sα, then Ti+1 = Ti ∪ {¬αi , β → ¬La

≥s− 1
n
α}, for

some positive integer n, so that Ti+1 is consistent, otherwise
(d) Ti+1 = Ti ∪ {¬αi }.

(3) T � =⋃∞
i=0 Ti .

The proof that T � is a maximal consistent set is based on the following observations:

(i) Natural numbers (n), from the steps 2(b) and 2(c) of the construction exist; this
follows from the Theorem 5.

(i i) Each Ti is consistent, by construction.
(i i i) T � does not contain all the formulas, by construction, using the fact that all Ti ’s

are consistent.
(iv) For every formula α, either α ∈ T � or ¬α ∈ T �, by construction [(steps (1) and

(2)].
(v) For every formula α, if T � � α, then α ∈ T �. The proof of this fact is by the

induction on the length of the inference. Suppose that the sequence γ1, γ2, . . . , α

is the proof of α from T �.We show only the case when the sequence is countably
infinite. The idea is to prove that, for every i , if γi is obtained by an application of
an arbitrary inference rule, and all the premises belong to T �, then, also γi ∈ T �.
Let us consider the infinitary Rule 4. Let γi = β → La≥sα be obtained from
the set of premises {γ k

i = β → La≥skα | sk = s − 1
k , k > 1

s , k ∈ N}. By the
induction hypothesis, we have that γ k

i ∈ T �, for every k. If γi /∈ T �, by step
(3)(b) of the construction, there are some l and j so that

¬(β → La≥sα), β → ¬La
≥s− 1

l
α ∈ Tj .

Thus, we have that for some j ′ ≥ j :

– β ∧ ¬La≥sα ∈ Tj ′ ,
– β ∈ Tj ′ ,
– ¬La

≥s− 1
l
α, La

≥s− 1
l
α ∈ Tj ′ .

Contradiction with the consistency of a set Tj ′ . Similarly can be proved for the
Inference Rule (3) and all the other cases are easier.

(vi) Step (iv) guarantees that T � is maximal and from (v) and (i i i)we get that T � is
a deductively closed set that does not contain all the formulas, hence consistent.

��
Theorem 7 (Strong completeness) If α is a formula, and T is a set of formulas of the
logic ILUPP, then T � α iff T |� α.

Sketch of the proof First we point out that the theorem follows from soundness of the
axiomatic system AxILUPP, and the followingusual formulationof strong completeness:
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Every consistent set of formulas T is satisfiable.
Recall that we extended T to the maximal consistent set T �. We showed that for
every formula α, and every w ∈ W , w |� α iff α ∈ w. Since T � ∈ W , we obtain
MCan, T � |� T . ��

5 The First-Order Logic ILUPFO

In this section we briefly discuss the first-order case avoiding repetition of technical
details mentioned for the propositional case.

The language of the logic ILUPFO consists of a denumerable set of variables
Var = {x, y, z, . . .}, classical propositional connectives, universal quantifier ∀, for
every integer k ≥ 0, denumerably many function symbols Fk

0 , Fk
1 , . . . of arity k,

denumerably many relation symbols Pk
0 , Pk

1 , . . . of arity k, the list of upper probabil-
ity operators Ua≥s and the list of lower probability operators La≥s . Functions of arity 0
will be called constants. Terms are defined as usual, as well as the notion of term that
is free for a variable.

The set of formulas is the smallest set containing atomic formulas and that is closed
under following formation rules: if α, β are formulas, then La≥sα, Ua≥sα, ¬α, α ∧ β,
(∀x)α are formulas as well.

An ILUPFO-structure is a tuple M = 〈W , D, I , LU P〉, where:
– W and LU P are defined as in the propositional case,
– D associates a non-empty domain D(w) with every world w ∈ W ,
– I associates an interpretation I (w) with every world w ∈ W such that:

– I (w)(Fk
i ) : D(w)k → D(w), for all i and k,

– I (w)(Pk
i ) ⊆ D(w)k , for all i and k.

