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ABSTRACT. We establish a weighted pointwise Jacobian determinant inequality on corank 1
Carnot groups related to optimal mass transportation akin to the work of Cordero-Erausquin,
McCann and Schmuckenschlager. In this setting, the presence of abnormal geodesics does not
allow the application of the general sub-Riemannian optimal mass transportation theory de-
veloped by Figalli and Rifford and we need to work with a weaker notion of Jacobian determi-
nant. Nevertheless, our result achieves a transition between Euclidean and sub-Riemannian
structures, corresponding to the mass transportation along abnormal and strictly normal
geodesics, respectively. The weights appearing in our expression are distortion coefficients
that reflect the delicate sub-Riemannian structure of our space. As applications, entropy,
Brunn-Minkowski and Borell-Brascamp-Lieb inequalities are established on Carnot groups.
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1. INTRODUCTION

As a general framework of our results, let (X, d, m) be a suitably regular geodesic metric
measure space with topological dimension N € N where the theory of optimal mass trans-
portation can be successfully developed. Examples for such spaces include Riemannian and
Finsler manifolds, see McCann [16] and Ohta [17], the Heisenberg group H", see Ambrosio
and Rigot [3], or even more general sub-Riemannian structures with 'well-behaved’ cut locus,
see Figalli and Rifford [11]. Let pup and p; be two probability measures on X which are
absolutely continuous w.r.t. the reference measure m, and let ps = (¥s)gpo, s € [0,1], be
the unique displacement interpolation measure joining o and p; throughout the so-called
s-intermediate optimal transport map v, : X — X. Roughly speaking, for s € (0,1) fixed,
the Jacobian determinant inequality reads as

(Jac(v,)(2))¥ > ¥ (0,) + 7V (0,) Jac(¥)(2))¥ for po-ae. z € X. (1.1)

Here, and in the sequel Jac(vs)(z) and Jac(¢))(x) are interpreted as densities, or the Radon-
Nikodym derivatives of ps and of p; w.r.t. the reference measure m. Note that in case when
X = R" and v, is differentiable at x the term Jac(v;)(z) can be computed as Jac(vs)(z) =
| det Dis(x)|. On the other hand, the Jacobian determinant in the above sense might exist
as density even in the case when v, is not differentiable. The expression 72 is the distortion
coefficient which encodes information on the geometric structure of the space X. Expressions
of 7V can be calculated in terms of the Jacobian of the exponential map or estimated in terms
of a curvature condition. The expression 6, can be given as a function of d(x,v(z)) or its
derivatives.

The Jacobian determinant inequality (1.1) in the above general form has been considered
first in the setting of complete Riemannian manifolds (endowed with the natural Riemani-
ann distance and volume form) in the pioneering work of Cordero-Erausquin, McCann and
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Schmuckenschléager [9]. This result constituted the starting point of an extensive study of the
geometry of metric measure spaces, while relation (1.1) became an equivalent formulation
of the famous curvature-dimension condition CD(K, N), due to Lott and Villani [15], and
Sturm [19, 20], where 7% is replaced by explicit expressions 7V K being the lower bound
of the Ricci curvatures in the Riemannian setting. Namely, 7V is given by

s (sinh 0/%59) /sinh (m9))111v if K6% < 0;
NGy = ® ) if K62 =0;
) s (sin (\/%89) /sin ( %9))1_W if 0< K02< (N—1)n2
+00 if K6?> (N —1)n2

and 6 = 0, is precisely the Riemannian distance d(x, ¢ (x)).

Juillet [13] proved that the Lott-Sturm-Villani curvature-dimension condition does not
hold for any pair of parameters (N, K) on the Heisenberg group H" (endowed with its usual
Carnot-Carathéodory metric dgo and £2"-measure), which is the simplest sub-Riemannian
structure. Accordingly, there were strong doubts on the validity of a sub-Riemannian version
of the Jacobian determinant inequality in the sub-Riemannian context. However, by using a
natural Riemannian approximation of the Heisenberg group as in Ambrosio and Rigot [3], the
authors of the present paper proved (1.1) on H", see [4, 5|, where the Heisenberg distortion
coefficient 7271 : [0, 27] — [0, 00] is defined by

S

2n—1 1
1 [(sin% )\ 2n71 [sin 28— 9 cos &\ 2nt1 .
§2nF1 ( 2 > (% if 6 € (0,2m);

sin 3 sin 2 —3 cos 5

2n+1 _ on 2 272 2
T 0) = e it 0—o: (1.2)
+00 if 6=2m,

2 :
and 0 = 0, is the "vertical’ derivative of M at the point x.

In the present paper we prove a Jacobian determinant inequality on corank 1 Carnot
groups where the sub-Riemannian geometry is more complicated than the one of the model
Heisenberg group H™ due to the presence of abnormal geodesics and the ’anisotropic’ structure
of the cut locus. Our method is different from the one in [4, 5] as we obtain the Jacobian
determinant inequality by an intrinsic approach, without using a Riemannian approximation.
As in [4, 5], we apply our Jacobian determinant inequality to establish various functional and
geometric inequalities in the present setting including entropy, Brunn-Minkowski and Borell-
Brascamp-Lieb inequalities. These results should open up the way to considering the above
inequalities in a broader context outside the realm of C D(K, N)-type conditions by replacing
the coefficients 7K by expressions that are suitable for sub-Riemannian geometries. In this
way, our results motivate the so-called ”grande unification” of the three main geometries
(Riemannian, Finslerian and sub-Riemannian), suggested by C. Villani in [23, p. 43].

In order to present our main result, let us fix some notation. We denote by G a k + 1
dimensional corank 1 Carnot group with its Lie algebra g = g1 & go, where dimg; = k > 2
and dimg, = 1. The operation on g (in exponential coordinates on R* x R) can be given by

k
1
zoy= (xl YL Tk YR T Y 5 ) Aijxjyi> :

ij=1

where © = (21, ..., 25, 22), Y = (Y1, .-, Uk, ¥2), and A = [A;;] is a k x k real skew-symmetric
matrix. Let e = (Oge,0) € R¥ x R be the neutral element in (G, o). The layers g, and g, are
generated by the left-invariant vector fields

k
1 Z ,
Xi = &Cl - 5 < Aijxjﬁz, 1 = 1, ceey k. (13)
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Moreover, [X;, X;] = A;;0,. By the spectral theorem for skew-symmetric matrices one can
consider the diagonalized representation of A given by

Or—24 O
arJ 0 1
A= ) - , (1.4)

O -1 0

where 0 < a1 < ... < ag, and 0y_y4 is the (k — 2d) x (k — 2d) square null-matrix; from now
on, we assume the matrix A has this representation.
For further use, let us introduce the functions dy, ds : [0,27] x (0,1) — R given by

in(ts/2 in(ts/2) —ts/2 ts/2
4t s) sin(ts/2) and da(t, s) = sin(ts/2) — ts/2 cos(ts/ )
To define the distortion coefficient, we introduce the set

s
k+1 2m %
D=<p=(ps,p.) €ER" :|p,| < — and Ap, # Orr p C T/ G,
%)

OédJ

where p, = (p2,p}, ..., p4) € RF21xR?x ... xR?, and let D be the closure of D. The distortion
coefficient TH* : D — R on the Carnot group (G, o) is defined by

d =y
D PSP T [ df (yps, s)di (cup:, s)da(cip-, )

$ T = it peD&p,#0;

Th(p) = Z Ip|1? Hd%(ajpm 1)d1(aipz, 1)da(ip2, 1)
wlzl JF

Sk+1 if peD &p,=0;

+oo if  Apy # Oge & |p2| = 2

§ if Apz = Ogk,

where p = (p,,p.) and o = (ayq, ..., aq). The functions d; and dy appear explicitly in the
Jacobian of the exponential map, see (2.5) below. In fact, dy is a typical sub-Riemannian
function appearing once after differentiating the exponential map along the ’vertical’” direc-
tion, while d; appears on the diagonal of the Jacobian matrix with multiplicity 2d — 1, see
also Rizzi [18].

Let us consider two compactly supported probability measures pg and gy on G which
are absolutely continuous w.r.t. LF¥!.  Since the distribution A = {X,..., X} on the
corank 1 Carnot group G is two-generating, there exists a unique map realizing the optimal
transportation between the measures o and p; w.r.t. the cost function d%./2, see Figalli
and Rifford [11, Proposition 4.2 and Theorem 3.2]; this map can be defined pg-a.e. through
a d,/2-concave function ¢ : G — R as

exp,(—Ve(x)) if xe M,Nsu ;

() = { P (=Ve(z)) i o (1 supp(4o) (1.5)
x if eS8, Nsupp(uo).

Hereafter, doc is the Carnot-Carathéodory metric on G and the sets M, and S, denote

the moving and static sets of the transportation, respectively; see Section 2 for details. For

s € (0,1) fixed, we also introduce the s-interpolant optimal transport map as

_ ) exp(=sVp(x)) iz e My N supp(uo);
Vs(w) 1= { x if ze S;r?w supp(uo)o. (1.6)

Our main result reads as follows.

