Dynamics of Jet-Cooled 5,6-Trimethylenecytosine Maria A. Trachsel, Simon Lobsiger, Tobias Schär, Lluís Blancafort, and Samuel Leutwyler Leutwyler Leutwyler ¹Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland ²Institut de Química Computacional i Catàlisi and Departament de Química, Facultat de Ciències, Universitat de Girona, C/ M. A. Campmany, 69, 17003 Girona, Spain (Dated: May 6, 2017) #### **Abstract** We measure the $S_0 \to S_1$ spectrum and time-resolved S_1 state nonradiative dynamics of the "clamped" cytosine derivative 5,6-trimethylenecytosine (TMCyt) in a supersonic jet, using two-color resonant two-photon ionization (R2PI), UV/UV holeburning and ns time-resolved pump/delayed ionization. The experiments are complemented with SCS-CC2, TD-CAMB3LYP, and MS-CASPT2 ab initio calculations. While the R2PI spectrum of cytosine breaks off $\sim 500~{\rm cm^{-1}}$ above its 0^0_0 band, that of TMCyt extends up to $+4400~{\rm cm^{-1}}$ higher, with over a hundred resolved vibronic bands. Thus, clamping the cytosine C^5 - C^6 bond allows to explore the S_1 state vibrations and $S_0 \to S_1$ geometry changes in detail. The TMCyt S_1 state out-of-plane vibrations ν_1', ν_3' and ν_5' lie below 420 cm⁻¹, the in-plane ν'_{11} , ν'_{12} , and ν'_{23} vibrational fundamentals appear at 450,470 and $944~{\rm cm}^{-1}$. $S_0 \to S_1$ vibronic simulations based on SCS-CC2 calculations agree well with experiment if the calculated ν'_1 , ν'_3 and ν'_5 frequencies are reduced by a factor of 2-3. MS-CASPT2 calculations predict that the ethylene-type $S_1 \leadsto S_0$ conical intersection (CI) increases from $+366 \text{ cm}^{-1}$ in cytosine to $> 6000 \text{ cm}^{-1}$ in TMCyt, explaining the long lifetime and extended $S_0 \to S_1$ spectrum. The lowest-energy $S_1 \leadsto S_0$ CI of TMCyt is the "amino out-of-plane" (OP_X) intersection, calculated at $+4190 \text{ cm}^{-1}$. The experimental $S_1 \rightsquigarrow S_0$ internal conversion rate constant at the $S_1(v'=0)$ level is $k_{IC}=0.98-2.2\cdot 10^8~{\rm s}^{-1}$, which is ~ 10 times smaller than in 1-MCyt and cytosine. The $S_1(v'=0)$ level relaxes into the $T_1(^3\pi\pi^*)$ state by intersystem crossing (ISC) with $k_{ISC}=0.41-1.6\cdot 10^8~{\rm s}^{-1}$. The T_1 state energy is measured to lie $24580\pm 560~{\rm cm}^{-1}$ above the S_0 state. The $S_1(v'=0)$ lifetime is $\tau=2.9~{\rm ns}$, resulting in an estimated fluorescence quantum yield of $\Phi_{fl}=24$ %. Intense two-color R2PI spectra of the TMCyt amino-enol tautomers appear above 36000 cm^{-1} . A sharp S_1 ionization threshold is observed for amino-keto TMCyt, yielding an adiabatic ionization energy of 8.114 ± 0.002 eV. A number of femtosecond (fs) pump-probe studies of cytosine (Cyt), 1-methylcytosine (1-MCyt) and 5-fluorocytosine (5-FCyt) in the gas-phase have yielded ultrashort excited-state S_1 state lifetimes that range from $\tau = 0.2$ to 3.2 ps.^{1–5} However, more recent measurements of supersonically jet-cooled amino-keto Cyt, 5-methylcytosine (5-MCyt) and 5-FCyt based on Lorentzian lifetime broadening measurements at their respective $S_0 \rightarrow S_1$ electronic origins yielded lower limits on the S_1 lifetimes of 45 ps for Cyt and 75 ps for 5-FCyt.^{6–8} More recent direct lifetime measurements of Cyt, 1-MCyt and 1-ethylcytosine (1-ECyt) using the picosecond (ps) excitation/ionization delay technique revealed even longer values between $\tau = 450 - 900$ ps, which decrease rapidly with increasing vibrational excess energy (E_{exc}).⁹ Computational studies of the excited-state dynamics and nonradiative decay of amino-keto $\operatorname{Cyt^{10-20}}$ have located three different conical intersections (CIs) between the ground and lowest excited ${}^1\pi\pi^*$ states. The lowest of these, which dominates the $S_1 \leadsto S_0$ nonradiative decay, is called $(Eth)_X$, since the intersection structure is similar to the CI structure of ethylene. This CI is characterized by a puckering of the C^6 atom and a twist around the C^5 - C^6 bond, with a H- C^5 - C^6 -H torsional angle of $\sim 120^\circ.