LetM = 〈W , D, I , LU P〉 be an ILUPFO-structure. A variable valuation υ assigns
to every variable some element of the corresponding domain to every world w ∈ W ,
i.e. υ(w)(x) ∈ D(w). For υ, w ∈ W and d ∈ D(w) we define υw[d/x] is a valuation
same as υ except that υw[d/x](w)(x) = d. The value of a term t , denoted by I (w)(t)υ
is defined as follows:

– if t is a variable x , then I (w)(x)υ = υ(w)(x), and
– if t = Fm

i (t1, . . . , tm), then

I (w)(t)υ = I (w)(Fm
i )(I (w)(t1)υ, . . . , I (w)(tm)υ).

We consider a class of ILUPFO models that satisfy:

– all the worlds from a model have the same domain, i.e., for all v,w ∈ W , D(v) =
D(w),

– the terms are rigid, i.e., for every model their meanings are the same in all the
worlds.

The truth value of a formula α in a worldw ∈ W of amodelM = 〈W , D, I , LU P〉
for a given valuation υ, denoted by I (w)(α)υ is defined as follows:
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– if α = Pm
i (t1, . . . , tm), then I (w)(α)υ = true if 〈I (w)(t1)υ, . . . , I (w)(tm)υ〉 ∈

I (w)(Pm
i ), otherwise I (w)(α)υ = f alse,

– if α = ¬β, then I (w)(α)υ = true if I (w)(β)υ = f alse, otherwise I (w)(α)υ =
f alse,

– if α = β ∧ γ , then I (w)(α)υ = true if I (w)(β)υ = true and I (w)(γ )υ = true,
– if α = Ua≥sβ, then I (w)(α)υ = true if P�(w, a)({u ∈ W (w, a) | I (u)(β)υ =
true}) ≥ s, otherwise I (w)(α)υ = f alse,

– if α = La≥sβ, then I (w)(α)υ = true if P�(w, a)({u ∈ W (w, a) | I (u)(β)υ =
true}) ≥ s, otherwise I (w)(α)υ = f alse,

– if α = (∀x)β, then I (w)(α)υ = true if for every d ∈ D(w), I (w)(β)υw[d/x] =
true, otherwise I (w)(α)υ = f alse.

A formula α holds in a world w from a model M = 〈W , D, I , LU P〉, denoted
by M, w |� α, if for every valuation υ, I (w)(α)υ = true. If d ∈ D(w), we use
M, w |� α(d) to denote that I (w)(α(x))υw[d/x] = true, for every valuation υ.

A sentence α is satisfiable if there is a world w in an ILUPFO-model M such that
M, w |� α. A sentence α is valid if it is satisfied in every world in every ILUPFO-
modelM. A set of sentences T is satisfiable if there is a world w in an ILUPFO-model
M such that M, w |� α for every α ∈ T .
Wewill use the notation ILUPFOMeas to denote the class of all fixed domainmeasurable
models with rigid terms, where by measurable model we mean that the set {u ∈
W (w, a) | I (u)(α)υ = true} of all worlds fromW (w, a) that satisfy α is measurable.

Axiomatic system for the logic ILUPFO contains all the axioms and inference rules
from the Sect. 4 plus the following axiom schemes:

(A8) (∀x)(α→ β)→ (α→ (∀x)β), where the variable x doesn’t occur free in α

(A9) (∀x)α(x)→ α(t), where α(t) is obtained by substitution of all free occurrences
of x in α(x) by the term t which is free for x in α(x)

and the inference rule:

(5) From α infer (∀x)α.
In the completeness proof we can follow the ideas from the propositional case.

Deduction theorem holds for AxILUPFO. Namely, the facts that our infinitary inference
rules have implicative form, and that the application of Rule 3 is restricted to theorems
only guarantee the proof. Also, we need a special kind of maximal consistent sets
called saturated sets. T is saturated if it is maximally consistent and satisfies the
following condition:

if ¬(∀x)α(x) ∈ T , then for some term t , ¬α(t) ∈ T .

