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Supersymmetry plays prominent roles in the study of quantum field theory and in many proposals
for potential new physics beyond the standard model, while lattice field theory provides a non-
perturbative regularization suitable for strongly interacting systems. Lattice investigations of
supersymmetric field theories are currently making significant progress, though many challenges
remain to be overcome. In this brief overview I discuss particularly notable progress in three
areas: supersymmetric Yang–Mills (SYM) theories in fewer than four dimensions, as well as both
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0. Introduction, motivation and background

Supersymmetry (susy) plays prominent roles in modern theoretical physics, as a tool to im-
prove our understanding of quantum field theory (QFT), as an ingredient in new physics models,
and as a means to study quantum gravity via holographic duality. Lattice field theory provides a
non-perturbative regularization for QFTs, and other contributions to these proceedings document
the prodigious success of this framework applied to QCD and similar theories. It is natural to con-
sider using lattice field theory to investigate supersymmetric QFTs, especially in strongly coupled
regimes. Here I review the recent progress and future prospects of lattice studies of supersymmetric
systems, focusing on 4d gauge theories and their dimensional reductions to d < 4.

Lattice susy now has more than four decades of history [1 – 7]. Unfortunately, progress
in this field has been slower than for QCD, in large part because the lattice discretization of
space-time breaks susy. This occurs in three main ways. First, the anti-commutation relation{
Qα, Qα̇

}
= 2σµαα̇Pµ in the super-Poincaré algebra connects the spinorial generators of susy trans-

formations to the generator of infinitesimal translations, which do not exist in discrete space-time.
Next, bosonic and fermionic fields are typically discretized differently on the lattice, preventing
susy transformations from correctly interchanging superpartners. Finally, susy requires a deriva-
tive operator that obeys the Leibniz rule [1], which is violated by standard lattice finite-difference
operators. ‘No-go theorems’ [8, 9] establish that only non-local derivative and product operators
can obey the Leibniz rule in discrete space-time. Efforts continue to construct alternate formula-
tions that may better balance locality and susy [10 – 13]. These formulations are complicated and
so far limited to systems without gauge invariance, either in (0+1) dimensions or on infinite lattices.

Broken susy means quantum effects in the lattice calculation will generate susy-violating op-
erators. These include relevant operators for which counterterms will have to be fine-tuned in order
to recover the supersymmetric QFT of interest in the a → 0 continuum limit that removes the UV
cutoff a−1. In theories with scalar fields (squarks or scalars in the N > 1 gauge supermultiplet
with extended susy), these scalars’ mass terms present fine-tuning problems similar to that of the
Higgs boson in the standard model. Additional susy-violating operators include fermion (quark
and gaugino) mass terms, Yukawa couplings, and quartic (four-scalar) terms. Altogether there are
typically O(10) of these operators [3, 14, 15], implying such high-dimensional parameter spaces
that there seems to be little hope of effectively navigating them in numerical lattice calculations.

The following three sections focus on three different ways to reduce the amount of fine-tuning
in lattice studies of supersymmetric Yang–Mills (SYM) theories. We begin in the next section
by reviewing dimensional reductions to SYM theories in fewer than four space-time dimensions,
which has received the most attention from the community so far. We return to four dimensions in
Sec. 2, considering first the special case of minimal (N = 1) SYM, which is vastly simplified by
the absence of scalar fields. Another special case in four dimensions is maximal (N = 4) SYM,
the topic of Sec. 3, for which a closed subalgebra of the supersymmetries can be preserved at non-
zero lattice spacing, again drastically reducing the necessary fine-tuning. Finally, Sec. 4 briefly
discusses some prominent challenges to be faced in the future.

1. Lower-dimensional systems

Dimensionally reduced SYM theories can be much easier to analyze numerically. In addition
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to the smaller number of degrees of freedom for an Ld lattice, the resulting lower-dimensional
theories tend to be super-renormalizable and in many cases a one-loop counterterm calculation
suffices to restore susy in the continuum limit [16 – 18]. We will label systems by their number of
supercharges: Q = 4, 8 or 16 corresponding to N = 1, 2 or 4 SYM in four dimensions (or to
minimal SYM in d = 4, 6 or 10 dimensions). For d ≤ 4 these theories involve a gauge field, Q
fermionic component fields, and 4− d, 6− d or 10− d real scalar fields, respectively, all of which
are massless and transform in the adjoint rep of gauge group SU(N ) or U(N ) = SU(N )⊗ U(1).

0+1 dimensions: The reduction to ‘SYM quantum mechanics’ (QM) has been the subject of
many numerical studies over the past decade, starting with Refs. [19, 20]. These systems involve
balanced collections of interacting bosonic and fermionic N×N matrices at a single spatial point.
One reflection of the simplicity of SYM QM is that a lattice regularization may not even be re-
quired; a gauge-fixed Monte Carlo approach employing a hard momentum cutoff [19] was used
by Refs. [21 – 26]. Another illustration is a recent proposal [27] that ‘ungauging’ Q = 16 SYM
QM (to consider a scalar–fermion system with SU(N ) global symmetry) has relatively little effect,
in the sense that both the gauged and ungauged models flow to the same theory in the IR. This
conjecture was quickly tested by lattice calculations that found consistent results [28].

Even though these quantum-mechanical systems are much simpler to study on the lattice than
their 4d SYM counterparts, they remain computationally non-trivial. This is demonstrated by the
state-of-the-art results for Q = 16 SYM QM shown in Fig. 8 of Ref. [29]. This Q = 16 case
has attracted particular interest due to its connections to string theory [30], and especially the
conjecture [31] that the large-N limit of this system describes the strong-coupling (‘M-theory’)
limit of type-IIA string theory in light-front coordinates [32, 33]. At finite temperature, this con-
jecture relates the large-N limit of the (deconfined) Q = 16 system to a dual compactified 11d
black hole geometry in M-theory, and Fig. 8 of Ref. [29] shows the dual black hole internal en-
ergy determined from lattice SYM QM computations. This was previously studied numerically by
Refs. [21, 23, 26, 34 – 38].

Ref. [29] improves upon the earlier work by carrying out controlled extrapolations to the
large-N continuum limit, allowing for more robust comparisons with dual gravitational predic-
tions. Fig. 7 of Ref. [29] shows one such extrapolation, for a fixed value T = 0.5 of the di-
mensionless temperature T ≡ tdim/λ

1/3
dim. (The ’t Hooft coupling λdim = g2N has dimension

[λdim] = 4 − d.) With fixed T the continuum limit corresponds to extrapolating the number of
lattice sites L → ∞. At low temperatures the results in Fig. 8 of Ref. [29] convincingly approach
the leading-order gravitational prediction from classical supergravity (SUGRA), providing non-
perturbative first-principles evidence that the holographic duality conjecture is correct. In addition,
the growing difference between the lattice results and the SUGRA curve at higher temperatures
can be considered a prediction of higher-order quantum gravitational effects that are enormously
difficult to calculate analytically.