^{10-13,15,16,19,21,22}$ The next higher CI involves an N^3 out-of-plane bending and a large out-of-plane amino deformation and is called $(OP)_X.^{10,16,19,22}$ The third CI, called $(n_O,\pi^*)_X$, has a semi-planar structure with sp^3 hybridization of the C^6 atom, shortening of the C^2 - N^3 bond and stretching of the C^5 - C^6 bond relative to the ground state minimum. ${}^{10-16,19,21,22}$ Zgierski *et al.* have shown that covalently clamping the C⁵-C⁶ bond of Cyt with a trimethylene bridge in 5,6-trimethylenecytosine (TMCyt) increases the S_1 state fluorescence lifetime and quantum yield in room-temperature aqueous solution by ~ 1000 times relative to Cyt,^{23–25} to $\tau = 1.2$ ns and $\Phi_{fl} \sim 10$ %.²⁶ Their configuration interaction singles (CIS) and second-order approximate coupled cluster (CC2) excited-state calculations predicted that this clamping shifts the $(Eth)_X$ conical intersection of cytosine to ~ 1500 cm⁻¹ above the S_1 minimum, making this CI energetically less accessible.²⁶ The trimethylene bridge in TMCyt hardly affects the π -electron framework of Cyt, so the $S_0 \to S_1$ absorption band shifts from $\lambda_{max} = 267$ nm for Cyt to 280 nm in TMCyt.²⁶ In the clamped cytosine derivative pyrrolocytosine (PC), the C⁴-amino group (see Figure 1) and the C⁵ atom are covalently connected, resulting, in a pyrrole ring fused to the Cyt chromophore.²⁷ This extension of the π -electron framework significantly shifts the $S_0 \to S_1$ excitation maximum to $\lambda_{max} = 330 - 345$ nm, or about 70 - 80 nm to the red, compared to Cyt.^{28,29} For PC, Thompson and co-workers have measured a lifetime of $\tau = 2.9$ ns Publishdrace uantum yield $\Phi_{fl} \sim 0.038$ in pH 7 phosphate buffer.²⁹ Intrigued by these observations, we have measured and analyzed the $S_0 \to S_1$ vibronic spectrum of supersonic jet-cooled TMCyt using two-color resonant two-photon ionization (2C-R2PI), UV/UV hole-burning and depletion spectroscopies. We also measured the S_1 state lifetime and triplet-state formation kinetics as a function of E_{exc} , using the nanosecond excitation/ionization delay technique, and report S_1 state nonradiative rate constants for internal conversion and intersystem crossing. In addition to the amino-keto tautomer 1 of TMCyt we have also observed an intense R2PI spectrum that we assign to the $S_0 \to S_1$ transitions of the hydroxy-enol tautomers 2a/2b, see Figure 1 for the tautomer structures. The measurements are accompanied by calculations of the lowest excited singlet ($^1\pi\pi^*$) and triplet ($^3\pi\pi^*$) states of TMCyt using time-dependent density functional theory (TD-CAMB3LYP), spin-component scaled CC2 (SCS-CC2), complete-active-state self-consistent field (CASSCF) and multi-state second-order perturbation-theory (MS-CASPT2) methods. #### II. METHODS #### A. Experimental Methods TMCyt was synthesized in three steps from adiponitrile according to ref. 30 and characterized by 1 H-NMR-, 13 C-NMR spectroscopy and ESI mass spectrometry as described in the supplementary material. The experimental setup for two-color resonant two-photon ionization (2C-R2PI) measurements has been previously described. Neon carrier gas at \sim 1.8 bar backing pressure was passed through a 20 Hz pulsed nozzle (0.4 mm diameter) heated to 230 °C that contains the TMCyt sample. 2C-R2PI spectra were measured by crossing the skimmed supersonic jet with the unfocused UV excitation and ionization laser beams in the source of a linear time-of-flight mass spectrometer (TOF-MS). Excitation was performed with 0.4 - 0.6 mJ UV pulses from a frequency-doubled Radiant Dyes NarrowScan DR dye laser with a bandwidth of 0.05 cm $^{-1}$ (1500 MHz) or with an Ekspla NT342B optical parametric oscillator (UV-OPO) with a bandwidth of 4 - 6 cm $^{-1}$. The frequency scale was calibrated by measuring the fundamental frequency with the WS6 wavemeter. Ionization light of $\sim 100~\mu\text{J/pulse}$ at 225~or~245~nm was produced by an Ekspla NT342B (UV-OPO). The measurements were typically done with 10-30~mV ion signal at the most intense vibronic band. A second frequency-doubled dye laser ($\sim 400~\mu\text{J/pulse}$) was used as the UV-depletion laser for UV/UV holeburning and depletion experiments. Excitation and ionization were performed as for the periments. The depletion laser was fired 300 ns before the excitation/ionization laser pulses. #### **B.