Definition 7 (Canonical model) A canonical model MCan = 〈W , D, I , LU P〉 is a
tuple such that:

– W is the set of all saturated sets of formulas,
– D is the set of all variable-free terms,
– for every w ∈ W , I (w) is an interpretation such that:

– for every function symbol Fm
i , I (w)(Fm

i ) : Dm → D such that for all variable-
free terms t1, . . . , tm , I (w)(Fm

i ) : 〈t1, . . . , tm〉 �→ Fm
i (t1, . . . , tm),
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– for every relation symbol Pm
i , I (w)(Pm

i ) = {〈t1, . . . , tm〉 | Pm
i (t1, . . . , tm) ∈

w}, for all variable-free terms t1, . . . , tm ,

– for a ∈ Σ and w ∈ W , LU P(w, a) = 〈W (w, a), H(w, a), P(w, a)〉 is defined:
– W (w, a) = W ,
– H(w, a) = {{u | u ∈ W (w, a), α ∈ u} | α ∈ ForILUPFO},
– P(w, a) is any set of probability measures such that P�(w, a)({u | u ∈

W (w, a), α ∈ u}) = sup{s | Ua≥sα ∈ w}.

Analogously as in the propositional case it can be proved that the canonical model
is indeed a model via: For every formula α and every w ∈ W , α ∈ w iff w |� α.

Theorem 8 (Lindenbaum’s theorem) Every consistent set of formulas can be extended
to a saturated set.

Sketch of the proof Consider a consistent set T and let α0, α1, . . . be an enumeration
of all formulas from ForILUPFO. Let T � denote the set of sentences obtained by the
steps (1)–(3) of the Theorem 6 with one additional requirement in the step (2):

if the set Ti+1 is obtained by adding a formula of the form ¬(∀x)β(x) to the set
Ti , then for some c ∈ C (C is a countably infinite set of new constant symbols),
¬β(c) is also added to Ti+1, so that Ti+1 is consistent.

The new requirement produces consistent sets as well: suppose that for some i > 0
the formula αi is of the form (∀x)β(x) and that Ti ∪ {(∀x)β(x)} is not consistent.
Since Ti is consistent, same holds for Ti ∪ {¬(∀x)β(x)}. If there is a constant c ∈ C
such that ¬β(c) ∈ Ti , then obviously Ti ∪ {(∀x)β(x),¬β(c)} is consistent. Suppose
that there is no such c. Since the set T does not contain constants from C , and Ti ∪
{¬(∀x)β(x)} is obtained by adding only finitely many formulas to the set T , there
must be at least one constant c ∈ C such that c does not appear in Ti ∪ {¬(∀x)β(x)}.
If Ti ∪ {¬(∀x)β(x),¬β(c)} is not consistent, then Ti ,¬(∀x)β(x) � β(c), and since
c does not appear in Ti ∪ {¬(∀x)β(x)}, we obtain Ti ,¬(∀x)β(x) � (∀x)β(x). Thus,
Ti � (∀x)β(x). It follows that the set Ti is not consistent, a contradiction.
At the end, we have to show that T � � α implies α ∈ T �, to prove that T � is
consistent, while the construction guarantees that T � is both maximal and saturated.
The only case that does not appear in the proof of the Theorem 6 concerns the situation
when T � � (∀x)β(x) is obtained from T � � β(x) by the inference Rule 5. Since β(x)
has one free variable, and Ti and T � are sets of sentences, β(x) does not belong to
T �. However, by classical reasoning, we have T � � β(c), for every constant c ∈ C ,
and from the induction hypothesis β(c) ∈ T �. If (∀x)β(x) /∈ T �, the construction of
the set T � guarantees that there has to be some i > 0 such that β(c),¬β(c) ∈ Ti for
some c ∈ C . Contradiction. ��

Theorem 9 (Strong completeness) Every consistent set of formulas T is ILUPFOMeas-
satisfiable.
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6 Adding Infinite Number of Agents

In this section we extend the logics ILUPP and ILUPFO by considering a countable
set of agents Σ . As previously pointed out by Halpern and Shore (2004), in many
applications where the set of agents is not known in advance, and its cardinality has
no a priori upper bound, it is easiest to model the set of agents as an infinite set.

In the rest of the section, we focus on extending ILUPP; nevertheless, combin-
ing this section with the first-order extension results from the previous section will
straightforwardly lead to the extension of ILUPFO.