Theorem 1.1. (Jacobian determinant inequality on Carnot groups) Let (G,o) be a
k+1 dimensional corank 1 Carnot group, and assume that py and py are two compactly sup-
ported Borel probability measures on G, both absolutely continuous w.r.t. LK1, Let s € (0,1)
be fixed, v : G — G be the unique optimal transport map transporting po to py associated to
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2
the cost function dCTC and Vg its s-interpolant map. Then the following Jacobian determinant
inequality holds
1

(Jac(,) (@) =T = 78%(8,) + 75(8,) (Jac(¥) ()= for po-a.e. z € G, (1.7)
where 0, = (ps,p.) € T*G is given by exp,(0,) = v o 9(x).

Let us notice that if p = (p,, p.) € D, we have that

(p) = st and  lim T (p) = +o0.

lim 75
pz—0 p—E27 /g

Furthermore, monotonicity properties of the functions d; and dy (cf. [5, Lemma 2.1]) show
that

T (p) > sk for all s € (0,1), pe D. (1.8)
Therefore, the measure contraction property MCP(0, k + 3) proved by Rizzi [18] is formally
a consequence of (1.7). Notice, however that we use Rizzi’s result to prove the absolute
continuity of the interpolant measure ps = (vs)xpo (see Proposition 2.4), needed in the
proof of the Jacobian determinant inequality.

In our next remark we consider the situation when G = H" is the n-dimensional Heisen-
berg group. In this case we have k = 2n = 2d and «a; = 4 for every i € {1,...,d}. Moreover,
no abnormal geodesics appear in H® and the Carnot distortion coefficient 72"%(p,,p.) re-
duces to the Heisenberg distortion coefficient 72" (4p,), which is nothing but relation (1.2)
(introduced in [5]). Thus, most of the results of [5] will be covered in the present work.

Let us notice furthermore, that in general corank 1 Carnot groups, the coefficients 75
and Tff’; depend not only on the parameter p, (as in the Heisenberg group) but also on
Ip|l, i € {1, ...,d}, showing a more anisotropic character of the present geometric setting as
compared to the Heisenberg group. As we shall see later, |[p’]| and p. can be obtained by
differentiating M at the point  w.r.t. the horizontal vector fields from the distribution
A and the vertical vector field 0,, respectively (see Lemma 2.2 below).

Our final remark is of technical nature, but the details will be clear by reading the proof of
Theorem 1.1. In this proof, we shall distinguish the cases when the mass is transported along
abnormal and strictly normal geodesics, respectively. On one hand, when the mass transport
is realized along abnormal geodesics, it turns out that the Jacobian determinant inequality
reduces to an Fuclidean-type determinant inequality thus the distortion coefficient can be
78 = 5 as in the Euclidean framework. We notice that in this case the full Jacobian matrix
of 1, might not exist; however, since the matrix has a triangular structure, the Jacobian can
be reduced to two parts of the diagonal which are well defined and inequality (1.7) makes
sense. Furthermore, the triangular structure of the Jacobi matrix will allow us to perform
the necessary changes of variable in order to provide important applications (see e.g. the
entropy and Borell-Brascamp-Lieb inequalities via a suitable Monge-Ampere equation). On
the other hand, once the mass transport is along strictly normal geodesics, the distortion
coefficient 7% encodes information on the genuine sub-Riemannian character of the Carnot
group obtained by a careful analysis of the Jacobian for the exponential map. It could also
happen that a positive part of the mass is transported along abnormal geodesics while the
complementary mass is transported by strictly normal geodesics, so different formulas for
78 will be used in the same instance of the mass transportation; such a scenario will be
presented in Example 3.1 (see also Figure 2). In conclusion, our results can be applied also in
the presence of both abnormal and strictly normal geodesics in the so-called non-ideal sub-
Riemannian setting. Similar result in the case of general ideal sub-Riemannian geometries
have been recently obtained by Barilari and Rizzi [6].

The organization of the paper is as follows. The proof of Theorem 1.1 will be provided in
Section 3 after a self-contained presentation of the needed technical details in Section 2, i.e.,
properties of the Carnot-Carathéodory metric doe, exponential map and its Jacobian, the
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cut locus, and the optimal mass transportation on corank 1 Carnot groups. We emphasize
that the optimal mass transportation developed by Figalli and Rifford [11] for large classes
of sub-Riemannian manifolds cannot be directly applied since the squared distance function
dZ is not necessarily locally semiconcave outside of the diagonal of G x G which is crucial
in [11] (e.g. the regularity of optimal mass transport maps ¢ and v, or the validity of
the Monge-Ampere equation). Section 4 is devoted to applications, i.e., by the Jacobian
determinant inequality we shall derive entropy inequalities, the Brunn-Minkovski inequality
and the Borell-Brascamp-Lieb inequality on corank 1 Carnot groups.

Acknowledgements. We express our gratitude to Luca Rizzi for motivating conversations
about the subject of this paper. A. Kristaly is grateful to the Mathematisches Institute of
Bern for the warm hospitality where this work has been developed. We also wish to thank the
anonymous referees for their detailed reports and valuable comments that greatly improved
the presentation of the manuscript.

2. PRELIMINARIES

2.1. Carnot-Carathéodory metric and energy functional on corank 1 Carnot groups.
We shall consider a corank 1 Carnot group (G, o), and make use of the notations already
introduced in the previous section. A horizontal curve on (G, o) is an absolutely continuous
curve v : [0,7] — G for which there exist bounded measurable functions w; : [0,7] — R
(j =1,...,k) such that

Y(s) = Zuj(s)xj(y(s)) a.e. s €[0,7]. (2.1)

In the sequel we denote by =, such a horizontal curve. The length of this curve is given by

The classical Chow-Rashewsky theorem assures that any two points from the Carnot group
can be joined by a horizontal curve. Thus we can equip the Carnot group G with its natural
Carnot-Carathéodory metric by

deo(z,y) = inf{l(v) : 7 is a horizontal curve joining x and y},

where z,y € G are arbitrarily fixed.
Let e = (Ogx,0) € R* X R be the neutral element in (G, o). The left invariance of the vector
fields in the distribution A = {Xj,..., X} is inherited by the distance d¢¢, thus

1

deo(z,y) = dec(e,x™ oy) for every z,y € G.

Beside the length function u — [(7,) we also consider the energy functional

Tw) =5 / Iu(s) s = / iuﬁs)ds.

It is well-known that the minimisers of J induce up to a reparametrisation length minimising
horizontal curves with constant speed between two fixed endpoints.

2.2. Geodesics, exponential map and its Jacobian. Geodesics are horizontal curves
that are locally energy minimizers between their endpoints. Let & C L*([0,r],R¥) be an
open set and for a fixed z € G, let E, : Y — G be the usual end-point map, E,(u) = v,(r),
where 7, is the unique curve with the property that 7,(0) = x and satisfying (2.1) see e.g.
Figalli and Rifford [11, §2.1]. A minimizing geodesic 7, for u € U is a solution of the problem

J(v) - min, E,(v) =y, veEU.
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According to the Lagrange multipliers rule, there is (A, i) € TG x {0, 1} \ {(0,0)} such that
ADuE,) = Dy .

The associated curve 7, is normal if = 1 and abnormal if i = 0 (the latter being equivalent
to the fact that u is a critical point of E,). We notice that on any corank 1 Carnot group
all minimizing geodesics are normal. Following Rizzi [18], the explicit form of such normal
minimal geodesics can be described as follows.

Proposition 2.1. (Rizzi [18]) On a corank 1 Carnot group (G, o) the geodesic s — exp,(sp) €
G starting from e = (Oge,0), with initial covector

p=ph,..plp.) € (R xR*x ... xR*) x R=TG
M_/

Pz
has the following equation
7°(s) = piis,
eXpe(Sp) : 77,(5) _ (smg{ ;I:ZS)I + cos(a zf;’zzs) J) Dy, s € [O, 1]7 (22)

12(s) = Yo [P ouppeintenes)

when p, # 0. When p, = 0, the geodesic is
5 7 exp(sp) = (035,055, -, 035, 0), s €[0,1]. (2.3)

Hereafter, I denotes the 2 x 2 unit matriz and J = {_01 (1]] .

Once A has a non-trivial kernel, every nonzero covector (p,, p,) with Ap, = 0, corresponds
to an abnormal geodesic; more precisely, for every choice of p, € R one has

s+ exp, (25,0, ...,0,p.5) = (p°s, 0geas1), s € [0,1]. (2.4)

Note that the image of such a geodesic can be also obtained by (2.3), letting p, = 0 and
pl = ... =p? = Oge. These type of geodesics are normal and also abnormal at the same time.
It turns out that all abnormal geodesics have this representation.

