Face, Notch or Edge? Intermolecular Dissociation Energies of 1-Naphthol Complexes with Linear Molecules

Richard Knochenmuss, Rajeev K. Sinha,* and Samuel Leutwyler†

Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
(Dated: May 22, 2019)

Abstract

The stimulated-emission-pumping/resonant 2-photon ionization (SEP-R2PI) method was used to determine the intermolecular dissociation energies D_0 of jet-cooled 1-naphthol(1NpOH)-S complexes where S is a linear molecule (N$_2$, CO, CO$_2$, OCS, N$_2$O, ethyne) or symmetric-top molecule (2-butyne) that contains double or triple bonds. The dissociation energies $D_0(S_0)$ are bracketed as follows: 6.68 ± 0.08 kJ/mol for S=N$_2$, 7.7 ± 0.8 kJ/mol for CO, 12.07 ± 0.10 kJ/mol for CO$_2$, 13.03 ± 0.01 kJ/mol for N$_2$O, 14.34 ± 0.08 kJ/mol for ethyne, 15.0 ± 1.35 kJ/mol for OCS and 29.6 ± 2.4 kJ/mol for 2-butyne. The minimum-energy structures, vibrational wavenumbers and zero-point vibrational energies were calculated using the dispersion-corrected density functional theory methods B97-D3 and B3LYP-D3 with the def2-QZVPP basis set. These predict that N$_2$ and CO are dispersively bound Face complexes (S bound to a naphthalene face), while CO$_2$, N$_2$O and OCS adsorb into the “notch” between the naphthyl and OH groups; these are denoted Notch complexes. Ethyne and 2-butyne form Edge complexes involving H-bonds from the -OH group of 1NpOH to the center of the molecule. The presence of a double or triple bond or aromatic C=C bond within S does not lead to a specific calculated geometry (Face, Notch or Edge). However, a correlation exists between structure and the sign of the quadrupole moment component Θ_{zz} of S: Negative Θ_{zz} correlates with Face or Notch, while positive Θ_{zz} correlates with Edge geometries.

Keywords: dispersive interactions, non-classical hydrogen bond, intermolecular binding energies, laser spectroscopy
I. INTRODUCTION

London dispersion forces arise from long-range electron correlation between atoms and/or molecules.1,2 These noncovalent interactions between atomic or molecular systems are always attractive and are ubiquitous in all forms of matter. They contribute importantly to the structures and lattice energies of molecular solids and are involved in phenomena such as enzyme-substrate binding, drug-substrate interactions and protein folding, so they are of great importance in fields ranging from solid-state physics to chemical biology.3–13 While London dispersion energies between first- and second-row closed-shell atoms are fairly weak,1–7 in molecular systems they increase with the number of atoms and dispersive contributions to the intermolecular binding energy may be larger than the electrostatic contributions.

In density-functional theory (DFT) the introduction of dispersion-corrected functionals14–18 has proved to be a major advance, since they reduce the need for very challenging high-level correlated methods,13,19–21 which require very large basis sets to accurately capture the intermolecular correlation energy.13,20–26 However, the parametrization of the dispersion terms employed in DFT-D methods has mainly been based on calculations,9,15,16,27,28 and the databases used to benchmark DFT-D calculations of dispersively bound complexes are themselves mostly based on calculations.22,24,25 To ensure that the methods are accurate and can be used with confidence, it is critical that they are benchmarked and corrected by experimental results.13,18,20,21,23,26

We have recently determined accurate intermolecular dissociation energies $D_0(S_0)$ of complexes of the hydroxyaromatic 1NpOH with solvent molecules S where S is a noble-gas atom (Ne, Ar, Kr, Xe) or diatomic N\textsubscript{2}; these lie in the range $D_0 = 3.4 - 10.8$ kJ/mol.29 These complexes are dispersively bound, with S being adsorbed to one “face” of the naphthalene moiety and are thus termed Face complexes. We extended these D_0 measurements to 1NpOH complexed with nonpolar cycloalkanes,19,30,31 and with the n-alkanes from methane to n-butane.32 1NpOH complexes can also form another type of structure denoted Edge, in which the OH group of 1NpOH forms a classical hydrogen bond to S molecules with lone-pair bearing N or O atoms.33–35 Nonclassically H-bonded Edge complexes are formed with dipolar aromatic solvents such as S=thiophene, furan and dimethylfuran,29 but also with nonpolar molecules that offer electron-rich C-C bonds, such as cyclopropane,19 or aromatic double bonds such as benzene.35,36 On the other hand, the triply-bonded N\textsubscript{2} molecule forms a Face complex.29 Thus, while all non-classically H-bonded Edge molecules contain electron-rich C-C or aromatic C=C bonds, the presence of double or triple
bonds in S does not guarantee the formation of an Edge complex.

To increase the diversity of species for which accurate experimental $D_0(S_0)$ are available, and to further elucidate the factors affecting bonding of noncovalent complexes, we here report on 1NpOH complexes with seven linear (or symmetric-top) molecules containing electron-rich double and triple bonds. Specifically, the goals of the present work are: (1) to measure the ground-state dissociation energies $D_0(S_0)$ of the seven complexes using the stimulated-emission pumping resonant two-photon ionization (SEP-R2PI) method;13,19,20,30,33,36–38 (2) to compare polar doubly-bonded linear molecules (S=N\textsubscript{2}O, OCS) with nonpolar doubly-bonded CO\textsubscript{2}, with nonpolar triply-bonded linear molecules [S=N\textsubscript{2}, ethyne (acetylene) and 2-butyne (dimethylacetylene)] and with the weakly polar triply bonded CO; (3) to investigate correlation of the dissociation energies with molecular properties of the solvent molecules such as isotropic polarizability $\bar{\alpha}(S)$ and the quadrupole moment components $\Theta_{kk}(S)$, $k = x, y, \text{ or } z$; (4) to compare the experimental dissociation energies to those calculated by dispersion-corrected DFT methods, in particular the role of the zero-point vibrational energy (ZPVE) energy contributions from the intermolecular vibrations that arise between the 1NpOH and S moieties, and the change of the intramolecular ZPVE of the two monomer moieties that arise upon complex formation.

II. METHODS

A. Experimental

The 1NpOH complexes were formed and cooled in supersonic expansions of 0.2 – 1% of the solvent molecule which was diluted into Ne gas (99.99% purity). The gas mixture at a stagnation pressure of 1.2 – 1.6 bar was passed over the 1NpOH heated to 340 K (0.1 mbar vapor pressure) in the pulsed valve (nozzle diameter 0.4 mm). The resulting supersonic jet was skimmed and the passed into the source region of a 1.2 m linear time-of-flight mass spectrometer.

The S_0 state dissociation energies of the jet-cooled 1NpOH-S complexes were determined using vibrational predissociation in the S_0 state. High vibrational levels of the ground state complex were populated using stimulated-emission pumping (SEP)39 via the $S_0 \leftrightarrow S_1$ transition. Following the pump and dump steps, vibrational predissociation of the hot M-S levels was detected by a third time-delayed laser using resonant two photon ionization (R2PI) at “hot” vibronic transitions that lie close to the 0_0^0 band of the $S_0 \rightarrow S_1$ transition. This triply-resonant method is abbreviated
a scheme is shown in the supplemental Figure S1 (supporting information=SI). Detailed descriptions of the method have been previously given.19,29–32,35

B. Theoretical Methods

The minimum-energy structures and harmonic vibrational frequencies of the 1NpOH·S complexes were calculated using three dispersion-corrected density functional methods. The B97-D14 and B3LYP-D27 methods were employed with the def2-TZVPP and def2-QZVPP basis sets, using Gaussian 16.40 Structure optimizations were unconstrained and were first performed with the triple-zeta basis set. Structure optimizations with the def2-QZVPP basis set were then performed for the isomers with lowest TZVPP energy, and these results are reported below; the triple-zeta results are reported in the supplemental Table T1 (SI). For comparison, we employed the Chai-Gordon long-range and dispersion-corrected ωB97X-D functional,16 as implemented in Gaussian 16,40 using the 6-311++G(d,p) basis set; these results are also reported in the supplemental Table T1 (SI).

The S_0 state binding energies $D_e(S_0)$ were calculated by subtracting the total energies of 1-naphthol and of S (both optimized at their respective isolated-molecule geometries) from the total energy of the 1NpOH·S complex at its optimized minimum-energy geometry. In the ωB97X-D calculations the basis set superposition error (BSSE) was corrected using the Boys-Bernardi counterpoise (CP) method. With the def2-TZVPP basis set the BSSE effects start to be negligible14 and with the larger def2-QZVPP basis set employed here the BSSE effects become so small that CP correction is not recommended;14 thus CP correction was not performed for the def2-QZVPP basis set.

The harmonic frequencies and vibrational zero point energies (VZPEs) of the monomers and complexes were calculated with all three DFT methods at the same level as the optimized structures. The dissociation energies D_0 were then calculated as $D_0 = D_e - \Delta VZPE$, using the change in zero-point energies $\Delta VZPE$, which is given by $\Delta VZPE = VZPE(1NpOH·S) - VZPE(1NpOH) - VZPE(S)$.
RESULTS

A. R2PI spectra of 1-naphthol-S complexes

The one-color resonant two-photon ionization spectra of supersonically cooled 1NpOH and its complexes with linear molecules are shown in Figure 1. The $S_0 \rightarrow S_1$ electronic origins of the complexes are shifted to higher or lower wavenumbers than the 0_0^0 band of 1NpOH (at 31455.9 cm$^{-1}$), see Figure 1(a). The spectral shift corresponds to the difference of the ground- and excited-state dissociation energies $\delta \tilde{v} = D_0(S_0) - D_0(S_1)$. Thus, a spectral blueshift corresponds to a decrease of the dissociation energy of the 1NpOH-S complex upon $S_0 \rightarrow S_1$ excitation. The low-frequency bands towards the high-energy (blue) side of the R2PI spectra in Figure 1 are assigned to S_1 state intermolecular vibrational fundamentals, overtones and combination bands. The R2PI spectra are ordered according to increasing dissociation energy of the complexes, as will be discussed in section III. B.