In order to keep the language countable,wewill consider a countable setG of subsets
of Σ . We do not pose any constraint about the elements of G (like closeness under
intersection etc.). We use the same operators LG≥s and UG≥s as before, now allowing
that G is any member of G. Their semantical definition remains unchanged. However,
the formulas of the form LG≥sα and UG≥sα now cannot be introduced as abbreviation,
since we don’t have infinite disjunctions and conjunctions in syntax. Therefore, we
formally:

(a) extend the language with the operators LG≥s and UG≥s , where G ∈ G,
(b) extend the definition of satisfiability in order to capture the new operators:

– M, w |� LG≥sα iff M, w |� La≥sα for all a ∈ G,
– M, w |� UG≥sα iff M, w |� Ua≥sα for some a ∈ G.

The extension of the logic ILUPP poses new axiomatization challenges. The fact that
there is an infinite group of agents G ∈ G is an additional source of non-compactness
of the logic. Indeed, the sets {La≥sβ | a ∈ G}∪{LG

<sβ} and {Ua
<sβ | a ∈ G}∪{UG≥sβ}

are finitely satisfiable, but unsatisfiable sets of formulas. For that reason, we will use
additional inference rules, in order to ensure inconsistency of those sets and to obtain
strong completeness.

Note that, once we allow infinite groups of agents, we cannot use the formulas
LG≥sα ↔

∧
a∈G La≥sα and UG≥sα ↔

∨
a∈G Ua≥sα, as we did in Sect. 2, to capture

semantical definitions above. Instead, we extend the axiomatization of ILUPPwith the
axioms

(A10) LG≥sβ → La≥sβ, if a ∈ G,
(A11) Ua≥sβ → UG≥sβ, if a ∈ G,

and the inference rules

(6) From the set of premises

{α→ La≥sβ | a ∈ G}

infer α→ LG≥sβ
(7) From the set of premises

{α→ Ua
<sβ | a ∈ G}

infer α→ UG
<sβ.
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We will prove that this axiomatization is strongly complete. In the completeness
proof we can follow the ideas from Sect. 4. However, we need to extend the proofs of
Theorem 5, Lemma 2 and Theorem 6.

In Theorem 5, we prove that T , α � β implies T � α→ β, using the induction on
the length of inference. Now we have two new inference rules. Here we consider the
rule (6), while the proof for (7) is similar.

Assume that T , α � β is obtained by the inference rule (6). Then β is of the form
α1 → LG≥sβ1, and we have T , α � α1 → La≥sβ1 for all a ∈ G. Consequently,
T � (α ∧ α1) → La≥sβ1 for all a ∈ G, by the induction hypothesis and simple
propositional reasoning (i.e., (p → (q → r))←→ ((p ∧ q)→ r)). By the rule (6)
we obtain T � (α ∧ α1)→ LG≥sβ1, or, equivalently, T � α→ (α1→ LG≥sβ1). Thus,
T � α→ β.

Next, in the proof of Lemma 2 we need to extend the proof that α ∈ u iff u |� α.
The proof was by induction on the complexity of α. Since we now have a larger set
of formulas, we need to consider the two additional cases in the proof: when α is of
the form LG≥sβ and when it isUG≥sβ. We assume that the operators of the group are of
higher complexity then the operators of individual agents, for example LG≥sβ is more
complex then Ua≥sβ. It is sufficient to show that for every maximal consistent set T �

the following conditions hold:

(1) LG≥sβ ∈ T � iff {La≥sβ | a ∈ G} ⊆ T �,
(2) UG≥sβ ∈ T � iff Ua≥sβ ∈ T � for some a ∈ G.

Note that (1) follows directly from (A10) and the inference rule (6), and that (⇐) part
of (2) follows from (A11). Let us prove (⇒) part of (2). Suppose thatUG≥sβ ∈ T � and
Ua≥sβ /∈ T � for every a ∈ G. By Maximality of T �, we have {Ua

<sβ | a ∈ G} ⊆ T �.
Then T � � UG

<sβ by the rule (7); a contradiction.
Finally, we need to modify the completion technique in the proof of Theorem 6.

