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Top quark mass dependence of the Higgs boson-gluon
form factor at three loops
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We compute three-loop corrections to the Higgs boson-gluon form factor, incorporating the top quark
mass dependence. Our method is based on the combination of expansions around the top threshold and for
large top quark mass, using conformal mapping and Padé approximation to describe the form factor over
the full kinematic range.
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I. INTRODUCTION

The precise measurement of the properties of the Higgs
boson, in particular the coupling strength to other particles
and to itself, will be among the main focuses in particle
physics in the coming years. The success of this enterprise
crucially depends on the accuracy of the predictions
provided by the theory community.
A quantity which is available to high perturbative order

is the total cross section for the production of a Higgs boson
at the Large Hadron Collider (LHC). For a comprehensive
collection of relevant works we refer to Ref. [1], but we
remark here that QCD corrections including the exact
dependence on the top quark mass, mt, have been available
at next-to-leading order (NLO) for about 25 years [2]. At
higher orders only approximate results are available; at
next-to-next-to-leading order (NNLO) the infinite top
quark mass results from Refs. [3–5] have been comple-
mented by power-suppressed terms in the inverse top quark
mass in [6–9]. The N3LO result has been obtained in the
mt → ∞ limit in [10,11].
In Ref. [1] several sources of uncertainties have been

identified for the prediction of the total cross section. Among
them is that of the exact top quark mass dependence of the
NNLOcorrectionswhichhas been estimated to be 1%. In this
paper we provide results for the Higgs boson-gluon form
factor at three-loop order which constitutes the virtual

corrections to the production cross section. Thus the findings
of this paper help to eliminate the aforementioned uncer-
tainty to a large extent. The Higgs boson-gluon form factor is
also an important ingredient for processes where the relevant
energy in the fermion loops reaches values close to or above
the top quark threshold and the infinite top quark mass limit
cannot be applied anymore. This concerns, e.g., Higgs boson
pair production via gg → H⋆ → HH or the measurement of
the Higgs boson width from off-shell production of Z boson
pairs in gluon fusion via gg → H⋆ → ZZ [12]. The exact
dependence on the fermionmass in the loop is also important
for numerous theories beyond the Standard Model, which
often contain additional heavier Higgs bosons.
At two-loop order exact results for the form factor are

known from Refs. [2,13–15]. However, at three loops only
expansions for large top quark mass [16,17] and nonana-
lytic terms in the expansion around the top threshold up to
Oð1 − zÞ [18] are known, where

z ¼ ŝ
4m2

t
ð1Þ

with
ffiffiffî
s

p
being the partonic center-of-mass energy. For later

convenience we also introduce z̄ ¼ 1 − z. In the next
section we describe our method which we use to combine
these expansions in order to obtain results for the form
factor valid for all spacelike and timelike momentum
transfers. In Sec. III we discuss our results and Sec. IV
contains a brief summary.

II. METHOD

The method we use for the construction of the top quark
mass dependence of the Higgs boson-gluon form factor is
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based on the efficient combination of information from
the large top quark mass expansion (LME) (z → 0) and
knowledge from the threshold where ŝ ≈ 4m2

t (z → 1),
using conformal mapping and Padé approximation. The
procedure was developed in Ref. [19] (see also [20,21])
in order to compute a certain class of four-loop con-
tributions to the muon anomalous magnetic moment. In
Refs. [22,23] the method was extended to QCD correc-
tions with the aim to compute NNLO correction to the
total cross section σðeþe− → hadronsÞ. A further refine-
ment of the method has been developed in Refs. [24,25]
where order α3s corrections to σðeþe− → hadronsÞ have
been computed. In these references additional parameters
were introduced which allow one to generate a larger
number of Padé approximations and thus obtain more
reliable uncertainty estimates. The systematic improve-
ment of the Padé approximations when increasing the
number of input terms has been studied in Ref. [26]. In
Ref. [18] the method has been used to obtain two-loop
corrections for the three form factors relevant for Higgs
boson pair production.
In the following we briefly describe the application of

this method to the form factor entering the interaction of a
Higgs boson and two gluons. We parametrize the corre-
sponding amplitude as