The R2PI spectrum of the N$_2$ complex, see Figure 1(b), is shifted to the red by $\delta \tilde{v} = -14$ cm$^{-1}$. Small spectral redshifts, corresponding to small increases of D_0 upon electronic excitation, are typical for Face complexes of nonpolar S molecules. In contrast, the CO$_2$ and N$_2$O complexes exhibit significant spectral blueshifts, ($\delta \tilde{v} = +20$ cm$^{-1}$ and +38 cm$^{-1}$), see Figure 1(d,e). Among the approximately 35 complexes of 1NpOH reported in this and previous work, these are the first observations of sizable blue shifts. In the sole prior example, the 0_0^0 band of the Face isomer of 1NpOH-cyclopropane is blueshifted by only +2 cm$^{-1}$19,30. The remaining four complexes investigated here show sizable redshifts, ranging from -72 cm$^{-1}$ for OCS to -116 cm$^{-1}$ for 2-butyne. Red shifts of similar magnitude have been observed for 1NpOH-S complexes in which S is nonclassically H-bonded to the 1-naphthol OH group (Edge geometry), e.g., for S=benzene ($\delta \tilde{v} = -66$ cm$^{-1}$), thiophene (-69 cm$^{-1}$), the Edge isomer of the cyclopropane complex (-72 cm$^{-1}$), furan (-81 cm$^{-1}$) and 2,5-dimethylfuran (-81 cm$^{-1}$).

As is typical for many of the previously investigated complexes, the CO, CO$_2$ and N$_2$O spectra in Figure 1 exhibit intermolecular vibronic bands, typically with short progressions. Table I lists the observed intermolecular vibrational fundamentals and suggests correlations with the calculated values. The rather intense low-frequency bands of 1NpOH-N$_2$ have been explained as internal-rotation excitations of a Face structure. The 1NpOH-OCS spectrum exhibits similarly strong excitations in at least two low-frequency intermolecular vibrations. This suggests that the
OCS complex is also a Face structure that exhibits internal-rotation excitations upon $S_0 \rightarrow S_1$ excitation. The 2-butyne complex also shows relatively strong low-wavenumber vibronic bands which could not be fully resolved.

All complexes were investigated by UV/UV holeburning, as shown in supplemental Figures S2-S6 (SI). For the 1NpOH·N$_2$ complex we have reported the existence of two isomers. The more intense isomer 1 spectrum is shown in Figure 1(b). For the complexes with S= CO, CO$_2$ and ethyne, the sharp vibronic bands in the respective R2PI spectra belong to single ground-state isomers. As examples we show the UV/UV holeburning spectra of the CO and ethyne complexes in the supplemental Figures S2 and S3 (SI). The 1NpOH·N$_2$O complex exhibits a weakly populated second isomer denoted B, see Figure 1(e). Its electronic origin is slightly less blue shifted ($\delta \tilde{v} = -30$ cm$^{-1}$) than that of the main isomer, which we denote isomer A. The respective UV/UV hole-burning spectra are shown in the supplemental Figure S4 (SI).

For the OCS complex we compare the R2PI spectrum in Figure 1(g) to the UV/UV holeburned spectra in supplemental Figure S5 (SI) where we have holeburned at $0_0^0 + 24$ cm. The holeburned spectrum is similar to the R2PI, although some of the bands differ in relative intensity. Burning on other intermolecular bands gave slightly different intensity patterns. We conclude that one isomer was dominant, though one or more minority isomers may be present. Since we were unable to clearly separate isomers by holeburning, we expect all to have similar structures.

We also attempted to measure R2PI spectra of the 1NpOH·CS$_2$ complex, in analogy to the CO$_2$ and OCS complexes. However, despite the high sensitivity of our apparatus we were not able to observe any signal of 1NpOH·CS$_2$.

UV holeburning was performed on 1NpOH·2-butyne at 31340 cm$^{-1}$ and 31343 cm$^{-1}$, as shown in supplemental Figure S6 (SI). The resulting difference spectra indicate the presence of two isomers with nearly identical, strongly overlapping spectra. The main isomer is designated A and the less populous isomer at 31343 cm$^{-1}$ is designated isomer B. Because of their strong spectral similarity, they are presumed to be structurally closely related. Since they cannot be separately excited due to overlap, the results reported here apply to the experimental mixture of A and B.

B. Experimental Dissociation Energies

The ground state dissociation energies $D_0(S_0)$ of the 1NpOH·S complexes are bracketed between two different ground state (S_0) vibrational states that are observed as vibronic bands in
the $S_1 \rightarrow S_0$ spectra: The lower limit to $D_0(S_0)$ is given by the highest-energy S_0 state vibrational level that does not undergo vibrational predissociation. This level is observed via the highest-wavenumber $S_1 \rightarrow S_0$ transition in a hot-band probed SEP-R2PI spectrum as described in section II.A. The upper limit to D_0 is given by the next higher energy vibrational level of the S_0 state complex that lies above the limit to vibrational predissociation (VP). This and further S_0 state vibrational levels that lie above the D_0 limit and undergo VP can be observed by spectroscopic methods that operate on a $1 - 10$ ns time scale, (much) shorter than the typical VP time scale. These are (1) dispersed fluorescence spectroscopy, (2) “dump” (ion dip) spectroscopy or (3) origin-probed SEP-R2PI spectroscopy; these three methods report on the S_0 state vibrational levels in a similar way. In the following we will show the spectrum with the highest S/N ratio for comparison with the hot-band probed SEP-R2PI spectrum. We discuss the complexes according to increasing dissociation energy.

I-Naphthol-N_2: The R2PI spectrum and the dissociation energies of the two isomers of the $\text{1NpOH-}N_2$ complex have been previously measured and discussed. Isomer 1 of the N_2 complex is shown in Figure 2 for comparison with the other doubly and triply bonded solvent molecules. The N_2 moiety is adsorbed above the naphthalene face above the center of either of the aromatic rings. Since the two rings are not equivalent, there are two distinguishable Face isomers, with dissociation energies of $D_0 = 6.68 \pm 0.008$ kJ/mol and 6.62 ± 0.22 kJ/mol, respectively. As in previous work, the fluorescence spectrum has been inverted to aid in the comparison of weak bands.

I-Naphthol-\text{CO}: In Figure 3(a) we show the hot-band-probed SEP-R2PI spectrum, measured on a broad feature 47 cm$^{-1}$ above the 0_0^0 band. This complex is unusual, but not unique, in that the hot-band structure appears to the blue of the origin, not to the red, see also supplemental Figure S7 (SI). The highest-energy band in this spectrum is at 573 cm$^{-1}$ relative to the 0_0^0 band. Figure 3(b) shows the corresponding dump spectrum, which also exhibits a band at 573 cm$^{-1}$. The following band in the dump spectrum 3(b) at 712 cm$^{-1}$ is not observed in trace (a), nor are any of higher-energy bands; thus it represents the upper limit of $D_0(S_0)$. We take the $D_0(S_0)$ of 1NpOH-CO as the average of the two band positions and the bracketing uncertainty to be half the difference of the two wavenumbers. Thus, $D_0(S_0)$ is bracketed as 642.5 ± 69.5 cm$^{-1}$. Note that the true value may lie anywhere in this range with equal probability.
1-Naphthol·CO$_2$: Figure 4(a) shows the hot-band-detected SEP spectrum which is probed in the low-wavenumber tail of the hot spectrum, feature 111 cm$^{-1}$ below the 000 band, see also supplemental Figure S8 (SI). The highest-wavenumber transition is observed at 999 cm$^{-1}$. The next unambiguous band in the dump spectrum at 1017 cm$^{-1}$, Figure 4(b), is not observed in Figure 4(a), nor are any of the following bands. Because of the density of vibronic transitions in this spectral region, the $D_0(S_0)$ value of the CO$_2$ complex can be bracketed within narrow limits as $D_0(S_0) = 1008 \pm 9$ cm$^{-1}$.

1-Naphthol·N$_2$O: Figure 5 shows two sets of measurements of the N$_2$O complex, where we pumped two different bands in the R2PI spectrum in Figure 1(e). Both give narrow but slightly different D_0 brackets. Figure 5(a) shows the hot-band-detected SEP-R2PI spectrum when pumping the 000 + 45 cm$^{-1}$ band. The ion signal was measured at a hot-band feature 80 cm$^{-1}$ below the 000 band, see the supplemental Figure S9 (SI). The hot-band SEP spectrum in (a) closely mirrors the corresponding dump spectrum shown in Figure 5(d) up to the band at 1087 cm$^{-1}$. The next higher band in the dump spectrum which is not observed in trace (a) is at 1094 cm$^{-1}$. The hot-band-detected SEP-R2PI spectrum in Figure 5(b) pumped at 000 + 13 cm$^{-1}$ and the corresponding dump spectrum in Figure 5(c) yield limits for $D_0(S_0)$ which are 1085 and 1090 cm$^{-1}$. Taking the highest low limit and the lowest upper limit of the two experiments, the $D_0(S_0)$ is bracketed between 1087 and 1090 cm$^{-1}$ giving $D_0(S_0) = 1088.5 \pm 1.5$ cm$^{-1}$.