We recall from Rizzi [18] that the Jacobian determinant of the exponential map is

(

2 .
Hi_ 2 p2d+2 Z ||pm||2 jl;[Z <s1n > sin Oz;pZ y
e X (sin 8= — S cos 59=) i p. A0 (o5
d
5 IplPof .
i=1

By left-invariance, the minimal geodesics on G starting from an arbitrary point x € G are
represented by s — exp,(sp) = z oexp,(sp), s € [0, 1], where the two covectors p € TG and
p € TG can be identified. Moreover, since for every « € G the left-translation L,(y) = z oy,
y € (G, is a volume-preserving map, it follows that

Jac(exp,)(p) = Jac(exp,)(p) for every p € T, G. (2.6)

Given z,y € G and assume that = exp,(p) for some p = (ps,p.) = (P2, Py, .., L. p2) €
T;G. Then y = exp,(p), where p = (B3, By, -, P}, P.) is given by

0
7., = (— cos(a;p.)I + sin(ayp,)J) pL, i€ {1,...,d}; (2.7)
pz = —D:.
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We notice that A = {Xy,..., Xi} is not a fat distribution whenever the kernel of A is
non-trivial. Indeed, in this case we have T,G # A(x) + [X;, A](z) for every x € G and
j€{l,...k—2d}. However, A is two-generating, i.e.,

T.G = A(x) + [A, Al(x) for every z € G.
For simplicity of notation, we reorganize the vector fields in 7,G as
XO (Xl,...,Xk,Qd);
X' = (Xp—oat2i-1, Xp—2at2:), @ € {1, ..., d}; (2.8)
Z =0,.
We split the distribution A on G into two types of vector fields; namely, Ay = {X°} and

A = {X', .., X%, This splitting gives the following trivial representation of the distance
function doc:

Lemma 2.1. (Pythagorean rule) For every (&,71,2), (€,7,%) € RF24 x R¥ x R, we have
déc((€7n>z)7(gvﬁuz)> Rk 2d<€ £)+d (( )><ﬁ72>)7

where dgr-24 is the Euclidean metric in RF2¢ while dec is the Carnot-Carathéodory distance

on R2 xR w.r.t. to the distribution A inherited from the original sub-Riemannian structure.

Proof. By the left-invariance of the metric do¢, we have

d%c’((£7 7, Z)’ (E? ﬁ? 2)) = d%‘C(€7 <_£7 -, _Z) © (E? ﬁ? 5))
Let v = (7%7% ..,7%7.) ¢ | ;1] — G be the geodesic given by (2.2) or (2.3) joining e
and the element (—&,—n, —2) o (§,7,%), having its initial vector p = (p2,pl,...,p%, p.) €
RF2d % R?2 x ..+ x R®xR. We have that dZ.((n, 2),(€,7,%2) = 30, Ipi||*> Note that
Hpg”Rk—Qd = de—zd(f,f) and

d
D 1Ll = dec (e, (Omn-2a, =, —2) © (Ope-24,77, 7)) = dec((n, 2), (7, %))
i=1

which is realized precisely by the geodesic 5 = (v, ...,v%,.), concluding the proof. U

2.3. Cut locus. Let us consider the set
2
D = {p = (ps,p-) €R"' i |p.| < a—ﬂ and Ap, # ORk} C TG,
d

Rizzi [18, Lemma 16] proved that D is precisely the injectivity domain of parameters asso-
ciated to geodesics joining the origin e to almost all points of G. We know that all points
in the corank 1 Carnot group GG can be reached by a minimal normal geodesic; namely, for
every x € GG there exists a parametrization p in the closure of D, i.e.,

9
D:{pz(m,pz)GRkﬂil |<_7T}’
Qg

which defines a minimal normal geodesic joining e and .
The cut locus of the origin e in G is

cutg(e) = exp.(D\ D) =G\ exp.(D)
= (R x {Ogear1}) U {expe ( - Zd) Ap, # ORk} :

The set R¥=24 x {0g2a+1} in the above representation corresponds to the image of abnormal
geodesics while the latter set contains the conjugate points to e, see (2.5). Corank 1 Carnot
groups have negligible cut loci, see Rizzi [18, Section 1.4]; alternatively, due to (2.2), one has
that cutg(e) C R¥"2 x Oge x R, thus £ (cutg(e)) = 0. By left-invariance, the cut locus of
the point x € G is

cutg(x) = Ly(cutg(e)),
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thus cutg(z) is closed and £¥(cutg(z)) = 0 for every z € G; moreover, by (2.7) it follows
that y € cutg(z) if and only if x € cutg(y).

The following two results are specifications to the case of corank 1 Carnot groups of the
well-known fact f := dZ.(y,) is smooth in a neighborhood of x € G whenever z ¢ cutg(y),
and one can recover the initial covector A, € T, G of the unique geodesic joining x with y by
A = =V f(z).

Lemma 2.2. Fizy € G and let x = (20,21, ..., 2%, 2) ¢ cutg(y). Ifz = expy(pg,p;, s pd )
then we have
> (. 2 (.
(i) X0 dcc2(y7 ) ’x _ pg and chc2(y7 ) ’z = p.;
(ii) for everyi e {1,...,d},
A2, (y. - ‘
XZ%L = [cos(a;p.)I — sin(a;p,)J|p.. (2.9)

Proof. By exploring the left-invariance, it is enough to consider the case when y = e. Let
us introduce the auxiliary functions f, g : (—=2m,27) \ {0} — R defined by
t — sin(t)

sin® (%)

in? (L
f) =218 g () =
(3)
We consider the case when p, # 0; the case p, = 0 can be obtained by a limiting procedure,
i.e., one must consider the limit p, — 0. Since x ¢ cutg(e) and the cut locus is closed, there
exists a small neighborhood V,, of z such that V,Ncutg(e) = 0. Let w = (2%, 2L, ..., 2%, 2,) =

w w? ) w?

expe ((Pw)ds (Puw)ts s (Pw)?, (Pw):) € Vi be arbitrarily fixed. By (2.2) (for s = 1) we have

that ' '
23,17 = 11(Pw)s I f (i(puw)2), @€ {1, ..., d}.

t € (—2m,2m) \ {0}. (2.10)

Thus, one has

el
déc (e, w) Z [(w)5l? = Nl )1 + Z 7 (2.11)

azpwz

(i) By (2.11) we directly have that XO%d% (e, ) ‘x =2 0. Furthermore, the last component
n (2.2) can be written as

;i (pw). — sin(a; (pw)»)
Zn pepal Zaznx Pofastpa).). (212
12

i((pu)2)*

We may dlfferentlate (2.11) and (2.12) w.r.t. the variable z, at the point z, obtaining

d

Z(decle, )], = = 3 ol P o (Z(pu):]) ond 1= ¢ Zof’nx g/ () (Z(pu) )

Note that —fQ(t)) = L¢/(t); thus, the latter relations give at once that Z(dg (e, )){m = 2p..
(ii) In order to prove relation (2.9) we proceed in a similar way as in (i), by deriving (2.11)
and (2.12) w.r.t. the corresponding variables. O

A direct consequence of Lemma 2.2 is:

Proposition 2.2. Fiz z,y € G such that y ¢ cutg(z). If V = (X% X ..., X4 7), then

y = exp, (—V%\w) . (2.13)

Proof. Let x = exp,(p) for some p = (p,,p.) = (P2, pL,....,p% p.) € D. According to
Lemma 2.2, we have that

T = (ﬁ?ﬁi7 "'aﬁﬁ?ﬁz)7
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where
P = —1%; A
Pt = —[cos(ayp,)I — sin(a;p,)J]pL, € {1,...,d};
ﬁz - _pZ'

Thus, by relation (2.7) it follows that

d2 Yy, 0 — —d —
exp, (—V%}z) = exp, (P2, Dy, - Doy D.) = U,

which concludes the proof. Il

2.4. The Jacobian of the exponential map along a reversed geodesic. Let z,y € GG
be such that z ¢ cutg(y) and « : [0,1] — G be the unique geodesic y(s) = exp,(sp) joining
x and y for some p € D. For every s € (0,1], let us introduce the Jacobian matrix

Y (s) = d(exp,)sp-

According to (2.5), the matrix Y'(s) is invertible for every s € (0,1]. In the sequel, we are
going to consider the reversed geodesic path s — exp,((1 — s)p), s € [0,1], where exp,p =
and compute the ‘reverse’ of Y, i.e.,

Y(1—s)=d(exp,)u-sp s €1[0,1). (2.14)
Here, p € T;;G' is given by p € T;G similarly as in (2.7). With these notations, we have

Proposition 2.3. Let z,y € G be such that x ¢ cutg(y) and v : [0,1] — G be the unique
geodesic y(s) = exp,(sp) joining x and y for some p € T G. For every s € (0,1), one has

— 1
Y(l—s)zl_s

Y (s)H,,(s)Y (1), (2.15)

where

d2 . dQ .
Hyy(s) = HeSSMLﬁ - SHess%‘x'
In addition, H,,(s) is a positive semidefinite, symmetric matriz.

Let us note that in the above statement Hess = V? denotes the (a priori not necessarily
symmetric) Carnot Hessian, i.e.,

X1 X7 X1 Xe .. XX, X7
Xo X7 XoXo .. XoXp XoZ
Hess = : : : :
X Xp X Xo ..o XXy XiZ
ZX1 ZXy .. ZXy ZZ
This notation will be used also later on.

A similar result to Proposition 2.3 has been proved by Cordero-Erausquin, McCann and
Schmuckenschldger [9] on Riemannian manifolds by exploring properties of Jacobi fields.

Since the theory of Jacobi fields in our setting is not (yet) available, we give a direct proof
of Proposition 2.3. To do this, we need the following:

Claim 2.1. Let m € N, ¢,n; : [0,1] — R™, i € {1,2}, be some differentiable maps with
n2(0) = 0 and a smooth function F : R*™ — R™ in a neighborhood of (c(0),n1(0)) such that
t— F(c(t),m(t)) is constant near the origin. Then

d

S E(e(t),m(#) + ma(t))li=o = D2 F(c(0), m(0))i1(0).
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Proof. By assumption, we have near the origin that

0= %F(C(t), m(t)) = DiF(c(t), m(t))é(t) + Dok (e(t), m(E))in(t).