Aμν
abðgg → HÞ
¼ δab

yt
2

ffiffiffi
2

p
mt

αs
π
TFðq1 · q2gμν − qν1q

μ
2ÞF△ðzÞ; ð2Þ

where q1 and q2 are the external momenta of the gluons
with polarization vectors εμðq1Þ and ενðq2Þ, respectively.
yt ¼

ffiffiffi
2

p
mt=v is the top quark Yukawa coupling, v is the

vacuum expectation value, a and b are adjoint color
indices, TF ¼ 1=2 and ŝ ¼ ðq1 þ q2Þ2 ¼ 2q1 · q2. It is
convenient to define the perturbative expansion of F△ as

F△ ¼ Fð0Þ
△

þ αs
π
Fð1Þ
△

þ
�
αs
π

�
2

Fð2Þ
△

þ � � � ; ð3Þ

where αs ≡ αð5Þs ðμÞ is the strong coupling constant with
five active flavors evaluated at the renormalization

scale μ. Sample Feynman diagrams contributing to
Aμν

abðgg → HÞ up to three loops can be found in Fig. 1.

The one-loop result, Fð0Þ
△
, is finite. At two-loop order we

renormalize the gluon wave function and the top quark
mass in the on-shell scheme and the strong coupling
constant in the MS scheme. Note that the ultraviolet
renormalized form factor still contains infrared divergences
which cancel against contributions from real radiation, in
order to form finite physical quantities. The structure of the
infrared divergences is universal and has been studied in
detail in the literature [27]. In our case finite form factors
are obtained via

Fð1Þ;fin
△

¼ Fð1Þ
△

−
1

2
Ið1Þg Fð0Þ

△
;

Fð2Þ;fin
△

¼ Fð2Þ
△

−
1

2
Ið1Þg Fð1Þ

△
−
1

4
Ið2Þg Fð0Þ

△
; ð4Þ

where Ið1Þg and Ið2Þg can be found in Refs. [27,28]. In order to
fix the notation we provide an explicit expression only for

Ið1Þg which is given by

Ið1Þg ¼ −
�

μ2

−ŝ − iδ

�
ϵ eϵγE

Γð1 − ϵÞ
1

ϵ2
½CA þ 2ϵβ0�; ð5Þ

with β0 ¼ ð11CA − 4TFnlÞ=12, where CA ¼ 3, TF ¼ 1=2
and nl is the number of massless quarks. We work in d ¼
4 − 2ϵ dimensions and assume that δ is an infinitesimal
small parameter. We apply the method described below to

Fð1Þ;fin
△

and Fð2Þ;fin
△

.
In the following we briefly discuss the input for the limits

z → 0 and z → 1 used for the construction of the Padé
approximants. For the renormalization scale we choose
μ2 ¼ −ŝ since the μ dependence can easily be reconstructed
from the one- and two-loop expressions, which are known
exactly, see Ref. [29]. Furthermore, we set all color factors
to their numerical values and only keep nl as a parameter.
The large-mt expansion of the three-loop form factor up to
order z4 has been computed in Refs. [16,17] and the z5 and
z6 terms are available from Ref. [29]. The analytic
expressions read

FIG. 1. One-, two- and three-loop Feynman diagrams contributing to F△. Solid, curly and dashed lines represent quarks, gluons and
Higgs bosons, respectively.
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Fð0Þ
△

¼ 4

3
þ 14

45
zþ 8

63
z2 þ 104

1575
z3 þ 2048

51975
z4 þ 4864

189189
z5 þ 512

28665
z6 þOðz7Þ;