1-Naphthol·ethyne: Figure 6(b) shows the hot-band-detected SEP-R2PI spectrum of the ethyne complex following excitation at the 000 band. The hot complex was detected at a hot-band feature 43 cm$^{-1}$ below the 000 band, see also the supplemental Figure S10. The highest-energy vibronic band that is clearly above the noise in (b) is at 1191 cm$^{-1}$. Comparing trace (b) with the fluorescence spectrum after 000 excitation in (c), one sees that the intense band at 1240 cm$^{-1}$ in (c) is missing in (b), giving D_0 limits between 1191 and 1240 cm$^{-1}$. Note that the weak fluorescence band at 1204 cm$^{-1}$ seems to appear in (b), but the S/N ratio is not large enough to warrant using this as a lower limit. To narrow the limits we also excited the vibronic band at 000 + 41 cm$^{-1}$, see Figure1(f). The respective hot-band SEP and dump spectra are shown in Figure 6(a) and (d). Note the new dump band at 1206 cm$^{-1}$, which lowers the upper D_0 limit. Thus we obtain $D_0(S_0) = 1198.5 \pm 7.5$ cm$^{-1}$.
1-Naphthol-OCS: Figure 7(a) shows the hot-band detected SEP-R2PI spectrum of 1NpOH-OCS following laser excitation at the most intense band in the R2PI spectrum, 50 cm\(^{-1}\) above the 0\(_0^0\) band of the complex. Excitation at the strongest feature is necessary, because the “hot” R2PI spectrum shows very weak hot-bands, as seen in the supplemental Figure S11 (SI). Hot-band detected SEP-R2PI was measured 95 cm\(^{-1}\) below the 0\(_0^0\) band, and extensive signal averaging was necessary to obtain the spectrum in Figure 7(a). Figure 7(b,c) show emission spectra that were obtained by integrating the fluorescence in time windows of 40 – 80 ns after excitation (slow fluorescence, b) and 0 – 40 ns (fast fluorescence, c), see also the lifetimes in Table T12 (SI).

Among the 1NpOH-S spectra measured so far, those in Figure 7 are unique because: (1) the hot-band detected SEP-R2PI spectrum simultaneously exhibits narrow vibronic bands and intense broader bands, (2) the fluorescence spectra exhibit only narrow bands when measured at late times, Figure 7(b), but (3) both broad and narrow features when measured at short times.

The sharp and broad bands also show remarkable differences in the SEP-R2PI spectrum (a). While both are observed up to about 1140 cm\(^{-1}\), the intense and narrow emission bands in the 1366 – 1420 cm\(^{-1}\) region are not observed in SEP, nor are there higher-energy narrow bands. However, the broad bands continue up to 1600 cm\(^{-1}\) with intense peaks at 1498 and 1559 cm\(^{-1}\).

The first broad emission structure not seen in SEP is at 1848 cm\(^{-1}\). Judging by the sharp bands in Figure 7(a), the \(D_0(S_0)\) is bracketed by the bands at 1139 and 1366 cm\(^{-1}\), yielding \(D_0(S_0) = 1253 \pm 113\) cm\(^{-1}\). Judging by the broad features, the bracket would be much higher, between 1559 and 1848 cm\(^{-1}\), \(D_0(S_0) = 1703 \pm 145\) cm\(^{-1}\). We have based all previous \(D_0\) brackets on narrow vibronic bands; furthermore the sharp-band bracket is more consistent with the calculations reported below. We therefore propose that \(D_0(S_0) = 1253 \pm 113\) cm\(^{-1}\) is the relevant value for the 1NpOH-OCS complex.

The broad features in Figure 7(a) and (c) imply that stimulated and spontaneous emission occur from different vibrational levels. Since the pump is at 50 cm\(^{-1}\) above the 0\(_0^0\) band, see Figure 1(g), both fundamental and combination levels of low-wavenumber intermolecular vibrations are excited. As noted in section III.A., one of these is an internal-rotation mode of the OCS complex. The large band intensity implies a change of the OCS orientation in the \(S_1\) state relative to the \(S_0\) state minimum, maybe even a \(S_1\) state rotational isomer, similar to the case of \(p\)-difluorobenzene·N\(_2\).\(^{43}\) Since the broad features appear in the fast fluorescence, and are visible in SEP (time scale a few nanoseconds), we propose that they arise from vibrationally unrelaxed levels. From this pumped
Superposition of levels, \(S_1 \) state IVR immediately and progressively leads to a different superposition of intermolecular levels, which are manifested in the narrow-band SEP/emission bands. Hence, at longer times \((40 - 80 \text{ ns})\) spontaneous emission from the IVR-relaxed distribution is dominated by the narrow-band emission. Certain combinations of intermolecular vibrations that are formed by SEP in the ground electronic state may represent motions that couple poorly to dissociative coordinates, as in the butyne complex discussed below. This could explain why broad features in the hot SEP spectrum are observed at higher wavenumber than the likely \(D_0(S_0) \).

1-Naphthol·2-butyne: Figure 8 shows the hot-band SEP spectrum of 1NpOH·2-butyne, recorded 31 \(\text{cm}^{-1} \) to the red of the \(0^0_0 \) band, see also the supplemental Figure S12 (SI). Also shown in Figure 8(a) is the \(S_1 \rightarrow S_0 \) corresponding dispersed fluorescence spectrum. In this figure the fluorescence spectrum was not inverted as in the preceding figures, so as to facilitate detailed comparison of band shapes with the SEP spectrum.

The highest-wavenumber narrow band in the hot-band SEP trace that is mirrored in the fluorescence spectrum is at 2271 \(\text{cm}^{-1} \), which sets the lower limit to \(D_0(S_0) \). Between 2271 and 2777 \(\text{cm}^{-1} \) both the hot-band SEP and the fluorescence spectra exhibit bands between \(\sim 2440 \text{ cm}^{-1} \) and \(\sim 2480 \text{ cm}^{-1} \). However, the bands in the hot-band SEP trace are distinctly broader and weaker than their fluorescence counterparts. As discussed below, we propose that they arise from metastable vibrational levels that undergo VP with a longer lifetime than the 3 \(\mu \text{s} \) delays utilized in this experiment. The upper \(D_0 \) limit would then be 2440 \(\text{cm}^{-1} \), but we propose as more conservative limit the lowest-energy band in the fluorescence spectrum Figure 8(a) that is completely absent in the hot-band SEP spectrum (b), which is at 2671 \(\text{cm}^{-1} \). Combining this with the lower limit at 2271 \(\text{cm}^{-1} \) we obtain \(D_0(S_0) = 2471 \pm 200 \text{ cm}^{-1} \).

Strong evidence for metastable levels undergoing slow VP is found near 2800 \(\text{cm}^{-1} \). At first glance it might appear that the strong 2777 \(\text{cm}^{-1} \) fluorescence band is weakly observed in the SEP spectrum, but this is not the case. As the vertical dashed line shows, this peak is absent in the SEP spectrum, it is actually a weak shoulder at 2790 \(\text{cm}^{-1} \) that appears in SEP. That a strong fluorescence peak is *not* observed in SEP means that the corresponding dumped level is above \(D_0 \). If another peak at higher relative wavenumber *is* observed in SEP, the dumped level is by definition even further above \(D_0 \) and must therefore be metastable on the experimental time scale.
C. Long-lived metastable vibrational levels: 1-Naphthol-2-butyne

The SEP-R2PI method relies on the occurrence of efficient IVR from the dumped S_0 vibrational level of the complex into the intermolecular vibrations that eventually lead to VP of the complex if the S_0 state energy E_{exc} is larger than D_0. For VP to occur, the total available internal energy E_{exc} must momentarily pool in one of the “dissociative” intermolecular coordinates; i.e., in one of the three translational-type intermolecular vibrations, each of which leads to dissociation in the limit of large amplitude. The hindered rotational-type intermolecular vibrations can also lead to dissociation, either directly or via coupling to the translational intermolecular vibrations.

The 2-butyne complex is special in that it exhibits three rotational-type vibrations with very low wavenumber all of which couple poorly to the translational intermolecular vibrations and that exhibit a very high density of states. Bunker et al.44 determined the torsional barrier in free 2-butyne to be 5.20 cm$^{-1}$, so the internal-rotation of the methyl groups is nearly free. We assume that this motion remains unhindered in the 1NpOH complex; with a level structure of a one-dimensional rotor, $E_{int-rot,1D} = A_0 \cdot l^2$, with internal-rotation quantum number $l = 0, \pm 1, \pm 2, \ldots$. Given the $D_0 = 2471 \pm 200$ cm$^{-1}$, IVR can populate these levels up to $l \sim \pm 32$. Furthermore, rotation of the 2-butyne moiety around its long axis in the Edge complex (see calculated geometries below) is close to free. If we also approximate the level structure of this intermolecular vibration as an unhindered 1D rotor, IVR can populate levels of this external-rotation mode up to $l \sim \pm 30$. Finally, the rotation of the 2-butyne moiety around the OH hydrogen bond axis leads to a third rotation-type intermolecular mode with a 1D rotor energy level structure.

The combination of these low energy rotational-type motions yields a high density of non-dissociating intermolecular levels at and above the dissociation limit. It seems plausible that energy stored in these levels does not flow efficiently to dissociative coordinates, which causes VP to slow to a time scale that allows a measurable fraction of the dumped population to be detected even far above the dissociation threshold.