The computational non-triviality of these investigations comes primarily from the large values
of N that are needed (16 ≤ N ≤ 32 in Ref. [29], large enough to benefit from dividing individual
N×N matrices across multiple MPI processes via the MMMM code). The computational cost of
N ×N matrix multiplication scales ∝N3, compared to the ∼L5d/4 costs of the rational hybrid
Monte Carlo (RHMC) algorithm. In addition to improving control over theN →∞ extrapolations,
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large values of N & 10 are also required to suppress a thermal instability associated with the non-
compact quantum moduli space of Q = 16 SYM QM [35]. For sufficiently low temperatures and
sufficiently small N the system is able to run away along these flat directions (holographically
interpreted as D0-brane radiation from the dual black hole). Formally a scalar potential should
be added to the lattice action to stabilize the desired vacuum, and then removed in the course of
the continuum extrapolation, further increasing computational costs [35, 39]. However, Ref. [29]
argues that in practice it is possible to carry out Monte Carlo sampling around a metastable vacuum
so long as N is sufficiently large. In particular, N must increase in order to reach smaller T .

Further numerical investigations of SYM QM systems are underway [40 – 44]. At the same
time, the good control over the necessary extrapolations that has now been achieved for the Q =

16 case also motivates pursuing comparable quality in lattice studies of less-simplified systems.
One example of such a system is the Berenstein–Maldacena–Nastase (BMN) deformation of Q =

16 SYM QM [45], which introduces a non-zero mass for the 9 scalars and 16 fermions while
preserving all 16 supercharges. This has been studied numerically by Refs. [46 – 48]. The mass
deformation explicitly breaks the SO(9) global symmetry to SO(6)×SO(3). It also lifts the flat
directions, serving as a supersymmetric regulator that need not be removed in the continuum limit.

In addition, the mass parameter µ provides a second axis for the finite-temperature phase
diagram, as shown in Fig. 5 of Ref. [48]. As µ → ∞ the theory becomes gaussian, and the
deconfinement temperature Td can be computed perturbatively in 1/µ. At small µ, Ref. [49] carried
out the numerical construction of the SUGRA black hole geometry dual to the deconfined phase,
predicting Td to linear order in µ. Figure 5 of Ref. [48] shows recent numerical results in reasonably
good agreement with these predictions, given the fixed N = 8 and L = 24. In addition to the
deconfinement transition signalled by the Polyakov loop, this work observes a transition between
an approximately SO(9)-symmetric phase at high temperatures and an SO(6)×SO(3) phase at
low temperatures. For small µ . 3 these transitions occur at the same Td, while at larger µ
higher temperatures are needed to recover approximate SO(9) symmetry. It will be interesting to
systematize large-N continuum extrapolations in future lattice BMN investigations, since these
turned out to be significant in the µ = 0 limit discussed above.

1+1 dimensions: Dimensional reductions of SYM to d = 2 and 3 also provide less-simplified
systems compared to SYM QM, while still being significantly more tractable than d = 4. Al-
though there has been a lot of work in this area over the years, much of the effort has focused
on constructing clever lattice formulations that minimize fine-tuning in principle, rather than us-
ing these constructions in practical numerical calculations. Here we will highlight the numerical
calculations, which leaves little to say about d = 3: see Refs. [18, 50, 51] for Q = 8 formulations.

The main clever constructions that have been applied are based on either ‘twisting’ [52 – 54]
or orbifolding [55 – 58], two approaches that actually produce equivalent constructions [59, 60].
(See Ref. [2] for a thorough review.) Here we discuss only the twisting approach, which identi-
fies at most bQ/2dc linear combinations of supercharges, Q, that are nilpotent, Q2 = 0. These
are found by organizing the Q supercharges into irreps of a ‘twisted rotation group’ SO(d)tw ≡
diag [SO(d)euc ⊗ SO(d)R], where SO(d)euc is the Wick-rotated Lorentz group and SO(d)R is a
global R-symmetry. The nilpotent Q are those that transform in the twisted-scalar rep. The re-
quirement Q ≥ 2d ensures a sufficiently large R-symmetry. This procedure provides a closed susy
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subalgebra {Q,Q} = 0 at non-zero lattice spacing, leading to a Q-invariant lattice action with no
need of the Leibniz rule.

For some theories there are multiple ways the twisting procedure can be carried out. One
approach [59, 61 – 63] combines the gauge and scalar fields into a complexified gauge field, leading
to U(N ) = SU(N ) ⊗ U(1) gauge invariance and non-compact lattice gauge links

{
U ,U

}
with a

flat measure. The fermion fields are twisted in the same way as the supercharges, obtaining the
same lattice gauge transformations as the bosonic degrees of freedom. Although the U(1) sector
decouples in the continuum, at non-zero lattice spacing it can introduce unwanted artifacts at strong
coupling, and ongoing work is searching for good ways to suppress these [63 – 65]. For d = 2 a
different approach [52, 53, 66 – 70] works with compact gauge links and gauge group SU(N ), at
the cost of imposing an admissibility condition to resolve a huge degeneracy of vacua (but see
Ref. [71]), which becomes more problematic in higher dimensions [72, 2]. This formulation has
been used by several numerical studies of the Q = 4 [39, 73 – 80] and Q = 16 [81, 82] theories.

Fig. 8 of Ref. [64] shows recent results from Ref. [64] for the phase diagram of 2d Q =

16 SYM, using the non-compact twisted construction described above [83 – 86]. The system is
formulated on an rL×rβ torus, with rβ = 1/T the inverse dimensionless temperature while rL =

Ldim
√
λdim is the corresponding dimensionless length of the spatial cycle. At high temperatures

(small rβ), the fermions pick up a large thermal mass and the system reduces to a 1d bosonic
QM. In this limit (at large N ), Refs. [87 – 90] predict a ‘spatial deconfinement’ transition as rL
decreases, signalled by a non-zero spatial Wilson line Tr

[∏
xi
Ux(xi, t)

]
.