By using the latter relation at t = 0 and 79(0) = 0, we obtain

%F (c(t), m(t) +n2(t)le=0 = D1F(c(0),m(0))é(0) + D2 F(c(0),71(0))(111(0) + 12(0))
= Dy F(c(0),m(0))72(0),
which completes the proof. O

Proof of Proposition 2.3. We first deal with the properties of the matrix H, ,(s). By pure
metric arguments, one can check that for every z € G and s € [0, 1] we have the inequality

Mg, (2) == dic(V(s),2) /2 = sdgc(y. 2)/2 + (1 = s)dgc(x,y) /2 > 0. (2.16)
In the Riemannian setting this has been established first by Cordero-Erausquin, McCann
and Schmuckenschldger [9, Claim 2.4]. Moreover, in (2.16) equality is realized precisely when
z = x; the same proof works in our setting as well.
Since v((0, 1]) Ncutg(z) = 0, it follows that z — mj ,(z) is twice differentiable at x (see
Proposition 2.2) and its gradient is

s dz Y\S)s - d Y, -
Gty O = OO ) g -
while its Carnot Hessian V?mj, ,(-)|. = Ha,(s) is positive semidefinite.

In order to prove the symmetry of H, ,(s), we verify that the Lie brackets [Wy, Wams  (+)].
vanish for every choice of Wi, Wy € AU{Z} = {X, ..., X}, Z}. Indeed, the Lie bracket is
either trivial by definition or it is Zm;  (-)|. up to a multiplicative constant (depending on
the eigenvalues o, i € {1,...,d}); but Zm] (-)|. = 0 due to (2.17).

We now prove relation (2.15). Since x ¢ cutg(y) and cutg(y) is closed, one may fix
a curve ¢ : [0,1] — G with ¢(0) = 2 and ¢(0) = w € T,G arbitrarily fixed such that

c([0,1]) Ncuta(y) = 0. We notice that s +— exp,, (—sv—décz(y") |C(t)

minimal geodesic joining ¢(t) and y; indeed, for s = 0 we have ¢(t), while for s = 1 one has
precisely y due to Proposition 2.2, see Figure 1. Moreover, by construction, it turns out that
7(s) ¢ cutg(c(t)) for every ¢, s € [0, 1].

) =:7(s) is the unique

e(1)

.. 2,0(y,
el S expyy (—SV%MQ)

x = ¢(0)

FIGURE 1. The curve ¢ (starting from ), connected by geodesics with the point y
Let p: [0,1] — T,G be a curve such that

eXPy 1) (—SV%‘C&Q = expy((l — s)p(t)). (2.18)
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Let us observe that by (2.18) for s = 0 we have
c(t) = exp, (p(t)) for all t € [0,1].
In particular, for t = 0 we have that z = ¢(0) = exp,(p(0)), i-e., p(0) = p and due to (2.14),
).

w = &(0) = dlexp, o (0) = d(exp,)H(0) = T(1F(0 (219)
Fix s € (0,1). Now, we rewrite (2.18) into

exXp(py (M (t) + n2(t)) = exp, ((1 = s)p(t)), (2.20)
where
i) = ~v )| g gy = vlee)) g leclnd)

We are going to verify the assumptions of Claim 2.1 for the latter choices. First, due to
Proposition 2.2, one has t + exp.(ni(t)) = 7(s) =constant, and due to (2.17), we also

have 75(0) = 0. Since we have 7;(0) = —Vw .» by Proposition 2.2 one has that

exp,(n5(0)) = v(s) which is nothing but v(s) = exp,(sp); thus 1{(0) = sp. Consequently, by
differentiating relation (2.20) at ¢t = 0 and using Claim 2.1 with F(q1,q2) = exp,, (¢2) which
is smooth around the point (¢(0),7;(0)) = (x, sp), we obtain

d(exp () s 0775 (0) = (1 — s)d(exp,) 1—s)p0)P(0).
Moreover,

2

Finally, we recall by (2.19) that w = ¢(0) = Y(1)p(0) and due to (2.5), Y(1) is invertible.
Putting together the above computations, we have

n5(0) = {HQSSW‘I - SHGSSM‘I} ¢(0).

Y (s) [Hess%‘m — sHessMb} w=(1-35)Y(1—-sY(1)  w.

Due to the arbitrariness of w, the claim (2.15) follows. O

2.5. Optimal mass transportation on corank 1 Carnot groups. We first recall some
facts from Figalli and Rifford [11]. A function ¢ : G — R is ¢ = d%,/2— concave if there exist
a nonempty set S C G and a function ¢°: S — RU {—o0} with ¢° # —oo such that

oa) = int { Seclon) - 00}

yes

If p is a d%/2—concave function, let

op(e) = {u € S ola) 4 0) = 5belon

be the c-superdifferential of ¢ at x. For such a function ¢, let
My={reG:2¢0%)} and S, ={r e G:zec %)}

be the moving and static sets, respectively.

Let us fix pg and py two compactly supported probability measures on G which are abso-
lutely continuous w.r.t. L1, According to [11, Theorem 2.3], there are two d2/2-concave,
continuous functions ¢, ¢ : G — R such that

p(r) = min {ld%c(%y)—sf(y)} and ¢°(y) = min {%d%c(x,y)—w(x)} (2:21)

yesupp(p1) | 2 z€supp (ko)
and the optimal transport map is concentrated on the c-superdifferential of ¢. Since the
distribution A on the corank 1 Carnot group G is two-generating, it follows that d% is
locally Lipschitz on G x G, see Agrachev and Lee [2, Corollary 6.2] and Figalli and Rifford
[11, Proposition 4.2, p. 136]. Therefore, applying the version of [11, Theorem 3.2, p. 130]
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with the weaker assumption for dZ. of being locally Lipschitz, there exists a dZ/2-concave
function ¢ : G — R given by (2.21) such that M, is open and ¢ is locally Lipschitz in a
neighborhood of M, Nsupp(u), thus po-a.e. differentiable in M. Furthermore, for z-a.e.
x, there exists a unique optimal transport map defined pp-a.e. by

_ e, (=Ve(z)) if e M,Nsupp(uo);
V(@) = { x if ze S;FW Supp(uo)o, (2:22)

and for pg-a.e. x there exists a unique minimizing geodesic joining = and ¢ (x) (or, equiv-
alently, joining the element e with 27! o ¢(z)). Hereafter, V = (X° X1, ..., X% Z) is the
Carnot gradient and exp,(:) = = o exp,(+).

We notice that one cannot apply directly [11, Theorem 3.5, p. 132] of Figalli and Rifford
to deduce the absolute continuity of the Wasserstein geodesic between py and gy since in
our case the semiconcavity assumption does not hold; however, we can recall the first part
of their proof to conclude (based on [11, Theorem 3.2, p. 130] and [22, Corollary 7.22]) that
there is a unique Wasserstein geodesic (fis)scjo,1) joining po and g, given by the push-forward
measure f1; = (1) ypo for s € [0,1], where

_ [ e, (=sVe(2)) if 2 e Mg Osupp(uo);
Vs(w) 1= { x if ze S;rjw supp(,uo)o. (2.23)

The absolute continuity of the Wasserstein geodesic pi5 follows by the main result of Cavalletti
and Mondino [8] (valid for essentially non-branching metric measure spaces) which can be
state as follows:

Proposition 2.4. (Cavalletti and Mondino [8]) Let s € (0,1). Consider the notations in-
troduced above and the assumptions of Theorem 1.1. Under these conditions the interpolant
measure ps = (Vs)upto s absolutely continuous w.r.t. LEHL

Before the proof of our main theorem in the next section let us indicate a technical difficulty
that we need to address in the proof. This consists of the fact that in our setting the potential
¢ generating the optimal transportation map v via (2.22) is not locally semiconcave (see
Cannarsa and Sinestrari [7]) but only locally Lipschitz. Due to the lack of semiconcavity we
do not have an Aleksandrov-type second order differentiability for ¢ and consequently, thus
we do not know if ¢ is differentiable almost everywhere. This regularity issue appears when
we consider the transport of the mass along abnormal geodesics.

3. PROOF OF THE JACOBIAN DETERMINANT INEQUALITY (THEOREM 1.1)

Let s € (0,1). We shall keep the previous notations. The proof is divided into two main
parts: the static and moving cases, respectively. The latter case is also divided into two parts
depending how the mass is transported, i.e., along abnormal or strictly normal geodesics.

3.1. Static case. We assume the static set S,,Nsupp(py) = {z € supp(o) : © = ¥(x)} has a
positive po-measure. Note that 15(x) = = for every x € S,. If we consider the density points
of S, we have that Jac(¢)(x) = Jac(¢)(z) = 1 for pp-a.e. x € S,. (Here, again Jac(y))
and Jac(1s) denote the densities of ;¥ and 4 L¥ wrt. £5F1) Note that for z € S,,
we have that exp,(0,) = 271 o(z) = e, ie., 0, = (ps, p.) = (Ogk,p.) for some p, € R, thus
Ap, = Oge. Therefore, by the definition of the distortion coefficient, we have 75%(6,) = s

and 77°%(0,) = 1 — s, which concludes the proof of (1.7).