Unfortunately the calculation of level energies at high E_{exc} is extremely difficult, so predicting the extent of VP metastability is far from straightforward, but there does seem to be a strong correlation with the presence of methyl groups in the adsorbate molecules. Out of about 35 complexes of carbazole and 1NpOH that have been investigated so far using the SEP-R2PI method,13,19,29–32,35 the complexes with methane, ethane and with methylated molecules such as 2,5-dimethylfuran35 and 2-butyne (this work) did not exhibit clear breaking-off points in their hot-band SEP spectra.
The common characteristic of these complexes are the unhindered (or weakly hindered) rotational-type motions involving methyl groups, which give rise to a high level density. In the small alkanes, metastable vibronic bands were observed about 150 – 200 cm\(^{-1}\) above the dissociation limit. In dimethylfuran the range was 100 – 300 cm\(^{-1}\) but was less clear due to low signal levels. As discussed above for 2-butyne, metastable vibrational bands in the hot-band SEP spectra are observed even up to about 400 cm\(^{-1}\) above \(D_0\). These differences may reflect the multiple factors contributing to high state density at internal energies near the dissociation limit. In 2-butyne these are particularly numerous, including nuclear spin states, two methyl rotors and nearly free axial rotation.

D. Calculated Structures

Figure 9 shows the B3LYP-D3/def2-QZVPP optimized lowest-energy structures of 1NpOH complexed with (a) CO (isomer 1), (b) CO\(_2\), (c) N\(_2\)O (isomer 1), (d) ethyne, (e) OCS (isomer 1) and (f) 2-butyne. The B97-D3/def2-QZVPP structures are visually indistinguishable from the B3LYP/def2-TZVPP ones. The calculated structures of the N\(_2\) complex have been reported previousl.\(^{29}\) Two isomers were found, which were proposed to correspond to the two calculated isomers in which the N\(_2\) moiety is adsorbed over either of the aromatic rings of naphthalene. (Note that in the present work experimentally observed isomers are denoted in capital A, B, C, ... , calculated isomers as 1, 2, 3, ...; in ref. 29 the opposite convention was used.)

The DFT-D methods predict two Face minima for the 1NpOH-CO complex, with the CO adsorbed on the OH-substituted six-ring of the naphthalene, similar to isomer 1 of N\(_2\).\(^{29}\) In the lower-energy isomer 1 (\(D_e = 9.93\) kJ/mol), the CO carbon is predicted to be closer to the naphthol OH group, see Figure 9(a)). In the calculated isomer 2 the CO orientation is reversed. Additional top and side views of this complex are shown in the supplemental Figure S13(a), the Cartesian coordinates are given in supplemental Table T2.

A single Face-type minimum was found for the CO\(_2\) complex shown in Figure 9(b). Its geometry is different from that of all Face complexes calculated so far: the CO\(_2\) moiety does not lie flat on the naphthol ring, but is shifted towards the naphthalene edge and tilted downward into the “notch” between the naphthalene and the O-H group. The molecular axis is rotated \(\sim 30^\circ\) relative to the axis of the O-H bond. Since this structure type recurs for other linear adsorbate molecules, we denote it a Notch structure. Top and side views of this complex are shown in the supplemental
Calculations with the def2-TZVPP basis set predict five isomers of the N$_2$O complex, here we discuss only the two most stable ones: Isomer 1 is a Notch structure very similar to that of the CO$_2$ complex, see Figure 9(c), the supplemental Figure S13(c) and supplemental Table T4. The terminal N atom is close to the O atom of 1NpOH, the central N above the O-H hydrogen atom, and the O atom of N$_2$O makes a sideways contact with the H atom, giving rise to a strongly bent hydrogen bond. Its B97-D3/def2-TZVPP calculated binding energy is $D_e = -12.98$ kJ/mol. In contrast, isomer 2 (Cartesian coordinates in supplemental Table T5) is a Face isomer with the N$_2$O centered above the C4 atom of 1NpOH, the terminal N atom over the center of the phenolic ring and the N$_2$O axis directed approximately along the C4-C1-O direction of 1NpOH. This isomer lies 1.7 kJ/mol higher in energy.

The calculations predict three different isomers for the OCS complex: The lowest-energy isomer 1 is a Notch structure shown in Figure 9(e) and the supplemental Figure S14; the Cartesian coordinates are given in the supplemental Table T6 ($D_e = -16.28$ kJ/mol, B97-D3/def2-TZVPP). It is similar to the CO$_2$ and N$_2$O isomers shown in Figure 9(b,c), the OCS axis being tilted downwards between the OH and the naphthalene ring, the S atom lying over the center of the phenolic ring and the O atom (the negative end of the OCS molecule) close to O-H hydrogen atom, possibly forming a “sideways” hydrogen bond.

In the Face isomer 2 (see the supplemental Table T7), the OCS moiety lies parallel to the naphthalene ring, aligned in the C4-C1-O direction of the naphthol, and with the S atom atop the oxygen atom of the OH group. This isomer is the least stable of the three isomers, with a calculated binding energy $D_e = -13.06$ kJ/mol (B97-D3/def2-TZVPP). Isomer 3 has a T-shaped structure with the OCS axis as the stem of the T, with the S atom pointing towards the naphthalene surface, see the supplemental Table T8. Its B97-D3/def2-TZVPP calculated binding energy is $D_e = -14.11$ kJ/mol. The T-shaped (or “daisy”) structure is a common structure motif for OCS complexes and has been experimentally observed by microwave spectroscopy of OCS with the hydrocarbons ethyne, ethene, allene, benzene,45 and cyclooctatetraene.46,47

All the DFT-D calculations of the ethyne and 2-butyne complexes predict the most stable isomers of these complexes to be H-bonded Edge structures, with the OH group of 1NpOH pointing towards the center of the CC triple bond, as shown in Figure 9(d) and (f); additional views are shown in the supplemental Figure S14. The ethyne moiety is perpendicular to the OH bond, the latter being coplanar with the naphthalene moiety (supplemental Table T9). The B97-D3 calcu-
lated binding energy of this lowest-energy isomer 1 is $D_e = -17.60 \text{ kJ/mol}$. The calculations also predict two T-shaped isomers in which the HCCH axis is perpendicular to the naphthalene plane, with one of the ethyne C-H groups pointing to the center of one of the naphthalene rings. These are 4 kJ/mol less stable and therefore unlikely to be relevant here.

In contrast to ethyne, the 2-butyne moiety is predicted to be tilted relative to the OH group and naphthalene plane. Thereby one of the methyl groups can approach the naphthalene moiety and maximize dispersive interactions. The OH group of 1NpOH is slightly twisted out of the naphthalene plane, and points towards the central C-C bond of the 2-butyne moiety (supplemental Table T10). There are two symmetry-equivalent (enantiomeric) minima of the intermolecular potential energy surface which can interconvert via the lowest-wavenumber intermolecular rocking mode of the complex.

E. Comparisons of experimental dissociation energies

In Figure 10 we plot the experimental S_0 state dissociation energies of the Face and Notch complexes vs. the average electronic polarizability $\bar{\alpha}$ of the linear admolecules. For comparison, we also include the experimental $D_0(S_0)$ values of the 1NpOH noble-gas complexes with Ne, Ar, Kr and Xe and with the smaller nonpolar n-alkanes and cycloalkanes between methane and cyclopentane; all of these also form Face complexes.

The dissociation energies of the linear molecules increase roughly linearly with increasing isotropic polarizability of the S admolecule, similar to the correlation previously observed for the noble-gas, n-alkane and cycloalkane complexes up to n-propane and cyclopropane. This correlation is indicated by a dashed blue line, and is expected from the London-Eisenschitz atom-atom dispersion model. The dissociation energies of the N$_2$ complex and the lower D_0 limits of the CO and OCS complexes are close to the D_0 values of the noble gases and (cyclo)alkanes with similar polarizability.

On the other hand, the D_0 values of the CO$_2$ and N$_2$O complexes and the upper D_0 limits for CO and OCS are $150 - 350 \text{ cm}^{-1}$ larger than expected from their isotropic polarizabilities alone. We propose that these differences arise from additional stabilizing electrostatic interactions, such as between the dipole moment of 1NpOH and the dipole moments of N$_2$O and CO, and to dipole-quadrupole and quadrupole-quadrupole interactions between 1NpOH and the large quadrupole moment of CO$_2$, N$_2$O and OCS. The noble-gases have no electrostatic moments and the n-alkanes
and cycloalkanes have zero or very small dipole moments.

For S more polarizable than propane, the Face dissociation energies are well below the correlation line for smaller molecules and increase much more slowly with polarizability. This “saturation” for Face complexes has been previously traced to the size of the admolecule.29,32 After the face has become ”covered” by the admolecule, the binding energy increases only slowly with increasing admolecule size and polarizability29,32 As Figure 10 shows, this limit is not reached by the linear molecules discussed in this work, nor is it expected from the calculated geometries.

In contrast, the ethyne and 2-butyne admolecules form Edge complexes that are non-classically OH···\pi H-bonded to the OH group of 1NpOH. In Figure 11, we compare their D_0 values to those of the previously published H-bonded Edge complexes of 1NpOH with cyclopropane, benzene, furan and thiophene.35 Like these complexes, the experimental dissociation energies increase with the isotropic polarizability of the H-bond acceptor. Note again that the D_0s of ethyne and 2-butyne are significantly larger than predicted by the blue dashed correlation line that holds for the other non-classically H-bonded complexes.