In the low-temperature (large-rβ) limit, there is a large-N holographic prediction for a similar
transition. Here the large-rL spatially confined phase is conjectured to be dual to a homogeneous
black string with a horizon wrapping around the spatial cycle, while the small-rL spatially decon-
fined phase corresponds to a localized black hole. As in the BMN case, the holographic analyses
require challenging numerical SUGRA constructions [91] of these dual black hole and black string
geometries. The lattice results for the spatial deconfinement transition (with N = 12 and fixed
lattice sizes 32×4, 24×4, 24×6, 24×9, 24×12 and 18×12) reproduce the high-temperature bosonic
QM expectations quite well and are consistent with holography at lower temperatures, albeit with
rapidly increasing uncertainties. At low temperatures a scalar potential is added to the lattice action
and then extrapolated to zero in order to avoid the thermal instability mentioned above for SYM
QM. Ref. [64] also calculates the internal energies of the dual black hole and black string, in both
phases finding consistency with holographic expectations within large uncertainties. It will be in-
teresting to see future work improve upon these results, ideally accessing lower temperatures in
addition to gaining control over extrapolations to the large-N continuum limit.

2d SYM also possesses rich zero-temperature dynamics that are important to explore non-
perturbatively, in addition to studying the thermal behavior discussed above. Refs. [92, 93] argue
that the ‘meson’ spectrum of the Q = 4 theory should include a massless supermultiplet, unlike
the 4d N = 1 SYM of which this is the dimensional reduction. A recent lattice calculation using
straightforward Wilson fermions observes such a massless multiplet [94], and also checks for spon-
taneous susy breaking (SSB), which Ref. [95] suggests might occur for this theory. No evidence of
SSB is seen, consistent with Ref. [96] and older work [74, 75, 78] using twisted formulations.
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2. Minimally supersymmetric Yang–Mills (N = 1 SYM) in four dimensions

Returning to four dimensions, we can note that most of the susy-violating operators involve
scalar fields, viz. the scalar mass terms, Yukawa couplings, and quartic operators. This implies a
vast reduction of fine-tuning for N = 1 SYM, the only 4d supersymmetric gauge theory with no
scalar fields. This theory consists of a SU(N ) gauge field and its superpartner gaugino, a massless
Majorana fermion transforming in the adjoint rep of SU(N ). The only relevant (or marginal) opera-
tor that may need to be fine-tuned to obtain the correct continuum limit is the gaugino mass [97, 98].
We can even avoid this single fine-tuning by working with Ginsparg–Wilson (GW; overlap or
domain-wall) lattice fermions that preserve chiral symmetry and protect the gaugino mass against
large additive renormalization. Although the axial anomaly breaks the classical U(1) R-symmetry
of N = 1 SYM to its Z2N subgroup, this discrete global symmetry suffices to forbid a gaugino
mass. Gaugino condensation, 〈λλ〉 6= 0, spontaneously breaks Z2N → Z2.

However, there have been no GW studies of N = 1 SYM for most of the past decade [99 –
101]. Instead, current work uses improved Wilson fermions and fine-tunes the gaugino mass to
recover both chiral symmetry and susy in the continuum limit. One major effort by the DESY–
Münster–Regensburg–Jena Collaboration, currently using clover improvement, has made signifi-
cant progress in recent years [102 – 109]. A second group recently began exploring a SYM ana-
logue of the twisted-mass fermion action [110], aiming to improve the formation of composite
supermultiplets at non-zero gaugino masses and lattice spacings, and thereby gain better control
over the chiral and continuum extrapolations.

The larger number of dimensions requires considering much smaller N � 10 compared to
the lower-dimensional work discussed above, to keep computational costs under control. Current
efforts study only gauge groups SU(2) [102 – 106] and SU(3) [107 – 111]. Figure 4 of Ref. [107]
shows recent SU(3) results from Ref. [107] for the masses of two composite states expected to
form (part of) a degenerate multiplet in the supersymmetric continuum chiral limit [112, 113]: the
0++ ‘glueball’ and the fermionic ‘gluino–glue’ particle. Even at a fixed lattice spacing the chiral
extrapolations of these masses agree within uncertainties. These signs of supermultiplet formation
appear much clearer compared to earlier SU(2) results [105], presumably due to either or both the
larger N and the use of clover improvement instead of stout smearing.

The chiral extrapolations in Fig. 4 of Ref. [107] are carried out by taking the m2
π → 0 limit for

an ‘adjoint pion’ defined in partially quenched chiral perturbation theory [114]. While two-point
functions for the physical composite states of N = 1 SYM all involve fermion-line-disconnected
diagrams, mπ is measured from just the connected part of the correlator for the η′-like ‘gluinoball’.
Supersymmetric Ward identities provide an alternative means to determine the critical κc corre-
sponding to the chiral limit. The difference between these two determinations of κc can be consid-
ered a measure of the susy-breaking discretization artifacts, which is shown for two lattice spacings
in Fig. 2 of Ref. [108]. The two available points are consistent with the artifacts vanishing ∝a2 as
expected for clover fermions, supporting the restoration of susy in the chiral continuum limit.

Many other latticeN = 1 SYM investigations may be carried out. These include explorations
of the finite-temperature phase diagram, with Refs. [102, 115] reporting that deconfinement (spon-
taneous center symmetry breaking) and chiral symmetry restoration appear to occur at the same
temperature, which was not known a priori. Refs. [103, 109] investigate the phase diagram on
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R3×S1 with a small radius for the compactified temporal direction. Comparing thermal and pe-
riodic boundary conditions (BCs) for the gauginos, they find evidence that periodic BCs allow the
confined, chirally broken phase to persist for weak couplings where analytic semi-classical meth-
ods [116] may be reliable. In addition, there is ongoing work to construct and apply a SYM gradient
flow [117 – 119]. Finally, given the progress in algorithms and computing hardware over the past
decade, it seems worthwhile to revisit calculations with GW fermions, which could complement
and check the ongoing Wilson-fermion work.

3. Maximally supersymmetric Yang–Mills (N = 4 SYM) in four dimensions
In Sec. 1 we discussed why the twisted (and orbifolded) constructions of SYM with exact susy

at non-zero lattice spacing require Q ≥ 2d supercharges. In d = 4 dimensions, this constraint
picks out another special case, N = 4 SYM with Q = 16, for which a single ‘twisted-scalar’
supercharge Q is preserved. This theory consists of a SU(N ) gauge field, four Majorana fermions
and six real scalars, all massless and transforming in the adjoint rep of SU(N ) as usual. Thanks
to its many supersymmetries, large SU(4)R symmetry and conformal symmetry, N = 4 SYM
is widely studied throughout theoretical physics. It is the conformal field theory of the original
AdS/CFT holographic duality [120], and provided early insight into S-duality [121]. Lattice field
theory in principle enables non-perturbative investigations of this theory even away from the large-
N planar regime.