3.2. Moving case. We now assume that the moving set M., N supp(po) has a positive po-
measure. Due to (2.22), there exists a null £F-measure set Cy C M, Nsupp(io) such that
for every x € S := M, Nsupp(po) \ Co the function ¢ is differentiable at x, the points = and
¥(x) can be joined by a unique minimizing geodesic and ! o ¢ (z) = exp,(—V(z)), where

Vo(z) = (P2 p2),
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with
e = (X°(2), X'p(2), ..., XYp(2)) and p, = Zp(). (3.1)
Let
So={x €S : Ap, = Ogr, where p, is from (3.1)}, (3.2)
and

S1=8\5 ={xe€S: Ap, # Ogr, where p, is from (3.1)}.

We distinguish two cases.

3.2.1. Moving along abnormal geodesics. We assume that 1o(Sp) > 0. In terms of vec-
tor fields, the fact that Ap, = Ogr with p, = (X% (z), X1p(x), ..., X%p(x)) implies that
Xlp(z) = ... = X%(z) = Oge for a.e. z € Sy. According to the explicit form of geodesics,
see (2.3), we have

bs(x) = woexp,(—sVp(r)) =z 0exp,(—sX%(z),Opea, Zp(x))
= z0(—sX%(x),0g2a11)

= (21— 805,0(x), ooy Th—2d — SOz, 0(T), Th2d11, -y Tk, 2), (3.3)

for a.e. x = (x1,..., 2k, 2) € Sp. In a similar way, one has

(@) = (21 = Doy p(2), oos Th2d = Dy P(T), Thm2d1s ooy Ty 2), (3.4)

for a.e. = (x1,...,xp,2) € So.

We divide the proof into three steps.

Step 1: (-, 1, 2) is das—.a/2-concave on R¥=2% for every (n,z) € R* x R fized, i.ce., for
some set S C R*24 and function ¢, . : R¥"** — R, one has

62 = int Sk ul€.8) - 000 ).

£es

Since ¢ is d%/2-concave on G, one has by (2.21) that for every (§,n, z) € RF2% x R% x R,

o€n2)=  min {1d2cc<<a,n,z>,<z,ﬁ,z>>—w@,ﬁ,a}.

(Eaﬁvi)esupp(,u‘l) 2

Let 7 : RF=24x R?4 x R — R*~24 bhe the projection 7, (€, 7, Z) = €. For every € € 7y (supp (1)),
let us introduce the compact set

e = {(7,7) € R** x R: (£,7,%) € supp(1u1)}.

Let us fix (n,2) € R* x R. We notice that the function ¢, . : m (supp(p1)) = RU {—o0}
defined by

0e(®) = o {€09) - S5,

(m2)€llg

is well defined and ¢, ., Z —o00. Since

supp() = | (€ T0g),

£em (supp(p1))
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by the Pythagorean rule (see Lemma 2.1) we have that for every & € RF=24,

dens) = min i {Sde(En ) En2) - En)

gemi(supp(p1)) (M2)€llg

1 - 1= -
= min min {—d%km(g,g) + §d%’0((77a Z)v (ﬁa E)) - @C(gaﬁa z)}

ey (supp(p1)) (ﬁ,E)EHE 2
. L, (1, o
- 11T _de72d (5’ 6) + min §dCC((T/7 Z)a (777 Z)) - (6 Z)

= 1,
€emi (supp(m)) | 2 (7.2)€llg
_ 1 _ _
" Zem (suppli )>{5dak2d(£’€)_¢"’Z(€)}’
1 (su 1

which concludes the claim.

Step 2: For a.e. x = (&§,1n,2) € Sy one can identify the Jacobian determinants Jac(is)(z)
and Jac(y)(z) with det[Iy_oq— sHesse(¢)(x)] and det|[I;_oq —Hesse(¢)(x)], respectively, where
Ii—oq is the (k—2d) x (k—2d) unit matriz and Hesse¢ () (€, n, ) is the usual Euclidean Hessian
of the function ¢(-,n,z) at the point &.

€12 20
2

By Step 1, the d2,_,./2-concavity of (-, 7, z) is equivalent to the convexity of £ —
©(&,m,z) on RF=24_ In particular, by the Aleksandrov’s second differentiability theorem, the
latter function is twice differentiable a.e., and its Hessian I_oq — Hesse¢ () (&, n, 2) is positive
semidefinite and symmetric for a.e. £ € R¥=2%; the same is true for I_sq — sHess¢ () (€, 7, 2),
the latter being the convex combination of the positive semidefinite and symmetric matrices
Ij—oq and Ij_o4 — Hesse () (€, 1, ), respectively.

By (3.3) —if it exists— the formal Jacobian of ¢, for a.e. x = (£, 7, z) € Sy has the structure

{As@:) Bs<x>1 |

0 I2d+1

where Ay(z) = Iy_oq — sHesse(¢) (€, 7, 2). Note however that By(z) might not exist since we
have no information on the differentiability of 0;¢(¢&, -, ), i € {1, ...,k — 2d}. We shall explain
below that the existence of Bs(z) is not relevant as far as existence of the global Jacobi
determinant as density is concerned.

Observe first that due to Proposition 2.4, the interpolant measure us = (1s)4po is abso-
lutely continuous w.r.t. L1 let p, be its density function. Since the corank 1 Carnot group
(G, dcc, L8 is a nonbranching metric measure space, both ¢ and 1), are injective maps
on a set of full measure of supp(so). Thus, the push-forward measures ps = (¢5)xpo and
t1 = Yupo and standard changes of variable should provide the Monge-Ampere equations

po(x) = ps(Ps(x))Jac(es)(x) and po(x) = pi(¢(x))Jac()(z) for pe-a.e. x € So. (3.5)

However, as we pointed out, the differentials D1 and D1y may not exist on a set S C 5y of
positive measure, which requires a reinterpretation of the Monge-Ampere equations in (3.5);
we shall consider only the first term since the other one works similarly.

First of all, ps = (1s)x o implies

/ hy)dus(y) = / B(ta(2))dpo(2) (3.6)
G G

for every Borel function h : G — [0,00). In particular, for every measurable set S c Sy with
positive measure and Borel function h with supp(h) C 14(S) we have

/G h(y)dus(y) = /G B(y)paly)ALE () = /w o I )

Let 7y : RF72 x R* x R — R**! he the projection m(y) = m2(y1, Y2, ¥s) = (y2,¥s) and for
every (y2,ys) € m2(1s(9)), let Iy, o) = {y1 € R¥2 2 (y1,42,y3) € 1¥5(S)}. Tt is clear that
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Vs(S) = U yo.s)ema (s (8)) UL (wa,s)+ Y2, ¥3); Dy Fubini’s theorem it follows that

/ “ h(y)ps(y)dL (y) = /7r . < /H

We consider the change of variables y = (y1,¥2,y3) = ¥s(x) with = = (£,n, 2z) which shows
through (3.3) that y; = m (¥s(2)) and (ya, y3) = (1, 2). Thus, dLF2(y,) = det[A,(x)]dLF24(€)
and Iy, ) = 7r1(1/15( 2>, 2)) where S, . = {¢€ € RF24 . (¢,5,2) € S}. Moreover, since
T2(15(S)) = ma(S), the latter term in the above relation becomes

/@(é wm>mwx»®ﬂ<nm%ww>awﬁma

which is nothing but

h(y)ps(y)dﬁ’“‘m(yl)> AL (ya, y5).

(y2,y3)

[ et )0 ),

The latter expression, relation

/M%@MM@z/WMmm@M“%)
G S

and (3.6) together with the arbitrariness of h and S C Sy give that

po(x) = ps(s(z))det[As(x)] for pp-a.e. x € Sp.
Consequently, (3.5) enables us to identify

Jac(¢s)(x) := det[Ay(z)] = det[Ix_oq — sHesse(¢) (€, 1, 2)] for pg-a.e. x € Sp.
Step 3: proof of Theorem 1.1 concluded (abnormal mass transportation). Since

Ii—9q — sHesse(¢)(7) = (1 — 8)Ix—2q + 5(Ix—2a — Hesse()(x)),

we may apply the concavity of det(~)ﬁ on the cone of (k—2d) x (k—2d) positive semidefinite
symmetric matrices, obtaining through Step 2 that

[Jac(ws)(:v)]ﬁ >1—s5+s [Jac(w)(a:)]k%d a.e. x € 5. (3.7)

Now, the concavity of the function ¢ — tkk%d,t > 0, gives that

k—2d

[JaC(ws)(iE)]k%l — ([Jac(ws)(g;)]kfw) gy

(1= s+ s Jac()(@)]=) 7
> 1— s+ s[Jac(y)(x)]FT for a.e. x € Sy,

IV

which is exactly the required inequality (1.7).

3.2.2. Moving along strictly normal geodesics. We assume that 10(S;) > 0. The proof will
be divided into four steps.
Step 1: ¢ admits a Hessian for a.e. x € Sj.