Fð1Þ;fin
△

¼ 11

3
þ 1237

810
zþ 35726

42525
z2 þ 157483

297675
z3 þ 2546776

7016625
z4 þ 194849538824

737482370625
z5 þ 385088204192

1917454163625
z6 þOðz7Þ;

Fð2Þ;fin
△

¼ −
253ζð3Þ

24
þ 3941

108
þ 19π2

12
þ π4

96
þ 19

12
Ls þ nl

�
−
17ζð3Þ
36

−
3239

648
−
47π2

432
þ 4

9
Ls

�
þ n2l

π2

648

þ
�
9290881ζð3Þ

103680
−
44326367

466560
þ 623π2

1080
þ 7π4

2880
þ 28

405
π2 logð2Þ þ 8261

3240
Ls

þ nl

�
−
119ζð3Þ
1080

−
107087

291600
−
259π2

4320
−

169

1080
Ls

�
þ n2l

7π2

19440

�
z

þ
�
7037623781ζð3Þ

69672960
−
82500975779

731566080
þ 121π2

378
þ π4

1008
þ 32

567
π2 logð2Þ

þ 253549

170100
Ls þ nl

�
−
17ζð3Þ
378

−
6385481

53581500
−
25π2

648
−

4133

36450
Ls

�
þ n2l

π2

6804

�
z2

þ
�
650760513719ζð3Þ

412876800
−
1740869750908152049

921773260800000
þ 221π2

1050
þ 13π4

25200
þ 208π2 logð2Þ

4725
þ 804644

826875
Ls

þ nl

�
−
221ζð3Þ
9450

−
6383750249

112521150000
−
3107π2

113400
−

1147037

14883750
Ls

�
þ n2l

13π2

170100

�
z3

þ
�
193543938976537ζð3Þ

37158912000
−
6978205934887756008911

1115345645568000000
þ 4736π2

31185
þ 16π4

51975

þ 16384π2 logð2Þ
467775

þ 33498106

49116375
Ls þ nl

�
−
2176ζð3Þ
155925

−
2197298833

72937816875
−
3232π2

155925
−

20932

382725
Ls

�
þ n2l

64π2

1403325

�
z4

þ
�
2460310706266276921ζð3Þ

81155063808000
−
159929147625953730170902566067

4389031448658778521600000

þ 9424π2

81081
þ 38π4

189189
þ 48640π2 logð2Þ

1702701
þ 945911804923

1877227852500
Ls

þ nl

�
−
5168ζð3Þ
567567

−
22552503119716043

1395235522161731250
−
27892π2

1702701
−

48324340168

1191317675625
Ls

�
þ n2l

152π2

5108103

�
z5

þ
�
15128773883548934558969ζð3Þ

114266329841664000
þ 2656π2

28665
þ 4π4

28665
þ 2048π2 logð2Þ

85995

−
13560383230749413568271118392175429

85205730523295753699328000000
þ 339242844181

871570074375
Ls

þ nl

�
−
544ζð3Þ
85995

−
2085146760850288

259115168401464375
−
3448π2

257985
−

35895528824

1150472498175
Ls

�
þ n2l

16π2

773955

�
z6 þOðz7Þ; ð6Þ

where Ls ¼ logð−4z − i0Þ and ζðnÞ is the Riemann zeta
function.
The expansion of the three-loop form factor

around the threshold was considered in Ref. [18] in
the effective theory of nonrelativistic QCD (NRQCD).
We briefly outline the approach and refer to [18] for
details.
Within NRQCD, the leading contributions to the

triangle form factor near the threshold can be written
schematically as

F△ðzÞ ≍
z→1

Cgg→tt̄Ctt̄→HGPðzÞ; ð7Þ

where the symbol “≍” indicates that terms analytic in
(1 − z) have been dropped on the right-hand side.
The relativistic short-distance corrections to top pair
production and annihilation are absorbed into the matching
coefficients Cgg→tt̄; Ctt̄→H and the propagation of the
intermediate nonrelativistic tt̄ pair is described by the
Coulomb resummed P-wave Green function GPðzÞ [30].
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Expanding Eq. (7) in αs yields the perturbative coefficients
of the form factor. An explicit result for the three-loop form
factor is given in Eq. (50) of [18]. For convenience we
reproduce the analytic expression together with the one-
and two-loop results which are given by