** Computational Methods A uniform theoretical treatment of the ground- and excited-state potential energy surfaces of TMCyt is difficult, and we have combined several methods following a similar approach to our recent work on 1-MCyt.³³ The electronic ground state of all 14 tautomers and rotamers of TMCyt was first optimized using density functional theory (B3LYP) with the TZVP basis set. The ground state structures of the six most stable tautomers are shown in Figure 1; these were re-optimized at the correlated level, using the Møller-Plesset (MP2) method in the resolution-of-identity (RI) approximation, the SCS-MP2 method and the CC2 method in the RI approximation, using the aug-cc-pVTZ basis set. The adiabatic and vertical transition energies were calculated at the SCS-CC2 level of theory with the aug-cc-pVDZ basis set. Normal-mode calculations were performed for all geometry-optimized structures to assure that they correspond to true potential energy surface minima. These data were also calculated at the MS-CASPT2 level of theory. For the $\pi\pi^*$ and ${}^1n_O\pi^*$ states we used TD-CAM-B3LYP/6-311G** optimized geometries, whose MS-CASPT2 energy is lower than that of their CASSCF and SCS-CC2 analogues. For the optimization of $(OP)_{Min}$ we used
the CASSCF(12,12)/6-311G** geometry because the other methods failed to converge a minimum for that state. For the calculation of the decay paths and conical intersections, we follow the MS-CASPT2//CASSCF approach, where the paths and structures are optimized at the CASSCF level of theory and the energy profiles along the paths are recalculated at the MS-CASPT2 level to include dynamic correlation energy (see our previous study of 1-MCyt³³). For the CASSCF and MS-CASPT2 calculations we used, respectively, the 6-311G** basis and the ANO-L basis set contracted to 4s3p2d for C, N and O and 3s2p1d for H. For the CASPT2 calculations we used an imaginary level shift³⁴ of 0.1 a.u. and the standard ionization potential - electron affinity correction³⁵ of 0.25 a.u.. To calculate the reaction path to $(OP)_X$ we optimized the transition structure (TS) on S_1 , and obtained the path by combining the intrinsic reaction coordinate³⁶ and initial relaxation direction³⁷ techniques. The calculated barrier includes the vibrational zero-point energy (ZPE) correction, which amounts to -475 cm^{-1} , based on CASSCF frequencies at $(^1\pi\pi^*)_{Min}$ (with 3N-6 vibrational modes) and at the corresponding TS (including 3N-7 modes). The CI were optimized using the recently developed double Newton-Raphson algorithm.³⁸ The active space of the CASSCF and MS-CASPT2 calculations Publishing cifically tailored for each path. for details see the supplementary material. We use (10,10) and (12,12) active spaces for the ethylene- and OP-type paths, respectively. With this approach, the MS-CASPT2 S_1/S_0 energy gaps at the CI structures were 1973 and 2265 cm⁻¹ (0.24 and 0.28 eV) at $(Eth)_X$ and $(OP)_X$, respectively. The path to $(Eth)_X$, which has a sloped topology and does not involve a TS, was approximated with a linear interpolation in internal coordinates. The DFT and CC2 calculations were performed using Turbomole $6.4^{.39,40}$ The CASSCF optimizations were performed with a modified version of Gaussian09,⁴¹ and the MS-CASPT2 calculations with Molcas $7.8^{.42,43}$ Vibronic band simulations were done with the PGOPHER program.⁴⁴ As inputs, we used the SCS-CC2 calculated S_0 ground and S_1 excited state geometries and the corresponding normal-mode l matrices, employing conformer $\bf 1a$. Additional diagonal anharmonicity constants⁴⁴ were included for some modes. The vibronic band intensities are based on full multidimensional Franck-Condon factors, including both mode displacements and mixing between modes (Dushinsky effect).