Recall that the completion of T is defined through an iterative process, assuming an
enumeration α0, α1, . . . of all formulas. In the presence of the new rules, two new
cases should be considered in the step (2), when Ti ∪ {αi } is inconsistent:
(e) if αi is of the form α → LG≥sβ, then Ti+1 = Ti ∪ {¬αi , α → La

<sβ}, for some
agent a ∈ G such that Ti+1 is consistent,

(f) if αi is of the form α → UG
<sβ, then Ti+1 = Ti ∪ {¬αi , α → Ua≥sβ}, for some

agent a ∈ G such that Ti+1 is consistent.
First, we need to show that each of the two conditions is correctly formulated,

i.e., that there exists an agent a ∈ G such that Ti+1 is consistent. This follows from
Deduction theorem. For example, let us consider (e): if Ti+1 = Ti∪{¬αi , α→ La

<sβ}
is inconsistent for all a ∈ G, then Ti ∪{¬αi } � ¬(α→ La

<sβ) for all a ∈ G. By (A1)
we obtain Ti ∪ {¬αi } � α→ La≥sβ for all a ∈ G, therefore Ti ∪ {¬αi } � α→ LG≥sβ
by the inference rule (6).

Second, we need to prove that after adding the new inference rules, T � is still
deductively closed, i.e. T � � α implies α ∈ T � (condition v) of the proof). Let us
prove that T � is closed under the rule (6). Let {α → La≥sβ | a ∈ G} ∈ T �. Let
α → LG≥sβ = αi , and suppose that α → LG≥sβ /∈ T �. Then from the condition (e)
we obtain ¬(α → LG≥sβ) ∈ Ti+1; consequently, Ti+1 � α. The same condition also
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ensuresα→ La
<sβ ∈ Ti+1, for some agent a ∈ G. Recall thatα→ La≥sβ = α j ∈ T �.

Let j be the positive integer such that α → La≥sβ = α j . Then Tmax{i+1, j} � α,
Tmax{i+1, j} � α → La≥sβ and Tmax{i+1, j} � α → La

<sβ, so Tmax{i+1, j} � ⊥; a
contradiction. The proof that T � is closed under the rule (7) is similar.

At the end of this section, we discuss the decidability issue. We can prove that this
logic is decidable, provided that we can check whether the sets that are obtained by
finite set operations on elements ofG are empty or not. The similar assumption is posed
by Halpern and Shore (2004), where it is also observed that possibility of deciding
the cardinality of the set G\(G1 ∪ · · · ∪ Gn) in general depends on the way how
G,G1, . . . ,Gn are presented and that if G,G1, . . . ,Gn are recursive sets, deciding
if G\(G1 ∪ · · · ∪Gn) is empty may not even be recursive. If we assume that we have
oracles for testing whether those sets are empty or not, we can, given a formula α,
detect all the nonempty sets obtained by applying set operations on groups mentioned
in α.3 Then we can replace all the agents that have same membership functions in
those sets (i.e., that belong to exactly the same groups) by a single representative of
the set. In that way, we modify α by replacing each infinite set of agents from α with
a finite set. Then we can use finite conjunctions and disjunction to eliminate sets of
agents, using the tautologies LG≥sβ ↔

∧
a∈G La≥sβ and UG≥sβ ↔

∨
a∈G Ua≥sβ. In

that way we obtain a formula of the logic ILUPP and we can apply the procedure from
Sect. 3 to check its satisfiability.

7 ILUPP and ILUPFO as Generalizations of Probabilistic Logics

In this section we prove that the logics ILUPP and ILUPFO in a sense contain the logics
LPP1 and LFOP1 (respectively) for reasoning about sharp probabilities (Ognjanović
and Rašković 2000; Ognjanović et al. 2016). The two logics presented here have
the similar semantical structure as the logics LPP1 and LFOP1, since they both use
Kripke-like structures. It is intuitively clear that the semantics of our logics are more
general, since reasoning about upper and lower probabilities requires sets of probability
measures, while in the logics for reasoning about sharp probabilities one measure per
possible world is sufficient (and thus they are isomorphic to the “sets of” probability
measures which are actually singletons). On the other hand, the axiomatic systems
are quite different. Here we will focus on the two proof theoretical aspects of the
generalization: first, which axioms should be added to our logics (both ILUPP and
ILUPFO) to reduce the proposed class of models to the class of models isomorphic to
the one for corresponding logic for sharp probabilities (LPP1 and LFOP1, respectively),
and second, how we can use the added axioms to formally obtain the axiomatizations
of LPP1 and LFOP1.