It is well known that the Euclidean squared distance function dsz_Qd is semiconcave on RF2¢ x
R¥=24 see Cannarsa and Sinestrari [7]. Moreover, since the distribution A = {X!, ..., X} =
{Xk-2d11, -, X} s fat on R**! according to Flgalh and Rifford [11, Proposmon 4 1, pg.
136], the squared distance function d2, is locally semiconcave on R21 x R%+1\ D, where D
denotes the diagonal of the set R?*! x R+ namely D = {((n, 2), (7,2)) : (1, z) € R* x R}.
Consequently, by the Pythagorean rule (see Lemma 2.1), the squared distance function d%,
is locally semiconcave on G x G\ D, where

D={((&n2),(& nz2): & €R7 (n,2) e R x R} (3.8)
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In order to conclude the claim, we slightly modify the proof of [11, Theorem 3.2]. Namely,
if x € Sy is arbitrarily fixed, we have that Ap, # Oge with p, from (3.1), i.e., (z,¢(x)) ¢ D.
In particular, if © = (&, 7., 2;) and ¥(x) = (&, 1, 2.) then dec((Ne, 22), (0, 21)) =: 74 > 0.
Due to the closeness of 9°¢ on G x G, there exists an open neighborhood V, C M, N

/

supp(po) of x such that dee((Mw, zw), (7, 2.)) > & for every w = (§w, s Zw) € V, and
Y(w) =(€, ., 2,) € O°p(w). Let @, : G — R be defined by

B2 (w) = inf {%d%(;(w,y) — () -y = (& 2) € supD(n1), dec((hus 2), (0, 2,)) > E} |

where w = (&4, N, 2w). Now, the locally semiconcavity of d%. on G x G \ D is inherited by
the d%/2-concave function @, on V,. Moreover, one can observe that ¢, = ¢ on V,, thus ¢
is semiconcave on V,. By the Aleksandrov-Bangert theorem, see [9, Theorem 3.10, pg. 238],
we conclude that ¢ admits a Hessian a.e. on V., concluding the claim.

Step 2: ¥(z) ¢ cutg(x) for a.e. x € S;. We know that ug-a.e. x there exists a unique
minimizing geodesic joining x and v (z), thus ¢ (z) ¢ cutg(z) for a.e. z € 5.

Step 3: ¥ and Y are differentiable a.e. on Sy; moreover, for a.e. x € Si,

dis(x) = Y(s) {Hesswb - sHessgp(x)} : (3.9)
di(z) = Y,(1) [Hess%‘x - Hessap(x)} ) (3.10)

where
YI(S) = d(expx),sv({,(;p), ERS (O, 1].

For the first part, we recall that for every x € Sy,

() = 70 exp.(~Vip()) and vy(z) = 7 0 exp, (—sVea(x)),

see (2.22) and (2.23), respectively. Since (z) ¢ cutg(z) for a.e. = € Sy (Step 2), thus
—Vp(z) belongs to the injectivity domain D of exp,, and ¢ has a Hessian a.e. on Sy (Step
1), it follows that 1) and 14 are differentiable at a.e. z € 5.

In order to prove (3.9) and (3.10), we need a discrete version of Claim 2.1:

Claim 3.1. Letm € N, F : R¥*™ — R™ be a smooth function in a neighborhood of (x,y) € R*™
and {xn}, {yn}, {zn} CR™ be three sequences satisfying the following properties:

(a) lim, o0 ©, = x and x, # x for every n € N;

(b) im,, 0oy =y and F(x,,y,) = F(x,y) for every n € N;

(¢) lim,, 00 2, = Orm and lim,,_, ”mnf’;”Rm =v eR™.
Then . F
lim (n, Yo+ 20) = F(2, ) = DyF(x,y)v. (3.11)
n—o00 |20 — x[rRm

The proof of the claim is left as an exercise to the interested reader.
We shall apply the above claim to prove only (3.9) since the proof of (3.10) works in a similar
way. To do this, without loss of generality, we can fix a Lebesgue density point z € S} in the
differentiability set of ¢, i.e., where ¢ is twice differentiable (thus both V(x) and Hessp(x)
exist).

Since z is a Lebesgue density point of Sj, we can find a linearly independent frame {v; :
i = 1,...k + 1} at z, such that there exist sequences {z,;} C R*!\ cutg(¢s(z)) in the
differentiability set of ¢ such that for every i € {1,....k + 1}:

Tni — T

lim z,,; =z, z,,; # x for every n € N, and lim = v;; (3.12)

n—o0 n—oo ||y — T||gr+1

lim V() = Vip(a): (3.13)
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I [Vd%—c%sw") o — va(xn,i)] - [V—déc(ﬁsm”) . - SVSO(SE)}
111 =
n—00 ||xm — JJHRkH

{Hess%‘x — sHessgp(a:)} vg; (3.14)

hm ws(xn,i) - ws(x)

n—00 "zn,i — :1:]|Rk+1
Fix i € {1,...,k 4+ 1}. We shall apply Claim 3.1 with the smooth function F(w,q) = exp,,(q)
in a neighborhood of the point (z,y) := (z,—sVy(x)) and three sequences x,;, Yn; =
_Vd%c(iﬁs(ﬂﬁ)w)

2 ‘xn,i

Zn,i). According to Proposition 2.2, we have that F(x,;, yn:) = ¢¥s(x) = F(z,y) for every
n € N and lim, oo Yn; = —Vw‘x = —sVp(z) = y. The latter relation and (3.13)
give that lim, oo 2, = —y + sVp(x) = Ogr+1, while (3.14) and (3.12) yield that
d? s .
lim — | Hess co(s(x),-)
n—oo ||xn,z — :L‘||Rk+1 2

Thus, (3.11) together with (3.15) reads as

= ds(z)v;. (3.15)

and 2,,; := —Yni —sVp(2,,;). We clearly have that ¢s(x,, ;) = F(2pni, Yni+

Zn,i

‘m — sHessgp(z)} v; =: v € RFFL,

dips(x)v; = DoF(x, —sVp(x))v = d(exp,)—svip(z) {Hessw|

, — sHessp(z) | v;.
Since span{vy, ..., 511} = R¥"! the latter relation yields (3.9).

Step 4: proof of Theorem 1.1 concluded (strictly normal mass transportation). We recall
by Proposition 2.3 that the Hessian

Hypo)(s) = Hessw ML

isa (k+ 1) x (k+ 1) type positive semidefinite, symmetric matrix. Since
g heltln).)
2 x

a similar argument as in the first part of the proof of Proposition 2.3 and the d%/2-concavity
Sd%c(w(x)v') ‘
2

‘ — sHess
xr

— Vo(x) = O0gr+r for ae. z € Sy,

of ¢ gives that Hes

for a.e. x € Sy. Thus, by the concavity of det(-)ﬁrl on the set of (k+ 1) x (k+ 1) type
positive semidefinite, symmetric matrices one has

. — Hessip(x) is also a positive semidefinite, symmetric matrix

(Jac(v,) ()T =

1/}s<x)7 )

2.0 wiT
=det | Y.(s) [Hess £C 5 |x — sHessgp(x)])

1

= det(; (5)) 77 det {(1 — gy Hma@l®) <Hessw}z - Hessgp(x))} -

2

> det(Yx(s))k%l ((1 — s)det [M} o + sdet (Hesswb - Hessw(x))

where Y, corresponds to Y, via (2.15).
On one hand, by (2.6) we have that

_ Jac(exp,)(=sV(z))

det (Y (s)Y,(1)™") = Jac(exp,)(—Vp(x))’
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thus by (2.5),
sdet(Y,(s)Y, (1) )= = 789(0,),

where 6, = —V(x) € D. On the other hand, by the definition of Y, (see (2.14)) and relation
(2.7) we also have

(1—s)det(V, (1 — 8)Y (1)) e = 71%(6,).
Combining the above facts we obtain the required Jacobian inequality (1.7). O

Remark 3.1. (a) Step 2 is the most fastidious part of the proof whenever the mass trans-
portation is realized along abnormal geodesics, see §3.2.1. Note that reversing the roles
of the metrics d2i »a and di, a similar argument as in Step 1 shows that o(¢,-,-) is a
d2,/2—concave function on R* x R (¢ € RF2¢ is fixed). However, since (z,v¢(x)) € D
for every z € Sy (see (3.2) and (3.8)) and we only know that d% is locally semiconcave
on R2H1 x R2+1\ D where D = 7,(D), no conclusion can be drawn in general for the
locally semiconcavity of ¢(§, -, ) on m(Sp). Thus, no higher regularity is known for ¢(¢, -, -)
which justifies the block-decomposition of the Jacobian matrix of ¢ in order to interpret and
compute its determinant.

(b) If Sy C G is open and ¢ is smooth enough on Sy (say C'), one can see that X'p(z) =
... = X%(z) = Oe for every z € Sy (see §3.2.1) implies the fact that ¢ does not depend on
the components zx_s411, .., Tk, 2, i.e., the Jacobian of ) can be calculated in the usual way
on Sp; in particular, Example 3.1 below falls into this framework.

We conclude this section by constructing two measures and the optimal transportation
map between them such that a positive mass is transported along abnormal geodesics while
the complementary mass is transported along strictly normal geodesics, respectively.