On the lattice, the bosonic fields are combined into five-component complexified gauge links,
requiring the A∗4 lattice with five basis vectors symmetrically spanning 4d [2, 57 – 60]. A single
fine-tuning of a marginal operator may be required to recover the continuum twisted rotation sym-
metry from the S5 point-group symmetry of the A∗4 lattice, which in turn restores the 15 supersym-
metries broken by the lattice discretization [15, 122, 123]. Most numerical calculations so far fix
the corresponding coefficient to its classical value. These calculations also have to regulate flat di-
rections in both the SU(N ) and U(1) sectors. A simple (softQ-breaking) scalar potential suffices to
lift the SU(N ) flat directions, and is removed in continuum extrapolations. The U(1) sector is more
challenging, and ongoing work is searching for good ways to handle it [63 – 65]. The results shown
in Fig. 1 lift the U(1) flat directions by modifying the moduli equations in a way that preserves
the Q susy. At least for ’t Hooft couplings λlat ≤ 2 this results in effective O(a) improvement
indicated by Q Ward identity violations vanishing ∝a2 in the continuum limit [63]. The result-
ing lattice action is rather complicated, motivating the public development of high-performance
parallel code [62] at github.com/daschaich/susy.

Figure 1 presents preliminary results from ongoing lattice N = 4 SYM calculations. The
top plot considers the static potential V (r), which is found to be coulombic at all accessible
’t Hooft couplings [61, 124, 125], as expected. Fitting (tree-level-improved [125]) lattice data
to the Coulomb potential V (r) = A − C/r predicts the Coulomb coefficient C(λ) shown in the
figure. There is a famous holographic prediction [126, 127] that in the regimeN →∞ and λ→∞
with λ� N this quantity should behave as C(λ) ∝

√
λ up toO

(
1√
λ

)
corrections, and more gen-

eral analytic results have been obtained in the N = ∞ planar limit [128]. The lattice results for
N ≤ 4 and λlat ≤ 2 do not show such behavior and instead look consistent with leading-order
perturbation theory. The dashed black line is a fit of the U(4) data to the leading perturbative
expression C(λ) = bλlat/(4π), where the fit parameter b = 0.795(13) converts the input lattice

6
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’t Hooft coupling to the expected continuum normalization. Higher-order perturbative corrections
for C(λ) are suppressed by powers of λ

2π2 [129 – 131], suggesting that this apparent leading-order
behavior for λlat ≤ 2 should not be surprising.

The bottom plot of Fig. 1 considers the scaling dimension ∆K(λ) = 2+γK(λ) of the Konishi
operator OK =

∑
I Tr

[
XIXI

]
, where XI are the scalar fields (obtained from a polar decom-

position of the complexified lattice gauge links). There are perturbative [132 – 134] and holo-

Figure 1: Preliminary results from ongoing 4d lattice N = 4 SYM calculations with gauge groups U(2),
U(3) and U(4). Top: The static potential Coulomb coefficient, from L3×Nt lattices with L ≤ 16 and
Nt ≤ 32, appears consistent with leading-order perturbation theory (black dashed line) for λlat ≤ 2. Bottom:
The Konishi scaling dimension, from MCRG stability matrix analyses of L4 lattices with L ≤ 16, also
appears consistent with perturbation theory (and well below bootstrap bounds) for λlat . 3.

7
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graphic [135, 136] predictions for ∆K . The former are also relevant for the strong-coupling regime
λ � N [137], due to the conjectured S-duality of the theory under 4πN

λ ←→ λ
4πN . In addition,

the superconformal bootstrap program has obtained bounds on the maximum value γK can reach
across all λ [138, 139]. The lattice results in this figure for λlat . 3 again appear consistent with
perturbation theory. They are obtained from Monte Carlo renormalization group (MCRG) stability
matrix analyses [140], with systematic uncertainties estimated by varying the number of interpolat-
ing operators in the stability matrix (with different operators obtained by using different amounts
of smearing). Additional systematic uncertainties still to be quantified include sensitivity to the
lattice volume and the number of RG blocking steps. The stability matrix also includes the related
‘SUGRA’ or 20′ operator OIJS = Tr

[
X{IXJ}], whose scaling dimension ∆S = 2 is protected.

Current work only scratches the surface of the investigations that could in principle be pursued
by latticeN = 4 SYM. One important task is to push existing studies to stronger ’t Hooft couplings,
in order to make contact with holographic predictions and ideally investigate the behavior of the
system around the S-dual point λsd = 4πN . The discussion of sign problems in the next section
suggests that this is likely to be challenging. Alternately, S-duality may be studied at weak coupling
by adjusting the scalar potential to move the system onto the Coulomb branch of the moduli space
where its U(N ) gauge invariance is higgsed to U(1)N . S-duality then relates the masses of the
U(1)-charged elementary ‘W bosons’ and the magnetically charged topological ’t Hooft–Polyakov
monopoles [121], each of which may be accessible from lattice calculations [141]. The finite-
temperature behavior of lattice N = 4 SYM will also be interesting to explore. In particular, there
is motivation [7] to study the free energy, for which the weak-coupling perturbative prediction [142]
and the holographic strong-coupling calculation [135] differ by a factor of 3

4 .

4. Challenges for the future

Although the recent progress of lattice susy is substantial, it is largely concentrated in the
three areas discussed above where significant simplifications are possible. Within those three areas
we have already considered several compelling directions for future work, ranging from improved
control over large-N continuum extrapolations in lower dimensions, to revisitingN = 1 SYM with
GW fermions, and reaching stronger ’t Hooft couplings inN = 4 SYM calculations. In addition, it
will be important for efforts to expand beyond these domains and tackle more challenging subjects
where such simplifications do not appear to be available, such as SQCD.

Supersymmetric QCD: Adding matter multiplets (‘quarks’ and ‘squarks’ not necessarily in the
fundamental rep) to the 4d lattice N = 1 SYM work discussed in Sec. 2 would enable investiga-
tions of many important phenomena, including (metastable) dynamical susy breaking, conjectured
electric–magnetic dualities and RG flows to known conformal IR fixed points. The downside is that
many more susy-violating operators appear, and the fine-tuning challenge becomes enormously
harder. Even exploiting the continuum-like flavor symmetries offered by GW fermions, Ref. [3]
counts O(10) operators to be fine-tuned, depending on the gauge group and matter content. In this
context working with GW fermions appears to be especially strongly motivated. Refs. [3, 14] argue
that this may allow most or all of the scalar masses, Yukawas and quartic couplings to be fine-tuned
“offline” through multicanonical reweighting, which could vastly reduce computational costs.

8
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That said, as in the case of N = 1 SYM, work currently underway uses Wilson fermions and
has to face the full fine-tuning head-on. One tactic for approaching this challenge is to use lattice
perturbation theory to guide numerical calculations [143, 144]. Another is to omit the scalar fields
at first, and warm up by studying the gauge–fermion theory including both (adjoint) gauginos and
(fundamental) quarks [145], which also provides connections to composite Higgs investigations
that are reviewed by another contribution to these proceedings [146].

