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Abstract. We introduce a family of probabilistic justification logics
that feature Bayesian confirmations. Our logics include new justification
terms representing evidence that make a proposition firm in the sense of
making it more probable. We present syntax and semantics of our logic
and establish soundness and strong completeness. Moreover, we show
how to formalize in our logic the screening-off condition for transitivity
of Bayesian confirmations.
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1 Introduction

Justification logic is a type of logic that explicitly includes justifications why
something is known or believed [6, 18]. The first justification logic, the Logic of
Proofs [2], has been developed to provide a classical provability semantics for
intuitionistic logic. In that approach, justifications represent proofs in a formal
system like Peano arithmetic [17]. Later justification logic was introduced into
formal epistemology where justifications can represent not only proofs but evi-
dence in general [4]. For instance, an agent’s knowledge may be justified by direct
observation or by communication with another agent. In this context, notions
like common knowledge [3, 8] and public announcements [7, 9] have been studied
in detail.

Milnikel [19] was the first to investigate uncertain justifications. This lead
to several further frameworks that model uncertain reasoning in justification
logic: fuzzy justification logics [12, 21], possibilistic justification logics [11, 28],
probabilistic justification logics [13, 14, 20], and logics for combining evidence
and uncertainty [1, 25].

Having logics that contain justifications for belief as well as operators for
conditional probabilities, it is natural to extend them to a framework in which
justifications can represent Bayesian confirmations [29]. The main principle of
Bayesian confirmation theory says that (for simplicity we do not consider a
background theory here) evidence E confirms hypothesis H if the prior proba-
bility of H conditional on E is greater than the prior unconditional probability
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of H, that is if P(H|E) > P(H). Carnap [10] calls this condition confirmation
as increase in firmness.

We aim at a probabilistic justification logic that implements the above idea,
that is in which something like

P(H|E) > P(H) entails j(E) : H (1)

holds, where j(E) is a term that represents the evidence E. Hence in this logic
we read the formula e : F as evidence e confirms F .

In order to model this relationship between conditional probability and evi-
dence, we need a way to consider formulas as evidence terms. In (1) this is the
role of the operator j. It takes a formula E and produces an evidence term j(E)
representing the evidence E.

A similar kind of justification operator has been considered in the treatment
of public announcements [16] where the operator up transforms formulas to ev-
idence terms. We will use a similar strategy for the j-operator of (1). Further
we will employ operators for conditional probabilities CP≥s as in [20, 22] and
operators for the degree of confirmation D≥s as in [26]. A formula CP≥s(A,B)
means that the conditional probability of A given B is at least s and a formula
D≥s(A,B) means that the difference between the conditional probability of A
given B and the probability of A is at least r.

The paper is organized as follows. In the next section we introduce syn-
tax and semantics of Bayesian justification logic, i.e. we present the deductive
system BJCS and we introduce the class of measurable Bayesian models. Then
in Section 3 we establish soundness and completeness of BJCS with respect to
those models. Section 4 discusses transitivity of Bayesian confirmations in the
framework of justification logic. Finally, Section 5 concludes the paper.

2 Bayesian Justification Logic BJ

2.1 Syntax

We start with countably many constants ci, countably many variables xi, and
countably many atomic propositions pi. Further, we define S := Q ∩ [0, 1] and
S∗ := Q ∩ [−1, 1], where Q is the set of all rational numbers. The (evidence)
terms and formulas of the language of BJ are defined by simultaneous induction
as follows:

– Evidence terms.
• Every constant ci and every variable xi is an atomic term. If A is a

formula, then jA is an atomic term. Every atomic term is a term.
• If t and s are terms, then t · s is a term and !t is a term.

– Formulas.
• Every atomic proposition pi is a formula.
• ⊥ is a formula.
• If A and B are formulas, t is a term, s ∈ S, and r ∈ S∗, then A → B,
t : A, CP≥s(A,B), and D≥r(A,B) are formulas.