Example 3.1. Let G = R™ x H? be the m + 2d + 1 dimensional corank 1 Carnot group
endowed with its natural group operation inherited by the Euclidean space R™ and Heisenberg
group H? in our setting, ¥ = m + 2d and o; = 4 for every i € {1,...,d} in (1.4). Let
a € R™\ {Orm} and b € R?\ {0gea} and consider the potentials g, 1 : G — R defined by

900(951,$2) = <a,$1>Rm and <P1($1,952) = —<b, Zzg>R2d

for every (1, 22) = (21, (24, te,)) € R™ x HY, where (-, ) denotes the usual inner product
in Rl. Moreover, let ¢, 0§ : G — R be defined by

C 1 C 1
oo(y1, y2) = —§Ha|]§m — (@, y1)rm and @] (y1,92) = —§Hb\|§2d + (b, 2y, ) red

for every (y1,y2) = (y1, (2, tyy)) € R™ x HE. If dee is the Carnot-Carathéodory metric on
G, one has for every (z1,25) € G that

. 1 . .
ij(xlax2) = inf {—dég((ﬁl,xz),<y1,y2)) _90j<y17y2>}7 J € {071}7
(y1,y2)ER™ x Hd 2
where we exploit Lemma 2.1, and Ambrosio and Rigot [3, Example 5.7, p.287] in the case
j=1.
Accordingly, ¢; are d2,/2-concave functions on G, for j € {0,1}. If » = min{¢py, ¢ } and
¢ = max{y§, ¢{}, we claim that for every (x1,22) € G,

(y1,y2)ER™ x Hd 2

o(r1, 1) = inf {ldéc((xl, T2), (Y1, 92)) — (41, yz)} : (3.16)

To see this, let (z1,x2) — n(x1,22) be the function at the right hand side of (3.16). First,
we have by definition that ¢§(y1,v2) < ¢°(y1,12) for every (y1,42) € G and j € {0,1}.
Accordingly, ¢;(z1,22) > n(x1, xs) for every (x1,22) € G and j € {0,1}, i.e., ¢ > .
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To check the converse inequality, we provide a generic argument, independent from the
Carnot structure. Fix (x1,79) € G arbitrarily and assume without loss of generality that
wo(r1,2) < pi(x1,x2). Then for every (y1,y2) € G, we have

1
900(351,332) < éd%c((mhﬂh)a (3/17y2)) - 908@1792);

1
wo(r1,22) < @171, 22) < Ed?)c((l’lafﬁ, (Y1, y2)) — @5 (Y1, y2)-

Consequently, for every (y;,y2) € G, one has

1

wo(T1,79) < Qd%c((fvhxz),(yhyz))+min{—<ﬂ8(y1,y2),—w‘i(yl,m)}
1
= 561%0((551’1’2)7 (Y1, 42)) — max{pg(y1, ¥2), 5 (Y1, ¥2)}
1
= §d?)c((931a$2)7 (Y1,y2)) — @ (Y1, 2)-

Taking the infimum on the right w.r.t. (y1,y2) € G, we obtain ¢g(z1,x2) < n(z1,x2), i€,
(a1, x2) < n(x1,x2), which concludes the proof of (3.16). In particular, (3.16) implies that
¢ is a d%/2-concave function on G.

Let G° = {(z1,72) = (21, (29,t)) € R™"xH?: ((a,b), (71, 29))rmxrea = 0} be the hyperplane
separating R™ x R??*! into two halfspaces G~ = {(z1, (22,1)) € R™"xH? : {(a,b), (21, 22))gmxr2e <
0} and G = G\ G™. Tt follows that

~ wol@r, o) if (21,20) € G
gO(QS'l,,fg) - { 901(.%1,.1'2) if ($1,$2) € G+,
and ¢ is differentiable on G \ G°. Let ¢ : G — G be the optimal transport map generated

by the dZ/2-concave function ¢, see Figalli and Rifford [11]; by Proposition 2.1 we have for
every (z1,72) € G\ G° that

x1,79) if (x1,22) € G~ \ G
o) = eVt = { 0V (I EG

where
Yo(1,T2) = €XP (4, 19)(—a, Ogear1) = (21 — @, 72)
and

¢1($1, 952) = eXp(xl,m)(ORma b, 0) = (Il, T * (b, 0));

here, '* denotes the group operation on HZ.

Let pp = 1L 241 where B C G is a closed ball centered at Ogmt2a11 with L7T24F(B) =
1 and p; = ¥4po. Note that every element of B belongs to the moving set M. Moreover, one
can see that supp(ui) = Yo(BNG~\ G°)Jv1(BNGT), and the sets Sy and S; appearing
in the proof of Theorem 1.1 correspond to the two half balls BN G~ and BNG™ (up to null
measure sets), respectively. Consequently, the optimal mass transportation map ¢ translates
the mass from Sy along abnormal (Euclidean) geodesics into Sy = (—a, Ogm+2a+1) + S, while
the mass from S is transported along strictly normal (Heisenberg) geodesics into a distorted
half ball S; = {(21, x3 * (b,0)) : (z1,25) € BN GT}, see Figure 2.
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FIGURE 2. The half balls Sy and S are transported along abnormal and strictly normal
geodesics into the sets Sy and S1, respectively.

4. APPLICATIONS

Having the Jacobian determinant inequality (1.7), we can prove several functional and
geometric inequalities on corank 1 Carnot groups.

Let us denote by pg, p1 and p, the density functions (w.r.t. L£F!) of the absolutely
continuous, compactly supported measures (i, pt1 = Yupo and ps = (Vs)ppto, respectively.
In fact, we have the Monge-Ampere equations

po(x) = ps(s(z))Jac(vs)(x) and po(x) = p1(¥(x))Jac(y)(x) for pe-a.e. = € G. (4.1)

These equations can be deduced in a standard way both in the static case (see §3.1) and
moving case with optimal mass transport along strictly normal geodesics (see §3.2.2), while
in the case of abnormal transportation we provided a proper interpretation of them (see
§3.2.1, Step 2).
Due to (4.1) we may reformulate the Jacobian determinant inequality (1.7) as
1 1 1

(ps(05(2)) 7T = 7202 (po()) TFT +71(0,) (pa (W () 7T (4.2)
which holds p a.e. on the restricted set Go = {x € G : po(z) > 0}. Observe that by
definition Gy is of full measure in supp(uo). For a fixed s € (0,1) we restrict Gy to the
injectivity domain of ¢ and 1, which will be still of full measure in supp(uy). Moreover,
we may exclude those points z € S from Gy for which 27! o 9 (z) € cutg(e), see Step 2 in
§3.2.2; still obtaining a full measure set in supp(po) which prevents the blow-up of coefficients

% (6,) and 752(6,), respectively.

4.1. Entropy inequalities. Let (G,0) be a k + 1 dimensional corank 1 Carnot group and
U :[0,00) — R be a function. The U-entropy of an absolutely continuous measure p w.r.t.

LF+1 on G is defined by Enty (u| L) = / U (p(x)) AL (z), where p = 5 is the density
¢

function of pu.
By using the injectivity of 15 and 1) on G (with a suitable change of variables), a similar
argument as in [5] provides the following entropy inequality.

Theorem 4.1. (Entropy inequality) Under the same assumptions as in Theorem 1.1, if
U:[0,00) = R is a function such that U(0) =0 and t — t""'U (5) is non-increasing and
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convex, the following entropy inequality holds:

k+1
Enty(u,|£5) < (1—s) / (F6)) v % AL (2)
¢ (75(6.))
~k,a k+1 P11y
—1—3/(751’“’ (Qw_l(y))) v ~k,o 1) E+1 dg’fﬂ(y)’
¢ (7—37 (¢9¢71(y))>
where 7R = s~irke,

Corollary 4.1. Under the same assumptions as in Theorem /.1, we have the following
uniform entropy inequality:

Bt ulc*) < (1= [0 (0 )acie) s [ v (2 )ac)

. d;
Proof. Since t — §

—~

t,s)

is increasing on (0,2m) for every s € (0,1), i € {1,2}, and

i(t,1)
lim;_,o 318‘;; =1, lim;_,q 3;8‘3 = 52, see [5, Lemma 2.1], we obtain
He0,) > skt for all s € (0,1) and x € Gy. (4.3)

Thus, for the weights 7% we obtain
(7~'S’“’°‘(996))]€Jr1 > s for all s € (0,1) and = € Gy. (4.4)

Since the map t — tF*1U (tk%) is non-increasing, the desired inequality directly follows from
Theorem 4.1. U

Remark 4.1. As a particular case of Theorem 4.1 and Corollary 4.1, we may choose various
particular entropies for U, as the Rényi-type entropy, Shannon entropy, kinetic-type entropy
or Tsallis entropy.