In the rest of the section we will focus on relation between the logics ILUPP and
LPP1, but we stress that, similarly as in the previous section, analogous reasoning
leads to the same relation in the first-order case, namely between the logics ILUPFO
and LFOP1. First we state only those properties of the logic LPP1 important for this

3 Here, for simplicity, we can assume that all the singletons are in G, in order to capture the operators
indexed by individual agents.
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section [for more details about the logic LPP1, as well as for the logic LFOP1 we refer
the reader to Ognjanović and Rašković (2000), Ognjanović et al. (2016)].

The language of the logic LPP1 extends the classical propositional language with
the list of operators P≥s , where s is a rational number from the [0, 1]. Concerning
the syntax, besides the classical propositional formulas, formulas of the form P≥sα
are also included. For example, p ∧ P≤ 1

2
q and P= 1

3
P≥1 p are well defined formulas.

LPP1-structures are defined as triples M = 〈W , Prob, ν〉, where:
– W is a non empty set of worlds
– Prob is a probability assignment which assigns to every w ∈ W a probability
space, such that Prob(w) = 〈W (w), H(w), μ(w)〉, where:

W (w) is a non empty subset of W ,
H(w) is an algebra of subsets of W (w) and
μ(w) : H(w)→ [0, 1] is a finitely additive probability measure.

– ν provides for each world w an evaluation of the primitive propositions.

Satisfiability of a formula is defined as expected for the classical propositional
formulas and

M, w |� P≥sα iff μ({v ∈ W (w) | v |� α}) ≥ s.

Axiomatization of the logic LPP1 is the following:

(P1) all substitutional instances of the classical propositional tautologies,
(P2) P≥0α,
(P3) P≤rα→ P<sα, s > r ,
(P4) P<sα→ P≤sα,
(P5) (P≥tα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β))→ P≥min{1,t+s}(α ∨ β),
(P6) (P≤tα ∧ P<sβ)→ P<t+s(α ∨ β), t + s ≤ 1.

Inference Rules

(1) Modus Ponens,
(2) from α infer P≥1α,
(3) from the set of premises

{
A→ P≥s− 1

k
α | k ≥ 1

s

}

infer A→ P≥sα.
Soundness and strong completeness theorems for the logic LPP1 are proved (for

more details see Ognjanović et al. 2016, chapter 4).
We will now focus on the relationship between ILUPP and LPP1. First, since the

logic LPP1 is not a multi-agent logic we put that the set of agents Σ is a singleton set
(so instead of Ua≥rα we will write U≥rα).

Then, it is clear that the subclass of the ILUPP-structures that contains those struc-
tures where the set of finitely additive probability measures is a singleton set is
isomorphic to the class of LPP1-structures. Therefore, we add the following axiom:
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(A12) U≥rα→ L≥rα. (3)

We will denote ILUPP+Axiom A12 by ILUPPExt .
Let us recall note that it is shown in Savić et al. (2017a) (Proposition 1) that the

following formula is a theorem in our axiomatization:

� U≤rα→ L≤rα. (4)

From (3) and (4) follows that U and L have the same behavior in the sense that for
every formula α and every r ∈ S

� U≥rα ↔ L≥rα. (5)

This means that in ILUPPExt one type of operators is sufficient, since changing one
type of operator with other will lead to an equivalent formula. For example, if we
replace all the operators for lower probability with the operators of upper probability
in

α ≡ L≥ 1
3
U≤ 1

2
L=1 p,

we will obtain the formula

β ≡ U≥ 1
3
U≤ 1

2
U=1 p

which is equivalent to α. This holds for any formula and can be proved in a straight-
forward manner by the induction on the complexity of a formula. This fact allows us,
without loss of generality, to consider only formulas with theU operators in ILUPPExt .

Our goal is to prove that the set of theorems of the logic LPP1 is a subset of the set
of theorems of the logic ILUPPExt . Therefore, we will prove that all the axioms and
inference rules of the logic LPP1 can be inferred in the logic ILUPPExt , where P is
replaced by U .

Also notice that from the semantical point of view, addition of the axiom A12
guarantees that in an ILUPP-structure the set of finitely additive probability measures
is a singleton set and therefore has the same form as the LPP1-structure.