IV. DISCUSSION

A. Comparison of calculated and experimental dissociation energies

Table III compares the experimental $D_0(S_0)$ dissociation energies to the calculated ones using the B97-D3 and B3LYP-D3 methods with the def2-QZVPP basis set. These D_0 values are derived from the calculated intermolecular binding energies D_e and the changes of the harmonic vibrational zero-point energies $\Delta VZPE$ as $D_0 = D_e - \Delta VZPE$, which are given in parentheses. The experimental D_0 values are also compared to the calculated ones in Figure 12. For S=N$_2$ we compare the experimental value to the most stable calculated Face isomer 1 (see ref. 29), for the CO, N$_2$O and OCS complexes we compare to the most stable Notch isomer, see section III D, Figure 9 and the Supplemental Information. For the CO$_2$ complex the DFT-D calculations predict a single Notch isomer. For ethyne and 2-butyne we compare to the Edge isomers, which are more stable than the T-shaped isomers.

The B3LYP-D3/def2-QZVPP calculated D_0 are generally in very good agreement with the experimental values. The mean absolute deviation (MAD) between the calculated and experimental values is 0.83 kJ/mol. The CO and OCS values lie within the experimental bracketing intervals.
The others are outside the brackets, but not by much. The deviations from experiment are largest for the N\textsubscript{2} and ethyne complexes, predictions are 1.5 and 0.6 kJ/mol larger than the experimental upper limit.

The calculated values for 2-butyne are slightly below the lower limit of the bracket. The wide bracket in Figure 12 gives a visual impression that the true value lies significantly higher, but it should be remembered that the upper limit was taken to be rather high due to uncertainty about metastability of dumped levels. We note again that the true D_0 value can be anywhere in the bracketed range with equal probability.

The B97-D3/def2-QZVPP calculated D_0 values in Table III are similar to the B3LYP-D3 results with the exceptions of CO\textsubscript{2} and N\textsubscript{2}O. Correspondingly, the MAD is larger (1.48 kJ/mol). The ωB97X-D/6311+G(d,p) calculated dissociation energies are listed in the supplemental Table T1. They are all smaller than the experimental ones, leading to the largest MAD (1.68 kJ/mol).

In Table III we also collected the intermolecular D3 dispersion energy contributions, which were calculated at the B3LYP-D3/def2-QZVPP optimized geometries. The interesting result is that for all the Face and Notch complexes studied here, the D3 dispersion energy is larger than the D_0. In other words, without the D3 dispersion contribution, these complexes would not be bound (at least not in their Face or Notch geometries). For the ethyne and 2-butyne Edge complexes on the other hand, the D3 energy contribution is smaller than the B3LYP-D3/def2-QZVPP dissociation energy, implying that these complexes would also be H-bonded without the dispersion contribution. However, the dispersion contribution remains large in these cases, being about 60% of the total dissociation energies.

B. Vibrational zero-point energies

When comparing calculated D_0 values to experiment the ΔVZPE values also need to be considered, since good D_0 values might arise from error compensation of erroneous well depths D_e and ΔVZPE values. Columns 3 and 4 of Table III include both D_e and vibrational zero-point energy changes ΔVZPE in parentheses. The B97-D3/def2-QZVPP and B3LYP-D3/def2-QZVPP binding energies in Table III are similar, the B3LYP-D3 values being about 5% or 0.5 – 1.9 kJ/mol larger than the B97-D3 values. However, the ΔVZPE values calculated with the two functionals are mutually much closer, being within 0.25 kJ/mol of each other. Thus, the differences in the calculated D_0 values derive mostly from differences of the D_es.
Table III shows that $\Delta VZPE$ is $15 - 20\%$ of D_e for the N_2, CO, CO$_2$, N$_2$O and ethyne complexes, decreasing to 12% of D_e for the 2-butyne complex and to 10% of D_e for the OCS complex. Thus, the $\Delta VZPE$ corrections substantially influence the D_0 values. For the 1NpOH-S noble-gas complexes (S=Ne-Xe) the $\Delta VZPE$ contributions were smaller, between $7 - 12\%$ of the D_e. The difference arises mainly from the smaller number of intermolecular vibrations for the noble-gas complexes (three), while the linear admolecule complexes have five intermolecular vibrations (six for 2-butyne).

Table I shows that the intermolecular VZPE contributes $60 - 90\%$ to the total $\Delta VZPE$. The other contribution to $\Delta VZPE$ arises from the changes of the intramolecular vibrational frequencies of the two moieties upon complex formation, Δ_{intra}. This contribution has a net positive sign, as a consequence of the slight compression of both complex partners by the dispersive intermolecular interaction which - on average - increases the intramolecular frequencies. The individual calculated frequency changes are small, typically between -5 and $+10$ cm$^{-1}$.

Some of the DFT-D calculated intermolecular vibrational frequencies, and hence to some extent the $\Delta VZPE$ values, can be compared to experiment. The R2PI spectra of the linear-molecule complexes in Figure 1 exhibit fundamental excitations of the translational-type intermolecular vibrations \tilde{v}_X, \tilde{v}_Y and \tilde{v}_Z, in some cases also distinct fundamentals of the rotational-type intermolecular vibrations $\tilde{v}_{\text{rot,1}}$ and $\tilde{v}_{\text{rot,2}}$ also appear. Since the excited-state D_0 values are very close to the S_0 state D_0s, we expect that the S_1 state fundamental intermolecular vibrational wavenumbers differ little from their S_0 state counterparts (with the possible exception of the OCS complex), which were not measured. Table I compares the B3LYP-D3 calculated (harmonic) and experimental S_1 state intermolecular frequencies. Many differ by only a few cm$^{-1}$, the largest differences being 18 cm$^{-1}$ (0.1 – 0.2 kJ/mol). Judging from the B3LYP-D3/def2-QZVPP calculated frequencies, $60 - 70\%$ of the intermolecular VZPE of these complexes arises from the two rotational-type intermolecular vibrations. The R2PI spectra yields less information on these fundamentals, since the electronic excitation of the 1NpOH moiety couples weakly to the rotational-type intermolecular coordinates, resulting in low Franck-Condon factors for these modes.

C. Face, Notch or Edge?

The spectral shift $\delta \tilde{v}$ of the $S_0 \rightarrow S_1$ origin band of 1NpOH has so far proven to be a reliable and convenient predictor of the binding topology of the 1NpOH intermolecular complexes.
In the dispersively bound Face complexes involving noble-gas atoms or N_2 the spectral shifts ranged between $\delta\tilde{\nu} = -2 \text{ cm}^{-1}$ for $S=\text{Ne}$ and -35 cm^{-1} for $S=\text{Xe}$. Similarly, the Face isomer of 1NpOH-cyclopropane exhibits a small spectral blue shift of $\delta\tilde{\nu} = +2 \text{ cm}^{-1}$, for 1NpOH-cyclohexane the shift is $\delta\tilde{\nu} = -1.7 \text{ cm}^{-1}$.

However, if the admolecule is classically H-bonded to the -OH group of 1NpOH, as in the H_2O, CH_3OH, and NH_3 complexes, the spectral red shifts are much larger, being $\delta\tilde{\nu} = -145$, -158, and -236 cm^{-1}, respectively. The shift of the H-bonded cyclopropane Edge isomer is $\delta\tilde{\nu} = -72 \text{ cm}^{-1}$, much larger than that of the respective Face isomer. The spectral shifts of the nonclassically H-bonded 1NpOH complexes with the (hetero)aromatics benzene, furan, thiophene and 2,5-dimethylfuran range from -66 cm^{-1} for benzene to -98 cm^{-1} for the 2,5-dimethylfuran complex.

If we employ the spectral shift as a structure predictor for the linear molecules measured here, we expect the complexes with ethyne, 2-butyne, CO and possibly OCS to be H-bonded Edge structures. Indeed, the DFT-D calculations support this conclusion for ethyne and 2-butyne. For CO and OCS the situation is much less clear. Note that the -71 cm^{-1} redshift of the CO complex is very close to that of the Edge isomer of 1NpOH-cyclopropane (-72 cm^{-1}), and is larger than that of 1NpOH-benzene (-66 cm^{-1}), which has an Edge geometry. Furthermore, Figure 1 shows that the $S_0 \rightarrow S_1$ vibronic spectrum of the 1NpOH-CO complex is qualitatively similar to the spectra of the ethyne and 2-butyne complexes, both of which have Edge structures. Like these two complexes, the R2PI spectrum of 1NpOH-CO shows sparse and well-resolved vibronic bands with near-zero Franck-Condon factors in the low-frequency rotational-type modes. Nevertheless, although we attempted DFT-D minimizations of 1NpOH-CO from a large variety of Edge starting geometries, they all lead the two Face minima described in section III.E. Similarly, minimizations of the 1NpOH-OCS complex starting from Edge geometries always led to Notch, Face or T-shaped geometries, see section III.E. These two complexes provide the first clear discrepancies between the spectral-shift structure predictor and the DFT-D predicted lowest-energy structures.

The CO_2 and N_2O Notch complexes exhibit larger blue-shifts of the origin than any 1NpOH complex measured previously. Together with the large red shifts of the OCS Notch and CO Face complexes, this group of complexes appears to be exceptional. They must experience unusually large changes in the electrostatic parts of the intermolecular interaction upon $S_0 \rightarrow S_1$ excitation, compared to complexes with nonpolar admolecules such as the noble gases, n-alkanes and cycloalkanes. Particularly for the Notch complexes, this might result from close interaction with the

This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.
naphthol OH group. However, more detailed calculations would be necessary to understand the different electrostatic contributions. For example, the CO$_2$ and OCS complexes are calculated to have very similar Notch structures, with the O-C- end of the admolecule adjacent to the H-O- of the naphthol. Yet, the spectral shift of the 0^0_0 band of the CO$_2$ complex is to the blue by 20 cm$^{-1}$, while that of the OCS complex is 72 cm$^{-1}$ to the red.