Bayesian Confirmation and Justifications 3

The set of all constants is denoted by Con, the set of all terms is Tm, and we
use t, s, u, v, . . . to denote terms. The set of atomic propositions and the set of
justification formulas are denoted by Prop and Fml, respectively. We use A,B, . . .
to denote formulas. The classical Boolean connectives ¬,∨,∧,↔ are defined as
usual and we set

CP≤s(B,C) := CP≥1−s(¬B,C) and D≤r(B,C) := D≥−r(¬B,C)

for s ∈ S and r ∈ S∗. Moreover, we use the standard abbreviations, see [22], for
the following formulas:

CP<s(A,B) CP>s(A,B) CP=s(A,B) Pρs(A) for ρ ∈ {≥,≤, >,<,=}

and similarly for D<s(A,B), D>s(A,B) and D=s(A,B).

The axiom schemes of BJ are the following where © ∈ {CP,D}:
1. all classical tautologies
2. t : (A→ B)→ (s : A→ t · s : B)
3. CP≥0(A,B)
4. ©≤s(A,B)→©<t(A,B), for t > s
5. ©<s(A,B)→©≤s(A,B)
6. P≥1(A↔ B)→ (P=sA→ P=sB)
7. P=sA ∧ P=tB ∧ P≥1¬(A ∧B))→ P=min{1,s+t}(A ∨B)
8. P=0B → CP=1(A,B)
9. P≥s(A ∧B) ∧ P≤tB → CP≥ s

t
(A,B), for t 6= 0

10. P≤s(A ∧B) ∧ P≥tB → CP≤ s
t
(A,B), for t 6= 0

11. CP≥s(A,B) ∧ P≤tA→ D≥s−t(A,B)
12. CP≤s(A,B) ∧ P≥tA→ D≤s−t(A,B)
13. jB : A↔ D>0(A,B)

Axioms 1 to 10 come from justification logic with conditional probabilities,
see [20]. The main difference is that we replaced the axiom

P=s(A ∧B) ∧ P=tB → CP= s
t
(A,B) for t 6= 0

from [20] with our axioms 9 and 10, which yields a slightly stronger system.
This additional power is needed to prove Lemma 4. Axioms 11 and 12 formalize
the relationship between conditional probabilities and degrees of confirmation as
in [26]. Axiom 13 finally states that terms jB represent Bayesian confirmations.

A constant specification is any set CS that satisfies

CS ⊆ {(c, A) | c is a constant and

A is an instance of some axiom of BJ}.

Let CS be any constant specification. The deductive system BJCS is the
Hilbert system obtained by adding to the axioms of BJ the rules (MP), (CE),
(ST.1), (ST.2) and (AN!) as given in Figure 1.

Note that (ST.1) and (ST.2) are infinitary rules, which we need to obtain
strong completeness. Observe also the difference in the definitions of rules (MP),
(ST.1), (ST.2), and (CE) in Figure 1. Rule (CE) can only be applied to theorems
of BJ (i.e. formulas that are deducible from the empty set), whereas (MP), (ST.1),
and (ST.2) can always be applied.
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axioms of BJ

+

(AN!) ` !nc : !n−1c : · · · : !c : c : A, where (c, A) ∈ CS and n ∈ N
(MP) if T ` A and T ` A→ B then T ` B

(CE) if ` A then ` P≥1A

(ST.1) if T ` A→ CP≥s− 1
k

(B,C) for every integer k ≥ 1
s

and s > 0

then T ` A→ CP≥s(B,C)

(ST.2) if T ` A→ D≥r− 1
k

(B,C) for every integer k ≥ 1
1+r

and r > −1

then T ` A→ D≥r(B,C)

Fig. 1. System BJCS

2.2 Semantics

To introduce semantics for BJCS, we begin with the notion of a basic evaluation,
which is the cornerstone for many interpretations of justification logic [5, 15]. In
the following we use P(X) to denote the power set of a set X.

Definition 1 (Basic Evaluation). Let CS be a constant specification. A basic
evaluation for CS, or a basic CS-evaluation, is a function ∗ that maps atomic
propositions to truth values and maps justification terms to subsets of Fml, i.e.