The axioms (P1)–(P4) correspond to the axioms (A1)–(A4). It is also clear that the
inference rules coincide as well. Our goal is to prove that the appropriate counterparts
of the axioms (P5) and (P6), i.e.,

(U5) (U≥tγ ∧U≥sβ ∧U≥1(¬γ ∨ ¬β))→ U≥min{1,t+s}(γ ∨ β),
(U6) (U≤tγ ∧U<sβ)→ U<t+s(γ ∨ β), t + s ≤ 1,

follow from the axiomatization of ILUPPExt , while in the inference the essential role
play the axioms:

(A5) (Ua≤r1α1 ∧ · · · ∧Ua≤rmαm)→ Ua≤rα, if α→∨
J⊆{1,...,m},|J |=k+n

∧
j∈J α j and∨

J⊆{1,...,m},|J |=k
∧

j∈J α j are tautologies, where r =
∑m

i=1 ri−k
n , n �= 0
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(A6) ¬(Ua≤r1α1 ∧ · · · ∧ Ua≤rmαm), if
∨

J⊆{1,...,m},|J |=k
∧

j∈J α j is a tautology and∑m
i=1 ri < k.

In order to prove that we need the following Lemma:

Lemma 4 ILUPPExt � (U≤tγ ∧U≤sβ)→ U≤t+s(γ ∨ β), t + s ≤ 1.

Proof We will show that for t + s ≤ 1

(U≤tγ ∧U≤sβ)→ U≤t+s(γ ∨ β) (6)

can be infered from A5. Consider the axiom A5 for:

m = 2; n = 1, k = 0; r1 = t; r2 = s;
α1 = γ ; α2 = β; α = γ ∨ β.

In this case we obtain r = t + s and therefore the Axiom A5 has exactly the shape
of the formula (6). We need also to check whether the formulas

α→
∨

J⊆{1,2},|J |=1

∧
j∈J

α j

and

∨
J⊆{1,2},|J |=0

∧
j∈J

α j

are tautologies. The first formula has the form γ ∨ β → γ ∨ β which is clearly a
tautology, while the second formula has the form

∧
j∈∅ α j , and

∧
j∈∅ α j = � by

definition and hence a tautology. ��
Theorem 10 The set of theorems of the logic LPP1 is a subset of the set of theorems of
the logic ILUPPExt .

Proof As already stated, we need only to prove that:

(a) ILUPPExt � (U≥tγ ∧U≥sβ ∧U≥1(¬γ ∨ ¬β))→ U≥min{1,t+s}(γ ∨ β),
(b) ILUPPExt � (U≤tγ ∧U<sβ)→ U<t+s(γ ∨ β), t + s ≤ 1.

Proof of (a). Recall that the formula

(U≥tγ ∧U≥sβ ∧U≥1(¬γ ∨ ¬β))→ U≥min{1,t+s}(γ ∨ β)

can be written as:

(U≤1−t¬γ ∧U≤1−s¬β ∧U≤0(γ ∧ β))→ U≤1−min{1,t+s}¬(γ ∨ β).

Now, consider the axiom A5 for:

m = 3; n = k = 1; r1 = 1− t; r2 = 1− s; r3 = 0;
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α1 = ¬γ ; α2 = ¬β; α3 = γ ∧ β; α = ¬(γ ∨ β).

We obtain that r = 1− (t + s).

(i) If t + s > 1 then (Axiom A6,
∑m

i=1 ri < k)

� ¬(U≤1−t¬γ ∧U≤1−s¬β ∧U≤0(γ ∧ β))

and hence

� (U≤1−t¬γ ∧U≤1−s¬β ∧U≤0(γ ∧ β))→ U≤1−min{1,t+s}¬(γ ∨ β)).

(i i) If t + s ≤ 1, then 1− min{1, t + s} = 1− (t + s) = r and it is left to check if

α→
∨

J⊆{1,2,3},|J |=2

∧
j∈J

α j

and

∨
J⊆{1,2,3},|J |=1

∧
j∈J

α j

are tautologies. Namely, in this case, the first formula has the following form:
¬(γ ∨β)→ ((¬γ ∧¬β)∨(¬γ∧γ ∧β)∨(¬β∧γ ∧β)), and the second formula:
¬γ ∨¬β ∨ (γ ∧β). It is obvious that both of these formulas are tautologies and
therefore is this part proved.