Fð0Þ
△

≍
z→1

2πð1−zÞ3=2þ13π

3
ð1−zÞ5=2þOðð1−zÞ7=2Þ;

Fð1Þ;fin
△

≍
z→1 4π2

3
ð1−zÞ logð1−zÞ− π

36
ð124þ15π2Þð1−zÞ3=2

þ8π2

9
ð1−zÞ2 logð1−zÞþ π

216
½2252−117π2

−2112logð2Þ−672logð1−zÞ�ð1−zÞ5=2

−
28π2

45
ð1−zÞ3 logð1−zÞþOðð1−zÞ7=2Þ;

Fð2Þ;fin
△

≍
z→1

−
8π3

27
ð3þπ2Þ ffiffiffiffiffiffiffiffiffi

1−z
p

þπ2

54
½ð458−15π2−44nlÞ logð1−zÞ

−ð99−6nlÞlog2ð1−zÞ�ð1−zÞþOðð1−zÞ3=2Þ:
ð8Þ

The information provided in Eqs. (6) and (8) is used to
construct approximations of the form factor. We first
subtract the logarithmic contributions for z ∼ 1 and define

F̃△ ¼ F△ − Fsub
△

; ð9Þ

where Fsub
△

is constructed to both be analytic for jzj < 1 and
to reproduce the threshold logarithms in Eq. (8), so that the
threshold expansion of F̃△ is free of logarithms up to
ð1 − zÞ3=2. Such a subtraction function Fsub

△
can be obtained

using the vacuum polarization as a building block, see [18]
for details of the construction. For explicit examples for
Fsub
△

we refer to the sample Padé approximants in the
Supplemental Material [31]. Note that also in the limit
z → 0F△ develops logarithmic divergences whichmanifest
in the linear Ls term in Eq. (6). Whereas in Ref. [23] these
contributions are also subtracted, here we instead construct
separate Padé approximants for theLs-independent term and
for the coefficient of Ls, as discussed in [18].
Next we apply a conformal mapping,

z ¼ 4ω

ð1þ ωÞ2 ; ð10Þ

to transform the z plane into the interior of the unit circle in
the ω plane; the timelike momentum regions z ∈ ½0; 1� and
z ∈ ½1;∞� with ImðzÞ > 0 are mapped to ω ∈ ½0; 1� and the
upper semicircle, respectively.
At this point we construct Padé approximants in the

variable ω. They have the form

½n=m�ðωÞ ¼
P

n
i¼0 aiω

i

1þP
m
j¼1 bjω

j ; ð11Þ

where nþm is fixed by the number of input terms from the
large top mass and threshold expansions. In our case we
have seven terms for z → 0 and one for z → 1 which is
sufficient to determine eight coefficients in Eq. (11), i.e.,
Padé approximants for nþm ¼ 7. More precisely, we
construct Padé approximants for the rescaled form factor

½n=m�ðωÞ ≃ ½1þ aRzðωÞ�F̃△ðzðωÞÞ; ð12Þ

where aR is a real parameter. This removes the spurious
condition F△ðz → ∞Þ ¼ 0 introduced by the definition of
the form factor through Agg→H ∝ zF△ðzÞ and provides a
means to test the stability of the solutions through variation
of aR. As discussed in [18] we only use the diagonal
and next-to-diagonal Padé approximants which are
½5=2�; ½4=3�; ½3=4� and ½2=5� in the case that seven large
top quark mass expansion terms and one term from the
threshold expansion are taken into account. In Sec. III we
also show results which only incorporate LME terms up to
z4, for which we construct the Padé approximants
½4=1�; ½3=2�; ½2=3� and ½1=4�.
By construction the Padé approximants develop poles in

the complex ω plane. In the following we discuss our
criteria which exclude approximants with poles too close to
the physical region. For this discussion we have to
distinguish spacelike and timelike momentum regions.
For z > 0 we exclude all approximants which contain
poles ω0 in the region