D. Electrostatic moments and complex geometry

Given the possible effects of electrostatic intermolecular interactions discussed in the previous section we looked for correlations of the electrostatic moments of the seven admolecules treated here with the geometries of the 1NpOH complexes.

Dipole moments: Only three of the seven admolecules (CO, N$_2$O and OCS) have a dipole moment. Furthermore, the dipole moments of N$_2$O (0.07 D) and CO (0.10 D) are small, that of OCS (0.78 D) is moderate. Both N$_2$O and OCS exhibit Notch geometries and CO has a Face geometry; on the other hand the nonpolar N$_2$ molecule has a Face geometry, nonpolar CO$_2$ has a Notch geometry, and the nonpolar ethyne and 2-butyne complexes have Edge geometries. There are no obvious correlations between the admolecule dipole moment and the geometry of the complex.

Quadrupole moments: In Table IV we list the experimental and calculated traceless quadrupole moment tensor components Θ_{ii} ($i = y, z$) of the seven admolecules, plus those of three admolecules that also form Edge complexes. Note that for linear and symmetric-top molecules the z axis of the quadrupole moment tensor is the molecular C_∞ symmetry axis, and $\Theta_{xx} = \Theta_{yy}$ by symmetry. Furthermore $\Theta_{yy} = -0.5 \cdot \Theta_{zz}$ because the tensor is traceless.

For the admolecules benzene, furan and thiophene the z axis is taken as the normal to the molecular plane, note that for the C_{2v} furan and thiophene molecules $\Theta_{xx} \neq \Theta_{yy}$. A positive sign of Θ_{zz} indicates a quadrupolar field anisotropy that arises from net positive charge on the C_∞ axis near the ends of the admolecule combined with net negative charge in the directions perpendicular to the C_∞ axis. Thus, the large positive Θ_{zz} of ethyne might be rationalized as arising from the slightly positive H atoms located at the ends of the molecule together with the negative charge accumulated in the two off-axis π-orbitals. Note, however, that electrons in filled π-orbitals do not automatically give rise to positive Θ_{zz}, as can be seen in N$_2$, CO, CO$_2$, N$_2$O and OCS, which all have negative Θ_{zz} values, which implies net negative charge on the C_∞ axis near the ends of
the molecule combined with net positive charge accumulated in the directions perpendicular to the C_∞ axis.

If we assume the CO complex to have the DFT-D predicted Face geometry, a consistent correlation emerges between the sign of Θ_{zz} and the geometry of the complex. All complexes in which S has negative Θ_{zz} exhibit Face or Notch geometries. On the other hand the two alkynes studied here have positive Θ_{zz}, and exhibit H-bonded (Edge) geometries. Figure 13 shows that this correlation is intuitively plausible. In the N$_2$ and CO complexes, the admolecules are positioned such that the interaction of the net positive central quadrupole ring with the electron-rich π-system of the naphthalene moiety is stabilizing, see Figure 13(a). Figure 13(b) uses the example of CO$_2$ to illustrate the orientation of the quadrupole moment in the Notch complexes. In these cases, the interaction with the π-electrons of the naphthalene moiety and that with one end of the quadrupole moment with the dipole of the OH group are attractive. In (c) it is apparent that for ethyne the Edge geometry combined with the positive Θ_{zz} leads to an attractive interaction with the net positively charged H atom of the OH group.

We also note that this correlation can be extended to the 1NpOH complexes with benzene, furan and thiophene, which have H-bonded Edge geometries. Table IV shows that their Θ_{zz} values are large and negative, where the z axis is perpendicular to the molecular plane. For these three admolecules the quadrupole moment of the admolecule is also oriented such that the negative lobe of Θ_{zz} is directed towards the (positive) H atom of the OH bond.

While the above correlations of the DFT-D calculated minimum-energy geometries with the signs of Θ_{zz} are consistent, it is not possible to use the admolecule quadrupole moment as a predictor for the lowest-energy geometry. Thus, the positive Θ_{zz} of ethyne also leads to an attractive interaction in T-shaped geometries with the C-H bond pointing towards the naphthalene ring. In fact such a geometry is predicted by the DFT-D calculations as one of the energetically higher-lying isomers of the 1NpOH-ethyne complex. Analogously, the negative Θ_{zz} of N$_2$, CO, CO$_2$, N$_2$O and OCS would lead to stabilizing interactions with the -OH hydrogen atom in near-collinear -OH⋯S hydrogen bonds. If the S atom of OCS and the C atom of CO were closer to the OH hydrogen, the geometry would also be favored by the dipole moments of these two molecules. However, for N$_2$, CO, CO$_2$, N$_2$O and OCS the DFT-D calculations do not even predict stable minima in the H-bonded orientation.
CONCLUSIONS

Intermolecular dissociation energies D_0 of the 1-naphthol complexes with the linear molecules N_2, CO, CO_2, OCS, N_2O, ethyne and the closely related symmetric-top molecule 2-butyne have been experimentally determined using the stimulated-emission pumping resonant two-photon ionization (SEP-R2PI) method. The ground-state dissociation energies $D_0(S_0)$ were bracketed within less than ± 0.1 kJ/mol for $S=\text{N}_2$, CO_2, N_2O and ethyne complexes, within ± 1.2 kJ/mol for the CO and OCS complexes, and within ± 1.7 kJ/mol for the 2-butyne complex.

The spectral shifts of these linear-molecule complexes, which are equivalent to the changes of the dissociation energies upon excitation to the S_1 excited state, are quite diverse, ranging from a relative decrease of -2% for the CO Face complex to a relative increase of $+12\%$ for the CO Notch complex. Comparison of the spectral shifts of the CO, CO_2, N_2O and OCS complexes shows that the previously observed correlation between the structures and the spectral shifts$^{19,29–32,35}$ does not hold for these Notch complexes. We hypothesize that this arises from the spatial proximity of these strongly quadrupolar molecules to the -OH group of 1NpOH, leading to changes of electrostatic interactions approaching ± 0.7 kJ/mol upon $S_0 \rightarrow S_1$ excitation. On the other hand, the correlation of DFT-D predicted Edge geometries of the ethyne and 2-butyne complexes with large red-shifts still holds, in line with the correlation found for the complexes with benzene, furan, 2,5-dimethylfuran, tetrahydrofuran and other H-bonded complexes.34,35,38

The $D_0(S_0)$ values of the newly measured Face and Notch complexes increase monotonically with increasing average electronic polarizability $\bar{\alpha}$ of the admolecule, in qualitative agreement with the Eisenschitz-London atom-atom model for dispersive interactions.1,2 Combining the SEP-R2PI dissociation energies of the linear molecule complexes with those of the previously measured dispersively bound noble-gas atoms29 and the n-alkane and cycloalkane Face complexes of 1NpOH19,30,32 confirms a roughly linear correlation of dissociation energies between $D_0 = 480 - 1400$ cm$^{-1}$ with average electronic polarizability $\bar{\alpha}$ between $1.6 - 6.5$ Å3. For solvent molecules with larger $\bar{\alpha}$ the dissociation energy saturates with increasing $\bar{\alpha}$, as discussed before.29,32

Structures, binding energies D_e, vibrational frequencies and changes of vibrational zero-point energy ($\Delta VZPE$) of the complexes were calculated using the three dispersion-corrected density functional methods B97-D3, B3LYP-D3 and ωB97X-D with triple-zeta basis sets, followed by calculations of the respective lowest-energy isomers using the B97-D3 and B3LYP-D3 methods.
and the def2-QZVPP quadruple-zeta basis set. The geometries change very little between the TZVPP and QZVPP calculations. The \(\text{N}_2 \) and CO complexes are predicted to be Face complexes. The \(\text{CO}_2 \), \(\text{N}_2 \text{O} \) and OCS complexes exhibit a novel geometry type in which the linear molecule is adsorbed in the "notch" between the naphthyl and OH moieties of 1NpOH. It would be important to experimentally check, e.g., by microwave spectroscopy, that this DFT-D theoretical prediction of a novel structure type is correct. In contrast, the lowest-energy isomers of the ethyne and butyne complexes are H-bonded Edge geometries.

In earlier work the (BSSE-uncorrected) B97-D3 method with the TZVPP basis set best reproduced the experimental \(D_0 \) values, closely followed by the B3LYP-D3 method with the same basis set.\(^{19,29–32,35} \) In going to the larger QZVPP basis set, this is reversed for the complexes studied here with the B3LYP-D3/QZVPP method performing slightly better (\(\text{MAD} = 0.83 \text{ kJ/mol} \)). As shown in the last column of Table III, the D3 dispersion energy at the minimum-energy geometry is calculated to be large and stabilizing for the Face and Notch complexes typically 1.2 – 2 times the \(D_0 \). Thus, without the D3 corrections to the density functionals these complexes would not be bound in their equilibrium Face and Notch geometries.

The VZPE contribution to \(D_0 \) and the \(\Delta \text{VZPE} \) correction were examined experimentally and theoretically. In contrast to the noble-gas complexes, for which the calculated intermolecular VZPEs are only 4 – 11% of the binding energy \(D_0 \), the contribution from intermolecular VZPE increases for linear molecule adsorbates increases to 10 – 20% of \(D_0 \), because of the additional two rotation-type intermolecular vibrations. Experimentally nearly all of the three translation-type \(S_1 \) state intermolecular vibrations were experimentally observed, as well as one of the rotation-type vibrations.

Together with the \(D_0 \) values of other previously measured intermolecular complexes\(^{13,50} \) the \(D_0 \) values of these 1-naphthol-S complexes can serve as benchmarks for testing both highly correlated \textit{ab initio} calculations and density functional methods, as well as for improving the understanding and modeling of intermolecular interactions.