Following the logic of Sec. 1, it may prove advantageous to first investigate simpler sys-
tems in fewer than four dimensions. In 0+1 dimensions, for example, Refs. [147 – 149] consider
the Berkooz–Douglas matrix model [150], which adds Nf fundamental multiplets to Q = 16

SYM QM (preserving half of the supercharges in the continuum). As for the case of 2d and
3d SYM, more effort has been devoted to constructing clever lattice formulations of 2d and 3d
SQCD [151 – 156] compared to carrying out numerical calculations [157]. That one numerical
calculation [157] uses a quiver construction of 2d Q = 4 SQCD that still preserves one of the
supercharges at non-zero lattice spacing [151, 152]. The starting point is 3d 8-supercharge SYM
on a lattice with only two slices in the third direction. The twisted formulation can be generalized
to have different gauge groups U(N ) and U(F ) on each slice, with the bosonic and fermionic fields
that connect the two slices transforming in the bifundamental rep of U(N )×U(F ). Decoupling
the U(F ) slice then leaves behind a 2d U(N ) theory with half the supercharges (Q = 4) and F
massless fundamental matter multiplets. This same procedure works for Q = 8 SQCD in two and
three dimensions [155], and may be generalizable to higher reps [156]. Ref. [157] compares U(2)
SQCD with F = 3 vs. U(3) SQCD with F = 2, observing dynamical susy breaking for N > F

and checking that the goldstino is consistent with masslessness in infinite volume.

Sign problems: Another challenge is that some of the systems discussed above may suffer from
a sign problem, at least in certain regimes. Integrating over the gauginos produces the pfaffian
of the fermion operator, which can fluctuate in sign even when the determinant would be posi-
tive. Writing a generic complex pfaffian as pfD = |pfD|eiα, only its magnitude is included in the
‘phase-quenched’ RHMC studies presented above. The phase-quenched observables 〈O〉pq need
to be reweighted, 〈O〉 = 〈O〉pq /

〈
eiα
〉

pq, with a sign problem appearing when
〈
eiα
〉

pq = Z/Zpq

vanishes within statistical uncertainties [158]. In lattice calculations with periodic BCs for all
fields, the partition function Z is the Witten index and must vanish for any theory that can exhibit
SSB [159], implying a severe sign problem.

For Wilson-fermion N = 1 SYM the pfaffian is real and its sign can be computed effi-
ciently [160]. Recent clover calculations report

〈
eiα
〉

pq ≈ 1, with the situation improving further
as the lattice spacing decreases [107]. However,

〈
eiα
〉

pq is expected to decrease exponentially in
the lattice volume, and the situation is likely to be worse for SQCD. Directly evaluating the pfaffian
is much more computationally expensive, and has been done mostly for SYM QM and d = 2 SYM,
where sign problems also appear to be well under control [35, 37, 79, 80, 85, 94, 96].

Figure 2 presents results for the pfaffian phase of lattice N = 4 SYM in four dimensions,
adapted from Refs. [123, 161], where only small N and small lattice volumes are computationally
accessible. In the top plot, only small per-mille-level phase fluctuations are observed on all ac-
cessible volumes with fixed ’t Hooft coupling λlat = 0.5. In particular, the expected exponential
suppression of

〈
eiα
〉

pq with the lattice volume is not visible; instead the largest volumes for gauge
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group U(2) produce results that are constant within uncertainties. In the bottom plot, however,
we see phase fluctuations increasing significantly for stronger ’t Hooft couplings λlat & 2. This
appears to be one of the main obstacles to reaching the stronger couplings of interest in order to
directly probe holography and S-duality, with calculations using this lattice action largely limited
to λlat . 4.

Final remarks: Non-perturbative lattice investigations of supersymmetric QFTs are important
and challenging, making this a field in which we can expect to see a great deal more work in the

Figure 2: Results for the phase of the pfaffian
〈
Re
(
eiα
)〉

pq ≈
〈
eiα
〉

pq from lattice N = 4 SYM in four
dimensions. Top: With fixed ’t Hooft coupling λlat = 0.5, only per-mille-level fluctuations are observed for
U(N ) gauge groups with N = 2, 3 and 4, up to the largest accessible volumes. Adapted from Ref. [123].
Bottom: On a fixed 44 lattice volume, the phase fluctuations increase significantly for stronger couplings
λlat & 2, obstructing studies of λlat & 4 with this lattice action. Adapted from Ref. [161].
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future. It is encouraging that there has been so much recent progress in lattice studies of 4dN = 1

SYM and N = 4 SYM, along with their dimensional reductions to d < 4. This brief overview
has also omitted coverage of advances in other areas, including theories without gauge invari-
ance [162 – 167], the lattice regularization of the Green–Schwarz superstring worldsheet sigma
model [168 – 170], and proposed lattice formulations of a mass-deformed 4d N = 2∗ SYM theory
with Q = 8 [171] and of 5d Q = 16 SYM [172]. While there are clear challenges that will be
difficult to overcome, in particular concerning supersymmetric QCD and sign problems, overall the
prospects of lattice susy are bright, with many compelling directions for future investigations.