Reðzðω0ÞÞ ≥ −2 and jω0j ≤ 1.2; ð13Þ

as they can cause unphysical behavior in the approxima-
tion. We find that poles in the entire complex plane in z, i.e.,
in the unit disc jωj ≤ 1, cannot be excluded as this leads to
the exclusion of all Padé approximants. In those cases
where the approximants show obviously unphysical reso-
nances we moderately increase the exclusion region. This

concerns the coefficient of Ls for F
ð2;0Þ;fin
△

ðzÞ [cf. Eq. (17)]
where we use

Reðzðω0ÞÞ ≥ −2 and jω0j ≤ 1.3: ð14Þ

For each choice of ½n=m� we aim to construct 20 Padé
approximants by choosing aR in Eq. (12) randomly in the
range [0.1, 10], leading to a maximum of 80 approximants.
The mean and standard deviation of this set are used as the
central value and uncertainty estimate, respectively. For
some choices of fn;mg Padé approximants satisfying
criteria (13) and (14) could not be found, however, we
checked that at least 40 approximants remain in all cases.
For such sets of fewer than 80 approximants we increase
our uncertainty estimate by the ratio of the maximal
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number of Padé approximants (80) over the actual number
in the set.
For spacelike momenta our exclusion region is

defined by

Reðzðω0ÞÞ ≤ 2 and jω0j ≤ 1.2; ð15Þ

and negative values of aR in the range ½−10;−0.1� are
chosen.

III. RESULTS

Before discussing the three-loop results we apply the
method described in the previous section to the two-loop
form factor, for which we can compare to the exact
expressions [2,13–15].
We show in Fig. 2 that the exact result for the two-loop

form factor can be reproduced very well with the same
amount of information that is available at three loops. The
shaded region is spanned by the standard deviation with
respect to the mean value of a set of 20 approximants for
each considered set fn;mg. These approximants are
available in the Supplemental Material [31]. Figure 3,
where the difference between the exact result and the
approximations is shown, demonstrates that the approxi-
mation can be systematically improved by including more
expansion coefficients. We compare the results based on
the input used in Fig. 2 (lower left panel) to results where
fewer expansion coefficients for large top quark masses are
used (upper left panel). Furthermore, we also show results
where additional information from the threshold is incor-
porated in the construction of the Padé approximations
(panels on the right).
Our approximation of the three-loop form factor is

shown in Fig. 4 and represents the main result of this
paper. At three loops the LME and threshold coefficients

FIG. 2. The upper panel shows our approximations for the real
and imaginary parts of the two-loop triangle form factor in blue
and orange, respectively. The bands give the standard deviation of
the Padé approximants which we consider. The exact results are
shown in black. The dashed lines correspond to the real part of the
LME approximation up to order z2, z4 and z6. The lower panel
shows the difference between the exact result and the approx-
imations.

FIG. 3. Differences between our approximations and the exact result. The input used is shown in the legend of each panel. The dashed
lines correspond to the real part of the LME approximation up to order z2, z4 and z6. The lower left panel corresponds to the lower panel
of Fig. 2.
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develop terms linear in Ls ¼ logð−4z − i0Þ. We construct
separate Padé approximants for the coefficient such that we
obtain an approximation of the form