∗ : Prop→ {T,F} and ∗ : Tm→ P(Fml),

such that for u, v ∈ Tm, for c ∈ Con and A,B ∈ Fml we have:

1.
(
A→ B ∈ u∗ and A ∈ v∗

)
=⇒ B ∈ (u · v)∗

2. if (c, A) ∈ CS then for all n ∈ N we have3:

!n−1c : !n−2c : · · · :!c : c : A ∈ (!nc)∗

We usually write t∗ and p∗ instead of ∗(t) and ∗(p), respectively.

Definition 2 (Algebra over a Set). Let W be a non-empty set and let H be
a non-empty subset of P(W ). We call H an algebra over W iff the following
hold:

– W ∈ H
– U, V ∈ H =⇒ U ∪ V ∈ H
– U ∈ H =⇒W \ U ∈ H

Definition 3 (Finitely Additive Measure). Let H be an algebra over W
and µ : H → [0, 1]. We call µ a finitely additive measure iff the following hold:

1. µ(W ) = 1

3 We agree to the convention that the formula !n−1c : !n−2c : · · · : !c : c : A represents
the formula A for n = 0.
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2. for all U, V ∈ H:

U ∩ V = ∅ =⇒ µ(U ∪ V ) = µ(U) + µ(V )

Definition 4 (Probability Space). A probability space is a triple

P = 〈W,H, µ〉,

where:

– W is a non-empty set
– H is an algebra over W
– µ : H → [0, 1] is a finitely additive measure

Definition 5 (Model). Let CS be a constant specification. A BJCS-model is a
quintuple M = 〈U,W,H, µ, ∗〉 where:

1. U is a non-empty set of objects called worlds
2. W,H, µ and ∗ are functions, which have U as their domain, such that for

every w ∈ U :
– 〈W (w), H(w), µ(w)〉 is a probability space with W (w) ⊆ U
– ∗w is a basic CS-evaluation4

The ternary satisfaction relation |= is defined between models, worlds, and
formulas. We will use µw for µ(w), p∗w for p∗w , and t∗w for t∗w .

Definition 6 (Truth in a BJCS-model). Let CS be a constant specification and
let M = 〈U,W,H, µ, ∗〉 be a BJCS-model. We define by simultaneous induction

1. what it means for a formula to hold in M at a world w ∈ U and
2. what it means for a formula to be measurable in M at a world w ∈ U

as follows:

– M,w |= p iff p∗w = T for p ∈ Prop;
– M,w 6|= ⊥;
– M,w |= A→ B iff M,w 6|= A or M,w |= B;
– M,w |= t : A iff A ∈ t∗w;
– M,w |= CP≥s(A,B) iff A ∧ B and B are measurable at w and either

µw([B]) = 0, or µw([B]) > 0 and µw([A∧B])
µw([B]) ≥ s;

– M,w |= D≥s(A,B) iff A and B are measurable at w and either µw([B]) = 0

and 1− µw([A]) ≥ s, or µw([B]) > 0 and µw([A∧B])
µw([B]) − µw([A]) ≥ s.

We say a formula B is measurable in M at a world w ∈ U if the set

[B]M,w := {x ∈W (w) | M,x |= B}

is an element of H(w).

4 We will usually write ∗w instead of ∗(w).
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Definition 7 (Measurable Model). Let CS be a constant specification and let
M = 〈U,W,H, µ, ∗〉 be a BJCS-model. M is called measurable iff every formula A
is measurable at each w ∈ U . BJCS,Meas denotes the class of measurable BJCS
models.

Finally, we call a model Bayesian if terms of the form jA represent Bayesian
evidence.

Definition 8. A BJCS-model M = 〈U,W,H, µ, ∗〉 is called Bayesian model if at
each w ∈ U ,

M,w |= D>0(A,B) iff M,w |= jB : A.

The class of Bayesian BJCS-models is denoted by BJCS,Bayes. The class of Bayesian
measurable BJCS-models is denoted by BJCS,Meas,Bayes.