ACKNOWLEDGMENTS: I thank the organizers of Lattice 2018 for the invitation to present this
overview, and for all their work. E. Rinaldi, J. Nishimura, H. So, M. Costa, G. Bergner and
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[48] Y. Asano, V. G. Filev, S. Kováčik and D. O’Connor, JHEP 1807 (2018) 152 [1805.05314].
[49] M. S. Costa, L. Greenspan, J. Penedones and J. Santos, JHEP 1503 (2015) 069 [1411.5541].
[50] S. Catterall and A. Joseph, CPC 183 (2012) 1336–1353 [1108.1503].
[51] J. Giedt and A. E. Lipstein, JHEP 1803 (2018) 162 [1711.05203].
[52] F. Sugino, JHEP 0401 (2004) 015 [hep-lat/0311021].
[53] F. Sugino, JHEP 0403 (2004) 067 [hep-lat/0401017].
[54] S. Catterall, JHEP 0411 (2004) 006 [hep-lat/0410052].
[55] A. G. Cohen, D. B. Kaplan, E. Katz and M. Ünsal, JHEP 0308 (2003) 024 [hep-lat/0302017].
[56] A. G. Cohen, D. B. Kaplan, E. Katz and M. Ünsal, JHEP 0312 (2003) 031 [hep-lat/0307012].
[57] D. B. Kaplan and M. Ünsal, JHEP 0509 (2005) 042 [hep-lat/0503039].
[58] M. Ünsal, JHEP 0610 (2006) 089 [hep-th/0603046].
[59] S. Catterall, JHEP 0801 (2008) 048 [0712.2532].
[60] P. H. Damgaard and S. Matsuura, PLB 661 (2008) 52–56 [0801.2936].
[61] S. Catterall, D. Schaich, P. Damgaard, T. DeGrand, J. Giedt, PRD 90 (2014) 065013 [1405.0644].
[62] D. Schaich and T. DeGrand, CPC 190 (2015) 200–212 [1410.6971].
[63] S. Catterall and D. Schaich, JHEP 1507 (2015) 057 [1505.03135].
[64] S. Catterall, R. G. Jha, D. Schaich and T. Wiseman, PRD 97 (2018) 086020 [1709.07025].
[65] S. Catterall, J. Giedt and R. G. Jha, 1808.04735.
[66] D. Kadoh and H. Suzuki, PLB 682 (2010) 466–471 [0908.2274].
[67] M. Hanada, S. Matsuura and F. Sugino, PTP 126 (2011) 597–611 [1004.5513].
[68] M. Hanada, S. Matsuura and F. Sugino, NPB 857 (2012) 335–361 [1109.6807].
[69] S. Matsuura, T. Misumi and K. Ohta, PTEP 2014 (2014) 123B01 [1408.6998].
[70] M. Hanada, D. Kadoh, S. Matsuura and F. Sugino NPB 929 (2018) 266–297 [1711.02319].
[71] S. Matsuura and F. Sugino JHEP 1404 (2014) 088 [1402.0952].
[72] F. Sugino JHEP 0501 (2005) 016 [hep-lat/0410035].
[73] H. Suzuki JHEP 0709 (2007) 052 [0706.1392].
[74] I. Kanamori, H. Suzuki and F. Sugino, PRD 77 (2008) 091502 [0711.2099].
[75] I. Kanamori, F. Sugino and H. Suzuki, PTP 119 (2008) 797–827, [0711.2132].
[76] I. Kanamori and H. Suzuki, NPB 811 (2009) 420–437 [0809.2856].
[77] I. Kanamori and H. Suzuki, PLB 672 (2009) 307–311 [0811.2851].
[78] I. Kanamori, PRD 79 (2009) 115015 [0902.2876].
[79] M. Hanada and I. Kanamori, JHEP 1101 (2011) 058 [1010.2948].
[80] S. Kamata, S. Matsuura, T. Misumi and K. Ohta, PTEP 2016 (2016) 123B01 [1607.01260].

12

http://dx.doi.org/10.1088/978-0-7503-1726-9
https://arxiv.org/abs/1708.00734
http://dx.doi.org/10.1103/PhysRevD.78.041502
https://arxiv.org/abs/0803.4273
http://dx.doi.org/10.1007/JHEP04(2010)077
https://arxiv.org/abs/0909.4947
https://arxiv.org/abs/1503.08499
http://dx.doi.org/10.1007/JHEP05(2016)167
https://arxiv.org/abs/1506.01366
http://dx.doi.org/10.1103/PhysRevD.94.086010
https://arxiv.org/abs/1603.00538
http://dx.doi.org/10.1103/PhysRevD.80.065014
https://arxiv.org/abs/0907.4966
http://dx.doi.org/10.1007/JHEP12(2014)044
https://arxiv.org/abs/1410.0235
http://dx.doi.org/10.22323/1.214.0253
https://arxiv.org/abs/1411.6904
http://dx.doi.org/10.22323/1.256.0395
https://arxiv.org/abs/1612.04291
http://dx.doi.org/10.1007/JHEP02(2018)042
https://arxiv.org/abs/1709.01932
https://arxiv.org/abs/1810.03378
http://dx.doi.org/10.1088/1126-6708/2002/04/013
https://arxiv.org/abs/hep-th/0202021
http://dx.doi.org/10.1007/JHEP09(2010)088
https://arxiv.org/abs/1003.4952
http://dx.doi.org/10.1007/JHEP11(2013)200
https://arxiv.org/abs/1308.3525
http://dx.doi.org/10.1007/JHEP07(2018)152
https://arxiv.org/abs/1805.05314
http://dx.doi.org/10.1007/JHEP03(2015)069
https://arxiv.org/abs/1411.5541
http://dx.doi.org/10.1016/j.cpc.2012.01.024
https://arxiv.org/abs/1108.1503
http://dx.doi.org/10.1007/JHEP03(2018)162
https://arxiv.org/abs/1711.05203
http://dx.doi.org/10.1088/1126-6708/2004/01/015
https://arxiv.org/abs/hep-lat/0311021
http://dx.doi.org/10.1088/1126-6708/2004/03/067
https://arxiv.org/abs/hep-lat/0401017
http://dx.doi.org/10.1088/1126-6708/2004/11/006
https://arxiv.org/abs/hep-lat/0410052
http://dx.doi.org/10.1088/1126-6708/2003/08/024
https://arxiv.org/abs/hep-lat/0302017
http://dx.doi.org/10.1088/1126-6708/2003/12/031
https://arxiv.org/abs/hep-lat/0307012
http://dx.doi.org/10.1088/1126-6708/2005/09/042
https://arxiv.org/abs/hep-lat/0503039
http://dx.doi.org/10.1088/1126-6708/2006/10/089
https://arxiv.org/abs/hep-th/0603046
http://dx.doi.org/10.1088/1126-6708/2008/01/048
https://arxiv.org/abs/0712.2532
http://dx.doi.org/10.1016/j.physletb.2008.01.044
https://arxiv.org/abs/0801.2936
http://dx.doi.org/10.1103/PhysRevD.90.065013
https://arxiv.org/abs/1405.0644
http://dx.doi.org/10.1016/j.cpc.2014.12.025
https://arxiv.org/abs/1410.6971
http://dx.doi.org/10.1007/JHEP07(2015)057
https://arxiv.org/abs/1505.03135
http://dx.doi.org/10.1103/PhysRevD.97.086020
https://arxiv.org/abs/1709.07025
https://arxiv.org/abs/1808.04735
http://dx.doi.org/10.1016/j.physletb.2009.11.028
https://arxiv.org/abs/0908.2274
http://dx.doi.org/10.1143/PTP.126.597
https://arxiv.org/abs/1004.5513
http://dx.doi.org/10.1016/j.nuclphysb.2011.12.014
https://arxiv.org/abs/1109.6807
http://dx.doi.org/10.1093/ptep/ptu153
https://arxiv.org/abs/1408.6998
http://dx.doi.org/10.1016/j.nuclphysb.2018.02.008
https://arxiv.org/abs/1711.02319
http://dx.doi.org/10.1007/JHEP04(2014)088
https://arxiv.org/abs/1402.0952
http://dx.doi.org/10.1088/1126-6708/2005/01/016
https://arxiv.org/abs/hep-lat/0410035
http://dx.doi.org/10.1088/1126-6708/2007/09/052
https://arxiv.org/abs/0706.1392
http://dx.doi.org/10.1103/PhysRevD.77.091502
https://arxiv.org/abs/0711.2099
http://dx.doi.org/10.1143/PTP.119.797
https://arxiv.org/abs/0711.2132
http://dx.doi.org/10.1016/j.nuclphysb.2008.11.021
https://arxiv.org/abs/0809.2856
http://dx.doi.org/10.1016/j.physletb.2009.01.039
https://arxiv.org/abs/0811.2851
http://dx.doi.org/10.1103/PhysRevD.79.115015
https://arxiv.org/abs/0902.2876
http://dx.doi.org/10.1007/JHEP01(2011)058
https://arxiv.org/abs/1010.2948
http://dx.doi.org/10.1093/ptep/ptw153
https://arxiv.org/abs/1607.01260