Supplemental Material

See the supplementary material for additional figures, tables of Cartesian coordinates of the studied complexes optimized by the DFT methods and fluorescence lifetime data, as mentioned in the text.
Acknowledgements

We thank the Swiss National Science Foundation for financial support (grant 200021E-160404) as well as the Priority Program SPP1807 “Control of London dispersion interactions in molecular chemistry” of the Deutsche Forschungsgemeinschaft.

* Department of Atomic and Molecular Physics, Manipal University, Manipal-576104, Karnataka, India
† samuel.leutwyler@dcb.unibe.ch

5 P. E. S. Wormer and A. van der Avoird, Chem. Rev. 100, 4109 (2000).

TABLE I. Experimental and B3LYP-D3/QZVPP calculated intermolecular fundamental frequencies and changes of the vibrational zero-point energies $\Delta VZPE$ (in cm$^{-1}$) of the 1-naphthol-S complexes with S = N$_2$, CO, CO$_2$, N$_2$O, OCS, ethyne and 2-butyne.

<table>
<thead>
<tr>
<th>Admolecule</th>
<th>Experimental wavenumbers</th>
<th>Calculated wavenumbers.</th>
<th>$\Delta VZPE$ (B3LYP-D3 calc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\tilde{\nu}_X$</td>
<td>$\tilde{\nu}_Y$</td>
<td>$\tilde{\nu}_Z$</td>
</tr>
<tr>
<td>N$_2$ Face</td>
<td>25.0</td>
<td>34.5</td>
<td>57</td>
</tr>
<tr>
<td>CO Face</td>
<td>20.4</td>
<td>24.6</td>
<td>40.6</td>
</tr>
<tr>
<td>CO$_2$ Notch</td>
<td>-</td>
<td>26.7</td>
<td>43.6</td>
</tr>
<tr>
<td>N$_2$O Notch</td>
<td>13.4</td>
<td>20.0</td>
<td>45.2</td>
</tr>
<tr>
<td>OCS Notch</td>
<td>11.8</td>
<td>18.8</td>
<td>-</td>
</tr>
<tr>
<td>Ethyne edge</td>
<td>-</td>
<td>34.6</td>
<td>41.5</td>
</tr>
<tr>
<td>2-Butyne edge</td>
<td>15.5</td>
<td>23.0</td>
<td>-</td>
</tr>
</tbody>
</table>
TABLE II. Experimental ground- and excited-state dissociation energies $D_0(S_0)$, $D_0(S_1)$, and spectral shifts of the 0_0^0 bands $\delta \tilde{\nu}$ of the 1-naphthol-S complexes with S = N$_2$, CO, CO$_2$, N$_2$O, OCS, ethyne and 2-butyne. The D_0 may lie anywhere within the bracketed intervals with equal probability.

<table>
<thead>
<tr>
<th>Admolecule S</th>
<th>$D_0(S_0)$</th>
<th>$D_0(S_1)$</th>
<th>$\delta \tilde{\nu}$ a</th>
<th>% change b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cm$^{-1}$</td>
<td>kJ/mol</td>
<td>cm$^{-1}$</td>
<td>kJ/mol</td>
</tr>
<tr>
<td>N$_2$ (isom. 1)</td>
<td>565 ± 7</td>
<td>6.68 ± 0.08</td>
<td>579 ± 7</td>
<td>6.93 ± 0.08</td>
</tr>
<tr>
<td>CO</td>
<td>642 ± 70</td>
<td>7.68 ± 0.84</td>
<td>712 ± 70</td>
<td>8.52 ± 0.84</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>1008 ± 9</td>
<td>12.07 ± 0.10</td>
<td>988 ± 10</td>
<td>11.82 ± 0.12</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>1089 ± 1</td>
<td>13.03 ± 0.01</td>
<td>1051 ± 2</td>
<td>12.57 ± 0.02</td>
</tr>
<tr>
<td>Ethyne</td>
<td>1199 ± 7</td>
<td>14.34 ± 0.08</td>
<td>1302 ± 8</td>
<td>15.56 ± 0.1</td>
</tr>
<tr>
<td>OCS</td>
<td>1253 ± 113</td>
<td>14.98 ± 1.35</td>
<td>1325 ± 98</td>
<td>15.85 ± 1.35</td>
</tr>
<tr>
<td>2-Butyne</td>
<td>2471 ± 200</td>
<td>29.56 ± 2.39</td>
<td>2587 ± 200</td>
<td>30.95 ± 2.39</td>
</tr>
</tbody>
</table>

a spectral shift relative to the 0_0^0 band of trans-1-naphthol at 31455.9 cm$^{-1}$

b percent change of $D_0(S_1)$ relative to that of the ground state
TABLE III. Experimental and calculated S_0 state dissociation energies D_0, binding energies D_e and vibrational zero-point energy differences $\Delta VZPE$ (in kJ/mol) of the 1-naphthol complexes with N_2, CO, CO$_2$, N$_2$O, OCS and ethyne and 2-butyne. The calculations were at the B97-D3/QZVPP and B3LYP-D3/QZVPP levels.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Experimental</th>
<th>B97-D3</th>
<th>B3LYP-D3</th>
<th>D3 intermol. energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_0</td>
<td>$D_0 (D_e - \Delta VZPE)$</td>
<td>$D_0 (D_e - \Delta VZPE)$</td>
<td></td>
</tr>
<tr>
<td>N_2 Face (1)</td>
<td>6.6 ± 0.08</td>
<td>7.62 (9.39 − 1.77)</td>
<td>8.156 (9.88 − 1.72)</td>
<td>13.23</td>
</tr>
<tr>
<td>CO Face (A)</td>
<td>7.68 ± 0.84</td>
<td>8.073 (10.00 − 1.92)</td>
<td>8.092 (9.93 − 1.84)</td>
<td>13.00</td>
</tr>
<tr>
<td>CO_2</td>
<td>12.07 ± 0.10</td>
<td>10.54 (12.74 − 2.19)</td>
<td>12.36 (14.67 − 2.31)</td>
<td>12.74</td>
</tr>
<tr>
<td>N_2O Face (A)</td>
<td>13.05 ± 0.02</td>
<td>9.93 (12.29 − 2.36)</td>
<td>13.12 (15.58 − 2.45)</td>
<td>13.36</td>
</tr>
<tr>
<td>Ethyne edge</td>
<td>14.34 ± 0.08</td>
<td>15.16 (17.82 − 2.66)</td>
<td>11.95 (17.60 − 2.65)</td>
<td>8.80</td>
</tr>
<tr>
<td>OCS Face (A)</td>
<td>14.98 ± 1.35</td>
<td>14.04 (15.61 − 1.57)</td>
<td>15.02 (16.82 − 1.80)</td>
<td>20.54</td>
</tr>
<tr>
<td>2-Butyne edge</td>
<td>29.56 ± 1.7</td>
<td>27.02 (30.67 − 3.65)</td>
<td>26.76 (30.47 − 3.71)</td>
<td>17.51</td>
</tr>
<tr>
<td>MADa</td>
<td>1.48</td>
<td>0.83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Mean absolute deviation between the 7 calculated and experimental values.
TABLE IV. B3LYP-D3/def2-QZVPP calculated and experimental traceless quadrupole moment tensor components Θ_{yy} and Θ_{zz} (in Debye·Å2)a of the molecules N$_2$, CO, CO$_2$, N$_2$O, OCS, ethyne, 2-butyne, benzene, furan and thiophene.

<table>
<thead>
<tr>
<th>Admolecule</th>
<th>Θ_{yy}</th>
<th>Θ_{zz}</th>
<th>$\Theta_{yy}(exp.)$</th>
<th>$\Theta_{zz}(exp.)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>N$_2$</td>
<td>+0.53</td>
<td>-1.06</td>
<td>-1.49 ± 0.05b</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>+0.69</td>
<td>-1.46c</td>
<td>-1.94 ± 0.039d</td>
<td></td>
</tr>
<tr>
<td>CO$_2$</td>
<td>+1.50</td>
<td>-3.00</td>
<td>-4.29 ± 0.18e</td>
<td></td>
</tr>
<tr>
<td>N$_2$O</td>
<td>+1.31</td>
<td>-2.63</td>
<td>-3.65 ± 0.25f</td>
<td></td>
</tr>
<tr>
<td>Ethyne</td>
<td>-2.19</td>
<td>+4.37</td>
<td>+4.71 ± 0.14g</td>
<td></td>
</tr>
<tr>
<td>OCS</td>
<td>+0.40</td>
<td>-0.80</td>
<td>-0.88 ± 0.15h</td>
<td></td>
</tr>
<tr>
<td>2-Butyne</td>
<td>-2.13</td>
<td>+4.26</td>
<td>+5.33 ± 0.28g</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
<td></td>
<td>-9.11 ± 0.36i</td>
<td></td>
</tr>
<tr>
<td>Furan</td>
<td>+5.88</td>
<td>-5.46</td>
<td>+5.91 ± 0.30</td>
<td>-6.09 ± 0.36j</td>
</tr>
<tr>
<td>Thiophene</td>
<td>+5.85</td>
<td>-6.48</td>
<td>+6.6 ± 1.5</td>
<td>-8.30 ± 2.2j</td>
</tr>
</tbody>
</table>

a 1 Debye·Å$^2 = 3.33564 \cdot 10^{-40}$ C·m2

b ref. 51

c ref. 52, CCSD(T)/d-aug-cc-pV6Z level.