Proof of (b).
Let us show equivalently that ILUPPExt � (U≤tγ ∧U≥t+s(γ ∨ β))→ U≥sβ:
� U≥t+s(γ ∨ β)→ U>t+s′(γ ∨ β), for all s′ < s (contraposition of A3)
U≤tγ ∧U≥t+s(γ ∨ β) � U≤tγ ∧U>t+s′(γ ∨ β), for all s′ < s
U≤tγ ∧U≥t+s(γ ∨ β) � U≤tγ ∧U>s′β, for all s′ < s (by Lemma 4)
U≤tγ ∧U≥t+s(γ ∨ β) � U≥sβ (by Inference Rule (3))
� (U≤tγ ∧U≥t+s(γ ∨ β))→ U≥sβ (by Deduction theorem)

��

8 Conclusion

In this paper we present the proof-theoretical analysis of two logics which allow mak-
ing statements about upper and lower probabilities. The introduced formalisms, the
propositional logic ILUPP and its first-order extension ILUPFO, can be used for reason-
ing not only about lower and upper probabilities an agent assigns to a certain event,
but also about her uncertain belief about other agent’s imprecise probabilities. The
languages of our logics aremodal languageswhich extend classical propositional/first-
order languageswith the unary operatorsUa≥r and La≥r , wherea is an agent and r ranges
over the unit interval of rational numbers. The corresponding semantics consist of the
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measurable Kripke models with sets of finitely additive probability measures attached
to each possible world.

We prove that the proposed axiomatic systems are strongly complete with respect to
the class of measurable models. Since the logics are not compact, the axiomatizations
contain infinitary rules of inference. In Savić et al. (2017a) it is shown that the same
axiomatic systems (the only difference is that in Savić et al. (2017a) only one agent
is considered) is sound and complete for the logics without nesting of probabilistic
operators. This situation is not an exception. For example, modal system K is sound
and complete with respect to the class of all modal models, but also with respect to
the class of all irreflexive models (Hughes and Cresswell 1984).

We provided the extensions of the proposed axiomatizations in order to properly
capture the notions of lower and upper probability of an infinite set of agents. We also
showed that the logics ILUPP and ILUPFO generalize the logics for reasoning about
sharp probabilities from Ognjanović and Rašković (2000), Ognjanović et al. (2016).

We also prove that the satisfiability problem for ILUPP logic is decidable. In the
proof, we use the method of filtration (Hughes and Cresswell 1984) to show that if
a formula is satisfiable in a world w of an ILUPP structure, then it is satisfiable in a
finite structure. We also use a reduction to linear programming to deal with infinitely
many probability measures definable on finite algebras, and to solve the satisfiability
problem in a finite number of steps.

We propose two topics for future work. First, we would like to investigate an alter-
native to the approach of upper and lower probability of a group presented here. We
assumed that the agents share their sets of probabilities in order to obtain a larger set,
available to all the members of the group. Alternatively, we wish to investigate the
scenario in which they share their constraints, i.e., a group accepts those probability
measures which satisfy lower and upper constraints of all the members of the group
(i.e., LG≥sα would be defined as a disjunction, and UG≥sα as a conjunction). Note that
this approach leads to an debatable consequence: consider the group G = {a, b},
where both lower and upper probability of α are 1

2 for the agent a, while they are both
1
3 for b; then lower probability of α wrt. G would be greater then the corresponding
upper probability. This indicates that this approach is sensible if the formulas cap-
ture agents’ imprecise knowledge about an objective probability, in which case there
shouldn’t be inconsistencies between the knowledge of different agents. In terms of
semantics, the upper and lower probabilities of different agents should be all satisfied
by a probability measure.

Second, wewill investigate complexity of satisfiability problem for the logic ILUPP.
Such a method is already developed in Kokkinis (2018) for probabilistic logics with
iterations of standard probability operators. Note that the fact that ILUPP is a gener-
alization of the logic LPP1 already leads to a complexity bound for ILUPP. Namely,
it was shown in Kokkinis (2018) that the satisfiability problem for the logic LPP1 is
PSPACE-complete, thus a lower complexity bound for ILUPP is PSPACE.
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Rašković, M., Marković, Z., & Ognjanović, Z. (2008). A logic with approximate conditional probabilities

that can model default reasoning. International Journal of Approximate Reasoning, 49(1), 52–66.
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