For a model M = 〈U,W,H, µ, ∗〉, M |= A means that M,w |= A for all
w ∈ U . Let T ⊆ Fml. Then M |= T means that M |= A for all A ∈ T . Further
T |= A means that for all M ∈ BJCS,Meas,Bayes, M |= T implies M |= A.

To be precise we should write T `CS A and T |=CS A instead of T ` A
and T |= A, respectively, since these two notions depend on a given constant
specification CS. However, CS will always be clear from the context and we thus
omit it.

3 Soundness and Completeness for Bayesian Justification
Logic

Soundness of BJCS can be proved by induction on the depth of derivations. To
establish completeness, we make use of a canonical model construction. For lack
of space, however, we cannot give a detailed completeness proof here. We will
only present a series of definitions and lemmas (without proofs) that leads to
the completeness result.

Theorem 1 (Soundness). Let CS be a constant specification. The axiomatic
system BJCS is sound with respect to the class of BJCS,Meas,Bayes-models, i.e., for
any formula A and any set T ⊆ Fml we have

T ` A =⇒ T |= A.

Now we define the notion of a BJCS-consistent sets.

Definition 9 (BJCS-Consistent Sets). Let CS be any constant specification
and let T be a set of formulas.

– T is said to be BJCS-consistent if and only if T 6`BJCS ⊥ . Otherwise T is said
to be BJCS-inconsistent.

– T is said to be maximal if and only if for every A ∈ Fml either A ∈ T or
¬A ∈ T .

– T is said to be maximal BJCS-consistent if and only if it is maximal and
BJCS-consistent.
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We have the following deduction theorem for BJCS. The proof is similar to
the one given in [13, 22].

Theorem 2 (Deduction Theorem for BJCS). Let T be a set of formulas and
A and B be formulas. We have

T,A ` B iff T ` A→ B.

The deduction theorem makes it possible to establish the following property
of consistent sets of formulas, see [13, Lemma 27].

Lemma 1. Let CS be a constant specification and let T be a BJCS-consistent set
of formulas.

1. If ¬(B → CP≥s(A,C)) ∈ T for s > 0, then there is some integer n ≥ 1
s such

that T,¬(B → CP≥s− 1
n

(A,C)) is BJCS-consistent.

2. If ¬(B → D≥r(A,C)) ∈ T for r > −1, then there is some integer n ≥ 1
r+1

such that T,¬(B → D≥r− 1
n

(A,C)) is BJCS-consistent.

The Lindenbaum lemma for probabilistic justification logics has been estab-
lished in [13]. The proof for BJCS is similar.

Lemma 2 (Lindenbaum). Let CS be a constant specification. Every BJCS-
consistent set of formulas can be extended to a maximal BJCS-consistent set.

Definition 10 (Canonical Model). Let CS be a constant specification. The
canonical model for BJCS is given by the quintuple M = 〈U,W,H, µ, ∗〉, defined
as follows:

– U =
{
w
∣∣ w is a maximal BJCS-consistent set of formulas

}
– for every w ∈ U the probability space 〈W (w), H(w), µ(w)〉 is defined as fol-

lows:
1. W (w) = U
2. H(w) =

{
(A)M

∣∣ A ∈ Fml
}

where (A)M =
{
x
∣∣ x ∈ U,A ∈ x}

3. for all A ∈ Fml, µ(w)
(
(A)M

)
= sups {P≥sA ∈ w}

– for every w ∈W the basic CS-evaluation ∗w is defined as follows:
1. for all p ∈ Prop:

p∗w =

{
T if p ∈ w
F if ¬p ∈ w

2. for all t ∈ Tm:
t∗w =

{
A
∣∣ t : A ∈ w

}
Lemma 3. Let CS be a constant specification. The canonical model for BJCS is
a BJCS-model.