P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
0
5

Progress and prospects of lattice supersymmetry David Schaich

[81] E. Giguère and D. Kadoh, JHEP 1505 (2015) 082 [1503.04416].
[82] D. Kadoh, PoS LATTICE2016 (2017) 033 [1702.01615].
[83] S. Catterall, JHEP 0901 (2009) 040 [0811.1203].
[84] S. Catterall, A. Joseph and T. Wiseman, JHEP 1012 (2010) 022 [1008.4964].
[85] S. Catterall, R. Galvez, A. Joseph and D. Mehta, JHEP 1201 (2012) 108 [1112.3588].
[86] R. G. Jha, PoS LATTICE2018 (2018, to appear) [1809.00797].
[87] O. Aharony, J. Marsano, S. Minwalla and T. Wiseman, CQG 21 (2004) 5169 [hep-th/0406210].
[88] N. Kawahara, J. Nishimura and S. Takeuchi, JHEP 0710 (2007) 097 [0706.3517].
[89] G. Mandal, M. Mahato and T. Morita, JHEP 1002 (2010) 034 [0910.4526].
[90] T. Azuma, T. Morita and S. Takeuchi, PRL 113 (2014) 091603 1403.7764].
[91] Ó. J. C. Dias, J. E. Santos and B. Way, JHEP 1706 (2017) 029 [1702.07718].
[92] E. Witten, NPB 460 (1996) 335–350 [hep-th/9510135].
[93] H. Fukaya, I. Kanamori, H. Suzuki et al., PTP 116 (2007) 1117 [hep-th/0609049].
[94] D. August, B. H. Wellegehausen and A. Wipf, 1802.07797.
[95] K. Hori and D. Tong, JHEP 0705 (2007) 079 [hep-th/0609032].
[96] S. Catterall, R. G. Jha and A. Joseph, PRD 97 (2018) 054504 [1801.00012].
[97] G. Curci and G. Veneziano, NPB 292 (1987) 555–572.
[98] H. Suzuki, NPB 861 (2012) 290–320 [1202.2598].
[99] J. Giedt, R. Brower, S. Catterall, G. Fleming, P. Vranas, PRD 79 (2009) 025015 [0810.5746].

[100] M. G. Endres, PRD 79 (2009) 094503 [0902.4267].
[101] JLQCD Collaboration: S. W. Kim, H. Fukaya et al., PoS LATTICE2011 (2011) 069 [1111.2180].
[102] G. Bergner, P. Giudice, G. Münster, S. Piemonte et al., JHEP 1411 (2014) 049 [1405.3180].
[103] G. Bergner and S. Piemonte, JHEP 1412 (2014) 133 [1410.3668].
[104] G. Bergner, P. Giudice, I. Montvay, G. Münster et al., EPJ Plus 130 (2015) 229 [1411.6995].
[105] G. Bergner, P. Giudice, G. Münster, I. Montvay et al., JHEP 1603 (2016) 080 [1512.07014].
[106] S. Ali, G. Bergner, H. Gerber, P. Giudice et al., EPJ Web Conf. 175 (2018) 08016 [1710.07464].
[107] S. Ali, G. Bergner, H. Gerber, P. Giudice, I. Montvay et al., JHEP 1803 (2018) 113 [1801.08062].
[108] S. Ali, H. Gerber, I. Montvay, G. Münster, S. Piemonte et al., EPJC 78 (2018) 404 [1802.07067].
[109] G. Bergner, S. Piemonte and M. Ünsal, 1806.10894.
[110] M. Steinhauser, A. Sternbeck, B. Wellegehausen and A. Wipf, EPJ Web Conf. 175 (2018) 08022

[1711.05086]; PoS LATTICE2018 (2018) 211 [arXiv:1811.01785].
[111] S. Ali, G. Bergner, H. Gerber, C. López et al., PoS LATTICE2018 (2018) 207 [1811.02297].
[112] G. Veneziano and S. Yankielowicz, PLB 113 (1982) 231.
[113] G. R. Farrar, G. Gabadadze and M. Schwetz, PRD 58 (1998) 015009 [hep-th/9711166].
[114] G. Münster and H. Stüwe, JHEP 1405 (2014) 034 [1402.6616].
[115] G. Bergner, C. López and S. Piemonte, PoS LATTICE2018 (2018) 212 [1811.02270].
[116] E. Poppitz, T. Schäfer and M. Ünsal, JHEP 1210 (2012) 115 [1205.0290].
[117] D. Kadoh and N. Ukita, PoS LATTICE2018 (2018, to appear); 1812.02351.
[118] K. Hieda, A. Kasai, H. Makino and H. Suzuki, PTEP 2017 (2017) 063B03 [1703.04802].
[119] A. Kasai, O. Morikawa and H. Suzuki, [1808.07300].
[120] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231–252, hep-th/9711200].
[121] H. Osborn, PLB 83 (1979) 321–326.
[122] S. Catterall, J. Giedt and A. Joseph, JHEP 1310 (2013) 166 [1306.3891].
[123] S. Catterall, J. Giedt, D. Schaich et al., PoS LATTICE2014 (2014) 267 [1411.0166].
[124] S. Catterall, P. Damgaard, T. Degrand, R. Galvez, D. Mehta, JHEP 1211 (2012) 072 [1209.5285].
[125] D. Schaich, S. Catterall, P. H. Damgaard, J. Giedt, PoS LATTICE2016 (2016) 221 [1611.06561].
[126] S.-J. Rey and J.-T. Yee, EPJC 22 (2001) 379–394 [hep-th/9803001].
[127] J. M. Maldacena, PRL 80 (1998) 4859–4862 [hep-th/9803002].