4.2. Brunn-Minkowski inequalities. Let (G, o) be a connected, simply connected nilpo-
tent Lie group of (topological) dimension N, and p be a Haar measure on GG. By extending
a result of Leonardi and Masnou [14] from Heisenberg groups, Tao [21] proved that for every
nonempty and bounded open sets A, B C G the multiplicative Brunn-Minkowski inequality
holds on (G, o):

(Ao B)Y > u(A)Y + u(B)7. (4.5)

In particular, this inequality is also valid on any k£ + 1 dimensional corank 1 Carnot group G
with N =k + 1 and p = £

In the sequel, we prove geodesic Brunn-Minkowski inequalities on corank 1 Carnot groups.
To do this, let A, B C G be two nonempty sets. In the sequel we want to quantify the Carnot
distortion coefficients which characterize the sets A and B. For this reason we introduce the
notations

Te(A,B)=sup  inf {7F%(p) :exp,(p) =z oy} (4.6)
Ao,Bo (:(;,y)EAOXBo
and
(A, B) = sup  inf {F(p) :exp.(p) =2 oy} = sTV(A, B), (4.7)

Ag,Bo (2:y)€A0x B
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where Ag and By are nonempty, full measure subsets of A and B, respectively. Note that
by taking sets Ag, By with the above properties we might obtain better coefficients than if
simply take the initial sets A, B; more precisely, one always has
TOUAB) = inf {77(p) s expy(p) = 27 oy},
(z,y)€eAXB

with possibly strict inequality e.g. when some discrete points + € A and y € B are in a
particular position as exp,(p) = 7! oy with p € D and p, = 0. Recalling relation (2.7)
between the parameters of the exponential map joining e to x € G and 27! € G, respectively,
the following symmetry properties hold:

HY(2,y) = 78y, x) and 7P (2,y) = 78 (y, x) for all z,y € G. (4.8)
For every s € [0,1] and x,y € G, the set of s-intermediate points between x and y is
Zs(x7y) = {Z €G: dCC’('ra Z) = Sdcc(f,y), dCC’(Zvy) = (1 - S>dCC<x7y)}' (49)

We clearly have the antisymmetry property
Zs(x,y) = Z1_s(y,x) for all z,y € G and s € [0, 1].

The notion of s-intermediate points can be extended to the nonempty sets A, B C G as

Z,AB) = |J Zly.

(z,y)€AXB

Theorem 4.2. (Weighted and non-weighted Brunn-Minkowski inequalities) Let
(G,0) be a k + 1 dimensional corank 1 Carnot group, s € (0,1), and A and B be two
nonempty measurable sets of G. Then the following inequalities hold:
(i) L1 Zu(A, B) T > (A, BYLHA)ET 4 752(A, B)LM (B
(i) L4 (Z,(A, B)FT > (L — 5) 0 L AP 4 50 L (B
1
1 1 k43 1 1

(iii) £"(Z,(A, B))Fs > <Z) ((1 — ) LM (A)FE sﬁ’f“(B)m) :

Proof. First of all, we notice that if Z,(A, B) is not measurable, L*1(Z,(A, B)) will denote
the outer Lebesgue measure of Z4(A, B).

(i) We first assume that both A and B have finite £*"-measures. If both sets have null
measure, we have nothing to prove; thus, we may assume that max {Ek“(A), L'k“(B)} > 0.
The proof is divided into three steps.

Step 1: one has TH%(A, B) < oo and 17"%(A, B) < oo. By (4.6), if 75%(A, B) = +o0,
we have in particular that z7' oy € cutg(e) for ae. (z,9) € A x B. Therefore, 0 =
LE(cutg(e)) > LFF(A™L o B). Thus, by the multiplicative Brunn-Minkowski inequality
(4.5) it follows that LEH1(A) = L¥(B) = 0, which contradicts our initial assumption.

Step 2: the case LFT(A) # 0 # LF(B). Let pg = L%ﬁl(a)ﬁk“, py = Eifl(?l)?)ﬁk“ and

the Rényi entropy U(r) = R (r > 0) in Theorem 4.1; thus the entropy inequality and
relations (4.6) and (4.7) imply that

1

/ () TRALH(2) > (A, B / oy FTALM 4 ke (A, B / T FTALH
¢S(A) A B

= TEU(A, B)LH (A) T 4 70 (A, B)LH (B) R
By Hdlder’s inequality one has that

1

1_% 1
[ nrmace) < ( / ps<z>dck+l<z>) - ( / dc“l(z)) ’
Ys(A) Ys(A) Ys(A)

1

= LM (y(A))F.
Since 95(A) C Zs(A, B), the claim follows.
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Step 3: the case LFTYH(A) = 0 # LFTY(B) or LFTY(A) # 0 = LF(B). In fact, our claim
reduces to proving that for every x € GG, we have

LM (Z,({a}, B) = (7 ({2}, B) £7(B). (4.10)

The latter inequality follows by an approximation argument. In fact, if {€, },en is a decreasing
sequence converging to 0, by Step 2 we have for every n € N that

LU Z(Blw,20). BYT > 7 (Bla.e). Blen +75°(Bla. ), B (B),
where B(z,r) = {y € G : doc(z,y) < r}. By using the monotone convergence theorem one
can prove that

lim £"(Zy(B(z,e,), B)) = LY (Z,({x}, B)) and nh_}n;() ™™ B(z,e,), B) = T8*({z}, B),

n—oo
which proves (4.10). If A or B has infinite £¥"!-measure, we apply again an approximation
argument.
(ii) This property follows by (i) combined with the universal lower bound (4.3) for 75
(iii) Property (ii) is combined Wlth the p-mean inequality (4.11) below with the choices
a=(1-s)7b=s"p=4, q= g and ) = 73, respectively. O
The main result of Rizzi [18] concerning the measure contraction property on corank 1
Carnot groups is a direct consequence of the Brunn-Minkowski inequality (Theorem 4.2):

Corollary 4.2. (Measure contraction property) Let (G, 0) be a k+1 dimensional corank
1 Carnot group. Then the measure contraction property MCP(0, k + 3) holds on G, i.e., for
every s € [0,1], x € G and nonempty measurable set E C G,

LHYZ ({2}, B) > (b ({a), B)" £(B) > L ().

4.3. Borell-Brascamp-Lieb inequalities. In order to formulate our Borell-Brascamp-Lieb
inequalities we introduce the notion of the p-mean, which for two non-negative numbers a, b
and weight s € (0, 1) is defined as

/P
» _ (1= s)a? + sb?)'? i ab # 0,
Mz (a,0) { 0 if ab=0,
with the conventions M;°°(a,b) = min{a,b}; M%(a,b) = a'=b%; and M;>°(a,b) = max{a,b}
if ab # 0 and M;*°(a,b) =0 if ab = 0. According to Gardner [12, Lemma 10.1], one has
MP(a,b)MI(c,d) > M!(ac,bd), (4.11)
for every a,b,c,d > 0,s € (0,1) and p, ¢ € R such thatp+q>0w1thn— 21 Whenpandq
are not both zero, and n =0 if p=¢ = 0.
Having the Jacobian determinant inequality (4.2), we can prove Borell-Brascamp-Lieb-

type inequalities on corank 1 Carnot groups. In the sequel we state some of them. We refer
to [5] for similar results with detailed proofs in the setting of the Heisenberg groups:

Theorem 4.3. (Weighted Borell-Brascamp-Lieb inequality) Fiz s € (0,1) and p >
k+1 Let f,g,h: G — [0,00) be Lebesgue integrable functions with the property that for all
(z,y) € G x G,z € Zy(z,y),

> M f(z) . 9(y) _
(Fowo) (o)

Then the following inequality holds:

/thsH-(kWr(/f’/g)
G G G

(4.12)
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Remark 4.2. Observe that Theorem 4.3 holds as well under weaker conditions, namely, if
inequality (4.12) holds only for those z,y € G for which f(z) > 0 and g(y) > 0.

As a direct consequence of Theorem 4.3, inequality (4.4) and the monotonicity of the
p-mean we can formulate the following weaker Borell-Brascamp-Lieb-type inequality:

Corollary 4 3. (Uniformly weighted Borell-Brascamp-Lieb inequality) Fiz s € (0,1)

and p > _k:+1 Let f,g,h: G — [0,00) be Lebesque integrable functions satisfying

h(z) > MP <(1(s))2, gi?) for all (z,y) € G X G,z € Zy(z,y). (4.13)
Then the following inequality holds:

[ ([ 1)
G G G

Corollary 4.4. (Non-weighted Borell-Brascamp-Lieb inequality) Fiz s € (0,1) and
p> —k+3 Let f,g,h: G — [0,00) be Lebesgue integrable functions satisfying

h(z) = MP(f(x),9(y)) for all (x,y) € G x G,z € Zy(x,y). (4.14)
Then the following inequality holds:

/Ghz }lM““ (/Gf,/Gg>. (4.15)

Proof. By the p-mean inequality (4.11) and assumption (4.14), we have

4h(z) = M;’(f(a:),g(y))Ms% (; i) > MEH ( /() M) : (4.16)

(1—s)2" 82 (1—3)2’ 2
for every x,y € G and z € Z,(z,y). By the assumption p > —m we have m > ﬁ, SO
we can apply Corollary 4.3 for the setting h =4h, f = f, § =g and p = 2p+1, obtaining the
desired inequality. O

Remark 4.3. (a) All three versions of the Borell-Brascamp-Lieb inequality imply a cor-
responding Prékopa-Leindler-type inequality by setting p = 0 and using the convention
M?(a,b) = a'=*b* for all a,b > 0 and s € (0, 1).

(b) The Brunn-Minkowski inequality (i) in Theorem 4.2 can be obtained alternatively from
Theorem 4.3 whenever £¥1(A) # 0 # L¥(B). Indeed, let p = +00, and choose the func-

k+1
tions f(z) = (A5(A ) 1a(@), 9ly) = (7(4, B))" 1p(y) and h(z) = Lzam(2).
With these choices assumption (4.12) holds at the points z,y € G where f(z) > 0 and
g(y) > 0 and due to Remark 4.2(b) we may apply Theorem 4.3, obtaining

czas) = () e, () e m)

k+1

= (A B AT 7k (A, BL (B)FT)

which concludes the proof. In a similar way, properties from (ii) and (iii) from Theorem 4.2
can be obtained by Corollaries 4.3 and 4.4, respectively.
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