The following lemma is proved by induction on the complexity of the formula
A where we make use of a complexity measure such that the complexity of
CP≥s(B,C) and D≥s(B,C) is greater than the complexity of B ∧ C.
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Lemma 4. Let M = 〈U,W,H, µ, ∗〉 be the canonical model for BJCS. Then we
have

(∀A ∈ Fml)(∀w ∈ U)
[
[A]M,w = (A)M

]
.

From Lemma 4 we get the following corollary.

Corollary 1. Let CS be any constant specification. The canonical model for
BJCS is a BJCS,Meas-model.

Making use of the properties of maximal consistent sets, we can establish the
truth lemma.

Lemma 5 (Truth Lemma). Let CS be a constant specification and let M =
〈U,W,H, µ, ∗〉 be the canonical model for BJCS. For every A ∈ Fml and any
w ∈ U we have:

A ∈ w ⇐⇒ M,w |= A.

Using the truth lemma we find that the canonical model satisfies the condi-
tion for Bayesian models, i.e. we have the following corollary.

Corollary 2. Let CS be any constant specification. The canonical model for
BJCS is a BJCS,Meas,Bayes-model.

Finally, we get the completeness theorem as usual.

Theorem 3 (Strong Completeness for BJ). Let CS be a constant specifica-
tion, let T ⊆ Fml and let A ∈ Fml. Then we have:

T |= A =⇒ T ` A.

4 Transitivity

It is well known that Bayesian confirmation is not transitive, i.e., the following
principle is not valid

P(B|A) > P(B) and P(C|B) > P(C) =⇒ P(C|A) > P(C) . (2)

We refer to, e.g., [24, 27] for examples where transitivity fails.
It turns out, however, that there are conditions under which (2) holds.

Shogenji [27] introduces the following condition, called screening-off condition,

P(C|A ∧B) = P(C|B) and P(C|A ∧ ¬B) = P(C|¬B) (3)

and shows that transitivity holds under it. Intuitively, (3) means that once truth
or falsity of B is known, A is irrelevant to the probability of C. In other words,
A affects the probability of C only indirectly through its impact on B [24].

Roche [23] presents the following weakening of (3)

P(C|A ∧B) ≥ P(C|B) and P(C|A ∧ ¬B) ≥ P(C|¬B) . (4)

and shows that transitivity also holds under this weaker condition.
We are now going to formalize this result in Bayesian justification logic. We

show that we can represent (4) in BJ and that this condition entails transitivity
of Bayesian justifications.
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Theorem 4. Let A, B, and C be formulas of Fml. Let T be the set of formulas
that consists of:

1. CP=r(C,B)→ CP≥r(C,A ∧B) for all r ∈ S,
2. CP=r(C,¬B)→ CP≥r(C,A ∧ ¬B) for all r ∈ S,
3. P6=0A, P6=0(A ∧B), P6=0(A ∧ ¬B), P6=0B, and P6=0¬B.

Then we have that
T ` jA : B ∧ jB : C → jA : C .

Let M be any BJCS,Meas,Bayes-model such that M |= T . We observe that since M
satisfies all formulas in T , the model M also satisfies condition (4). Thus we can
show that M |= jA : B ∧ jB : C → jA : C by essentially following the original
proof that transitivity holds under (4) given in [23]. The theorem follows by
strong completeness of BJCS.

5 Conclusion

In this paper we have introduced BJCS, a family of justification logics that feature
Bayesian confirmations. Because the language of Bayesian justification logics in-
cludes both probability operators and explicit justifications, we were able to
define a class of models that satisfies condition (1). Hence BJCS not only in-
cludes justification terms built up from variables and constants, i.e. terms that
represent assumptions and logical axioms, but also terms that represent Bayesian
confirmations. In particular, a formula jA : B, i.e. jA justifies B, can be read as
evidence A confirms B in the sense of increase in firmness.

We have established soundness and completeness of BJCS with respect to
Bayesian models. Further we have shown that we can formalize the screening-off
condition and that this condition entails transitivity of confirmation in Bayesian
models.

Future work includes studying the computational properties of Bayesian jus-
tification logic, i.e., establishing decidability and complexity results, as well as
developing a corresponding proof theory.
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