13

http://dx.doi.org/10.1007/JHEP05(2015)082
https://arxiv.org/abs/1503.04416
http://dx.doi.org/10.22323/1.256.0033
https://arxiv.org/abs/1702.01615
http://dx.doi.org/10.1088/1126-6708/2009/01/040
https://arxiv.org/abs/0811.1203
http://dx.doi.org/10.1007/JHEP12(2010)022
https://arxiv.org/abs/1008.4964
http://dx.doi.org/10.1007/JHEP01(2012)108
https://arxiv.org/abs/1112.3588
https://arxiv.org/abs/1809.00797
http://dx.doi.org/10.1088/0264-9381/21/22/010
https://arxiv.org/abs/hep-th/0406210
http://dx.doi.org/10.1088/1126-6708/2007/10/097
https://arxiv.org/abs/0706.3517
http://dx.doi.org/10.1007/JHEP02(2010)034
https://arxiv.org/abs/0910.4526
http://dx.doi.org/10.1103/PhysRevLett.113.091603
https://arxiv.org/abs/1403.7764
http://dx.doi.org/10.1007/JHEP06(2017)029
https://arxiv.org/abs/1702.07718
http://dx.doi.org/10.1016/0550-3213(95)00610-9
https://arxiv.org/abs/hep-th/9510135
http://dx.doi.org/10.1143/PTP.116.1117
https://arxiv.org/abs/hep-th/0609049
https://arxiv.org/abs/1802.07797
http://dx.doi.org/10.1088/1126-6708/2007/05/079
https://arxiv.org/abs/hep-th/0609032
http://dx.doi.org/10.1103/PhysRevD.97.054504
https://arxiv.org/abs/1801.00012
http://dx.doi.org/10.1016/0550-3213(87)90660-2
http://dx.doi.org/10.1016/j.nuclphysb.2012.04.008
https://arxiv.org/abs/1202.2598
http://dx.doi.org/10.1103/PhysRevD.79.025015
https://arxiv.org/abs/0810.5746
http://dx.doi.org/10.1103/PhysRevD.79.094503
https://arxiv.org/abs/0902.4267
http://dx.doi.org/10.22323/1.139.0069
https://arxiv.org/abs/1111.2180
http://dx.doi.org/10.1007/JHEP11(2014)049
https://arxiv.org/abs/1405.3180
http://dx.doi.org/10.1007/JHEP12(2014)133
https://arxiv.org/abs/1410.3668
http://dx.doi.org/10.1140/epjp/i2015-15229-7
https://arxiv.org/abs/1411.6995
http://dx.doi.org/10.1007/JHEP03(2016)080
https://arxiv.org/abs/1512.07014
http://dx.doi.org/10.1051/epjconf/201817508016
https://arxiv.org/abs/1710.07464
http://dx.doi.org/10.1007/JHEP03(2018)113
https://arxiv.org/abs/1801.08062
http://dx.doi.org/10.1140/epjc/s10052-018-5887-9
https://arxiv.org/abs/1802.07067
https://arxiv.org/abs/1806.10894
http://dx.doi.org/10.1051/epjconf/201817508022
https://arxiv.org/abs/1711.05086
http://dx.doi.org/10.22323/1.334.0211
https://arxiv.org/abs/1811.01785
http://dx.doi.org/10.22323/1.334.0207
https://arxiv.org/abs/1811.02297
http://dx.doi.org/10.1016/0370-2693(82)90828-0
http://dx.doi.org/10.1103/PhysRevD.58.015009
https://arxiv.org/abs/hep-th/9711166
http://dx.doi.org/10.1007/JHEP05(2014)034
https://arxiv.org/abs/1402.6616
http://dx.doi.org/10.22323/1.334.0212
https://arxiv.org/abs/1811.02270
http://dx.doi.org/10.1007/JHEP10(2012)115
https://arxiv.org/abs/1205.0290
https://arxiv.org/abs/1812.02351
http://dx.doi.org/10.1093/ptep/ptx073
https://arxiv.org/abs/1703.04802
https://arxiv.org/abs/1808.07300
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/0370-2693(79)91118-3
http://dx.doi.org/10.1007/JHEP10(2013)166
https://arxiv.org/abs/1306.3891
http://dx.doi.org/10.22323/1.214.0267
https://arxiv.org/abs/1411.0166
http://dx.doi.org/10.1007/JHEP11(2012)072
https://arxiv.org/abs/1209.5285
http://dx.doi.org/10.22323/1.256.0221
https://arxiv.org/abs/1611.06561
http://dx.doi.org/10.1007/s100520100799
https://arxiv.org/abs/hep-th/9803001
http://dx.doi.org/10.1103/PhysRevLett.80.4859
https://arxiv.org/abs/hep-th/9803002


P
o
S
(
L
A
T
T
I
C
E
2
0
1
8
)
0
0
5

Progress and prospects of lattice supersymmetry David Schaich

[128] N. Gromov and F. Levkovich-Maslyuk, JHEP 1612 (2016) 122 [1601.05679].
[129] A. Pineda, PRD 77 (2008) 021701 [0709.2876].
[130] M. Stahlhofen, JHEP 1211 (2012) 155 [1209.2122].
[131] M. Prausa and M. Steinhauser, PRD 88 (2013) 025029 [1306.5566].
[132] F. Fiamberti, A. Santambrogio, C. Sieg and D. Zanon, NPB 805 (2008) 231–266 [0806.2095].
[133] Z. Bajnok and R. A. Janik, NPB 807 (2009) 625–650 [0807.0399].
[134] V. N. Velizhanin, JETP Lett. 89 (2009) 6–9, 0808.3832].
[135] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, PLB 428 (1998) 105–114 [hep-th/9802109].
[136] N. Gromov, V. Kazakov and P. Vieira, PRL 104 (2010) 211601 [0906.4240].
[137] C. Beem, L. Rastelli, A. Sen and B. C. van Rees, JHEP 1404 (2014) 122 [1306.3228].
[138] C. Beem, L. Rastelli and B. C. van Rees, PRL 111 (2013) 071601 [1304.1803].
[139] C. Beem, L. Rastelli and B. C. van Rees, PRD 96 (2017) 046014 [1612.02363].
[140] R. H. Swendsen, PRL 42 (1979) 859–861.
[141] J. Giedt, S. Catterall, P. Damgaard and D. Schaich, PoS LATTICE2016 (2016) 209 [1804.07792].
[142] A. Fotopoulos and T. R. Taylor PRD 59 (1999) 061701 [hep-th/9811224].
[143] M. Costa and H. Panagopoulos, PRD 96 (2017) 034507 [1706.05222]; 1812.06770.
[144] B. H. Wellegehausen and A. Wipf, PoS LATTICE2018 (2018) 210 [1811.01784].
[145] G. Bergner and S. Piemonte, PoS LATTICE2018 (2018, to appear) [1811.01797].
[146] O. Witzel PoS LATTICE2018 (2018, to appear).
[147] V. G. Filev and D. O’Connor, JHEP 1605 (2016) 122 [1512.02536].
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