d ref. 53

e ref. 54

f ref. 55

g ref. 56

h ref. 57

i ref. 58

j ref. 59

k MP2 calculations from ref. 60, experimental values from ref. 61
FIG. 1. One-color resonant-two-photon ionization spectra in the $S_0 \rightarrow S_1$ origin region of (a) 1-naphthol and its complexes with (b) N$_2$ (ref. 29), (c) carbon monoxide, (d) carbon dioxide, (e) dinitrogen oxide, (f) ethyne, (g) carbonyl sulphide and (h) 2-butyne. The respective 0^0_0 bands are at (b) 31442 cm$^{-1}$, (c) 31381 cm$^{-1}$, (d) 31476 cm$^{-1}$, (e) 31493 cm$^{-1}$, (f) 31352 cm$^{-1}$, (g) 31383 cm$^{-1}$ and (h) 31340 cm$^{-1}$. The spectral shifts $\delta \tilde{v}$ of the 0^0_0 bands of the complexes relative to 1NpOH 0^0_0 band are shown as horizontal arrows. The S_1 intermolecular vibrational fundamentals are labeled with their wavenumbers, in spectrum (g) a progression in the 11.8 cm$^{-1}$ vibration is indicated. Intermolecular vibrational assignments are given in Table I.
FIG. 2. Hot-band probed SEP-R2PI and inverted fluorescence spectra of isomer 1 of the 1-naphthol-N$_2$ complex, partially taken from ref. 29. The x-axis is the difference between the pump (0_0^0 band at 31442 cm$^{-1}$ or $0_0^0 + 34.5$ cm$^{-1}$) and the dump laser wavenumbers. The highest-wavenumber transition in (a) at 558 cm$^{-1}$ marks the lower limit to D_0, the fluorescence transition in (c) at 571 cm$^{-1}$ is the upper limit to $D_0(S_0)$.
FIG. 3. (a) Hot band \((0_0^0 + 47 \text{ cm}^{-1})\) probed SEP-R2PI spectrum of 1NpOH-CO and (b) the corresponding dump spectrum. The dissociation energy \(D_0(S_0)\) is bracketed by the vertical red dashed lines at 573 cm\(^{-1}\), the highest-energy band in spectrum (a), and 712 cm\(^{-1}\), the next higher vibronic band in spectrum (b). The horizontal axis is the difference between the pump wavenumber at the \(0_0^0\) band of 1NpOH-CO (31381 cm\(^{-1}\)) and the dump laser wavenumber.
FIG. 4. (a) Hot-band \((0^0 \rightarrow 111 \text{ cm}^{-1})\) probed SEP-R2PI spectrum of the 1NpOH-CO\(_2\) complex, (b) the corresponding dump spectrum. The horizontal axis is the difference between the pump wavenumber at the \(0^0\) band \((31475 \text{ cm}^{-1})\) and the dump laser wavenumber. The \(D_0(S_0)\) is bracketed by the vertical red dashed lines at 999 cm\(^{-1}\) and 1017 cm\(^{-1}\).
FIG. 5. Hot-band (0\(^0\) \(-\) 80 cm\(^{-1}\)) probed SEP-R2PI spectra of isomer A of the 1NpOH-N\(_2\)O complex, (a) pumped at the 0\(^0\) + 45 cm\(^{-1}\) band, see Figure 1(e), and (b) pumped at the 0\(^0\) + 13 cm\(^{-1}\) band. Trace (c) is the 0\(^0\) + 13 cm\(^{-1}\) dump spectrum, and (d) the 0\(^0\) + 45 cm\(^{-1}\) dump spectrum. The horizontal axis is the difference between the respective pump and the dump laser wavenumbers. In (a,d) the dissociation energy \(D_0(S_0)\) is bracketed by the vertical red dashed lines at 1087 (or possibly 1089) cm\(^{-1}\) and 1094 cm\(^{-1}\). In (b,c) the bracket is defined by the peaks at 1085 cm\(^{-1}\) and 1090 cm\(^{-1}\). Using both sets of spectra the final \(D_0\) bracket for this complex is 1087 - 1090 cm\(^{-1}\).
FIG. 6. Hot band ($0_0^0 - 43 \text{ cm}^{-1}$) probed SEP-R2PI spectrum of 1NpOH-ethyne, (a) pumped at the 0_0^0 band, (b) at the $0_0^0 + 41 \text{ cm}^{-1}$ band, see Figure 1(f). (c) Inverted fluorescence spectrum of 1NpOH-ethyne pumped at the 0_0^0 band, (d) dump spectrum when pumping at the $0_0^0 + 41 \text{ cm}^{-1}$ band. The horizontal axis is the difference between the pump and the dump laser wavenumbers. The $D_0(S_0)$ is bracketed by the highest-energy vibronic bands in spectra (a, b) at 1191 cm$^{-1}$ and the next higher vibronic band, observed at 1206 cm$^{-1}$ in spectrum (d), indicated by red lines.
FIG. 7. (a) Hot band (000 − 95 cm−1) probed SEP-R2PI spectrum of 1NpOH-OCS and (b,c) corresponding inverted fluorescence spectra. Spectrum (b) was taken in a 0-40 ns time window after excitation. For spectrum (c) the window was 40-80 ns. The probable $D_0(S_0)$ is bracketed by the vertical red dashed lines at 1139 cm−1 in spectrum (a) and 1366 cm−1 in spectrum (b). The horizontal axis is the difference between the pump and dump laser wavenumbers. See the text for further discussion.
FIG. 8. (a) Origin-pumped fluorescence spectrum of 1NpOH-2-butyne and (b) the corresponding hot band \((0_0^0 - 31 \text{ cm}^{-1})\) probed SEP-R2PI spectrum. The \(D_0(S_0)\) is bracketed by the vertical red dashed lines at 2271 cm\(^{-1}\) and 2671 cm\(^{-1}\). The horizontal axis is the difference between the pump \((0_0^0\text{ band, } 31340 \text{ cm}^{-1})\) and the dump laser wavenumbers.
FIG. 9. B3LYP-D3/QZVPP calculated structures of the most stable isomers of the 1-naphthol complexes with (a) CO Face, (b) CO$_2$ Notch, (c) N$_2$O Notch, (d) ethyne Edge, (e) OCS Notch and (f) 2-butyne Edge. The calculated Cartesian coordinates are given in the supplemental Tables T2-T11 (SI).
FIG. 10. Experimental ground-state dissociation energies $D_0(S_0)$ of 1-naphthol-S Face or Notch complexes vs. the average electronic polarizability $\bar{\alpha}$ of the adsorbate atom or molecule. The values measured in this work for $S = CO, CO_2, N_2O$ and OCS are plotted in red and labeled horizontally. D_0 values from refs.29,32 are labeled vertically in black.
FIG. 11. Experimental SEP-R2PI dissociation energies $D_0(S_0)$ of 1-naphthol-S Edge complexes vs. the average electronic polarizability $\bar{\alpha}$ of the adsorbate molecule. The values measured in this work for $S =$ ethyne and 2-butyne, plotted are in red and labeled horizontally, those from refs. 19 and 35 are labeled vertically in black.
FIG. 12. Comparison of experimental and calculated SEP-R2PI ground-state dissociation energies $D_0(S_0)$ of the 1-naphthol-S complexes with $S = \text{CO}, \text{N}_2, \text{CO}_2, \text{N}_2\text{O}$, ethyne, OCS and 2-butyne, plotted vs. the isotropic electronic polarizability $\bar{\alpha}$ of the adsorbate molecule. Face or Notch complexes are labelled in black, Edge complexes in red. See also Table II.
FIG. 13: Calculated structures of (a) the 1-naphthol-CO Face, (b) the 1-naphthol-CO\textsubscript{2} Notch, and (c) the 1-naphthol-ethyne Edge complexes, with schematic representations of the admolecule quadrupole moments. The lobes of the quadrupoles are colored according to the net excess charge as given by the sign of the quadrupole moments (red = positive excess charge, blue = negative). See the text for discussion.
1-Naphthol·N\textsubscript{2}

(a) Hot-band SEP (pump=origin+34.5 cm-1)

(b) Hot-band SEP (pump=origin)

(c) Fluorescence spectrum (pump=origin)

Relative Wavenumber, cm-1
1-Naphthol + CO

(a) Hot-band SEP

(b) Dump spectrum

Intensity, arb. units

Relative Wavenumber, cm⁻¹
(a) Hot band SEP

(b) Dump spectrum

1-Naphthol•CO₂

Ion Signal, arb. units

Relative Wavenumber, cm⁻¹
1-Naphthol•N₂O
isomer A

(a) Origin+13 cm⁻¹ hot-band SEP

(b) Origin+13 cm⁻¹ dump spectrum

(c) Origin+45 cm⁻¹ hot-band SEP

(d) Origin+45 cm⁻¹ dump spectrum
1-Naphthol•acetylene

(a) $(0+41 \, \text{cm}^{-1})$ hot-band SEP

(b) Origin hot-band SEP

(c) Origin fluorescence

(d) $(0+41 \, \text{cm}^{-1})$ dump spectrum
1-Naphthol•2-butyne

(a) Fluorescence

(b) Hot band SEP
(a) 1-Naphthol • CO
(b) 1-Naphthol • CO₂
(c) 1-Naphthol • N₂O
(d) 1-Naphthol • C₂H₂
(e) 1-Naphthol • OCS
(f) 1-Naphthol • 2-butyne
Face and Notch complexes

D_0 of complex, cm$^{-1}$

Admolecule Isotropic Polarizability, $\bar{\alpha}$, Å3

Red: this work
Black: previous work
(a) Face complex

(b) Notch complex

(c) Edge complex