Fð2Þ;fin
△

ðzðωÞÞ≃ ½n=m�0ðωÞþFð2Þ;sub
△

1þaR;0zðωÞ
þ ½k=l�1ðωÞLs

1þaR;1zðωÞ
; ð16Þ

where the subscripts indicate the power of Ls. Note that the
Padé approximants of the Ls-independent and linear-Ls
term are averaged independently using separate values of

aR. The threshold subtraction [cf. Eq. (9)] is only needed
for the first term in Eq. (16). The lower panel in Fig. 4
shows the differences from the central values (obtained
using seven expansion terms for small z) both with seven
and five input terms from the large top quark mass
expansion as solid and dashed boundaries of the uncer-
tainty bands, respectively. One observes over the whole
range in z (except for a small region for z ≈ 10) that the
solid bands lie within the dashed band. Below threshold
(z ¼ 1) our method results in tiny uncertainties for both the
real and imaginary parts of the form factor. For 1 ≤ z ≤ 2
the form factor is numerically large and we thus observe
small relative uncertainties. Although the absolute uncer-
tainty becomes larger for higher values of z we can provide
a good approximation with an uncertainty which is suffi-
ciently small for phenomenological applications.
In order to facilitate the comparison with a future exact

calculation we split our three-loop result according to the
number of light fermions and write

Fð2Þ;fin
△

ðzÞ ¼ Fð2;0Þ;fin
△

ðzÞ þ nlF
ð2;1Þ;fin
△

ðzÞ þ n2l F
ð2;2Þ;fin
△

ðzÞ;
ð17Þ

where nl ¼ 5 is the number of light flavors. Note that

Fð2;0Þ;fin
△

ðzÞ contains contributions with closed massive
loops, which are numerically less important than the nl
terms. There are no three-loop vertex diagrams which

contain two closed fermion loops; Fð2;2Þ;fin
△

ðzÞ is completely
determined by the infrared subtraction terms. In fact, it is

proportional to Fð0Þ
△

and we will not discuss it further.
The results for Fð2;0Þ;fin

△
ðzÞ and Fð2;1Þ;fin

△
ðzÞ are shown in

Fig. 5, adopting the notation from Fig. 4. Both coefficients

show a convergence which is very similar to Fð2Þ;fin
△

.
Summing up the coefficients leads to good agreement with

FIG. 4. Our approximations for the real and imaginary parts of
the three-loop triangle form factor are shown in blue and orange,
respectively. The bands give the standard deviation of the
considered set of Padé approximants. The dashed lines corre-
spond to the real part up to order z2, z4 and z6. The lower panel
shows the differences to the central values; see text for details.

FIG. 5. Our approximations for the three-loop form factor separated according to the light-fermion contributions.
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the result (16) but with a larger uncertainty which is why
(16) should be used for numerical applications. Note that

Fð2;0Þ;fin
△

ðzÞ is the only result where the exclusion criterion
(14) has been used whereas for all other results (13) is
applied.
Finally, we present in Fig. 6 results for the three-loop

form factor for z < 0. One observes small uncertainties for
jzj < 5 which become larger when z becomes more
negative. For jzj > 20 the Padé approximation procedure
does not lead to stable results which is also seen by the fact
that the uncertainty becomes larger after incorporating
more expansion terms (see lower panel). Note that the
large top quark mass expansion shows an alternating
behavior.

Together with this paper we provide representative
Padé approximants for all plots shown in this section in
Supplemental Material [31].

IV. CONCLUSION

We compute three-loop corrections to the Higgs boson-
gluon form factor including finite top quark mass effects.
Our approach is based on the combination of analytic
results from two kinematic regions: the expansion for large
top quark mass and the top quark threshold. In addition, we
incorporate the information that the form factors vanish at
high energies by a rescaling [cf. Eq. (12)]. For the rescaled
form factors, we apply a conformal mapping and a
subsequent Padé approximation. We first apply our method
at two loops and show that we can reproduce the known
results. The two-loop expression is also used to demon-
strate that our estimate for the uncertainty works reliably.
Our main result is shown in Fig. 4 where we plot the three-
loop form factor in the timelike momentum region. This
plot can be reproduced using the approximation functions
which are provided in the Supplemental Material [31]. We
have shown that our results can be systematically improved
by incorporating more expansion terms into the analysis.
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