⁴⁴ The vibronic simulations for conformer $\bf 1b$ are very similar to those for $\bf 1a$. #### III. RESULTS AND DISCUSSION #### A. Computational Results Tautomers and Relative Energies: Figure 1 shows the six most stable calculated tautomers and rotamers of TMCyt, and Table I summarizes their relative energies calculated at different levels of theory. All the correlated wave function methods predict the *trans*-amino-enol **2b** tautomer to be the most stable one, with the corresponding *cis*-rotamer $2a \sim 0.6$ kcal/mol higher. The amino-keto N1H tautomer **1** that is experimentally investigated below, exists in conformer **1a**, where the amino group and trimethylene ring are out-of-plane in the same direction, denoted Up-up (or Down-down), where the first (capitalized) orientation refers to the NH₂ group. In conformer **1b**, the NH₂ group and trimethylene ring are arranged in opposite directions (Up-down or Down-up). The **1a** and **1b** forms are close in energy with **1b** calculated to lie 3-4 cm⁻¹ above **1a**. In the gas phase, both **1a** and **1b** are less stable than amino-enol conformers by 1.08 kcal/mol (CC2) or 1.54 kcal/mol (SCS-MP2). The B3LYP density functional method predicts the amino-keto N1H tautomer to be the most stable tautomer; however, it is known that this method predicts the order of the cytosine tautomers incorrectly.^{6,45} The other TMCyt tautomers 2b, 2a and 4 also exist as pairs of conformers analogous to 1a/1b, but only one form was calculated since the energy difference is expected to be very small. All the imino-enol Publishing ie > 13 kcal/mol above the most stable tautomer **2b** at the B3LYP/TZVP level, hence we do not consider them any further. ### Electronic Transition Energies: Table II summarizes the calculated adiabatic and vertical transition energies of the 1a, 1b, 2a, 2b and 3a conformers predicted by the SCS-CC2 method, together with the MS-CASPT2 transitions for 1a. Both methods are in good agreement, which validates our computational approach. They predict that the S_1 state minimum has ${}^1\pi\pi^*$ character. The calculated adiabatic transition of 1a is 31534 cm $^{-1}$ (SCS-CC2) and 31831 cm $^{-1}$ (MS-CASPT2), in excellent agreement with the experimental value of 31510 cm $^{-1}$. The vertical excitation energy of the ${}^1\pi\pi^*$ state with the SCS-CC2 and MS-CASPT2 methods is 36610 and 36500 cm $^{-1}$, respectively. There are two low-lying ${}^1n\pi^*$ states which arise from excitations out of the oxygen and nitrogen lone pairs, whose vertical excitation energies are 7000 - 10000 cm $^{-1}$ higher. The structure of the ${}^1n_O\pi^*$ state was optimized at the TD-CAMB3LYP level. It is a minimum on S_2 with adiabatic energy of 37597 cm $^{-1}$ (MS-CASPT2 single point). The structure optimization of the ${}^1n_O\pi^*$ state did not converge with SCS-CC2 because it reached a region of S_2/S_1 degeneracy, which is consistent with the small S_2/S_1 energy gap found at the ${}^1n_O\pi^*$ minimum at the MS-CASPT2 level. Optimization of the ${}^1n_N\pi^*$ state at the CASSCF level leads to $(OP)_{Min}$, with an adiabatic energy of 33017 cm $^{-1}$. The electronic configuration at this structure is analogous to that described in our previous work on 1-MCyt. The adiabatic transition energy of conformer ${\bf 1a}$ is calculated to lie slightly above that of ${\bf 1b}$, differing by $51~{\rm cm^{-1}}$ at the SCS-CC2 level. With this method, the $S_0 \to S_1$ transitions of the major tautomers ${\bf 2b}$ and ${\bf 2a}$ are calculated to be ${}^1\pi\pi^*$ and to lie at $\sim 35000~{\rm and} \sim 34500~{\rm cm^{-1}}$, respectively, or about $3500~{\rm cm^{-1}}$ further to the blue than the transitions of the ${\bf 1a/1b}$ conformers. The lowest-energy electronic transition of the imino-keto tautomers ${\bf 3a}$ and ${\bf 3b}$ are predicted at $41400~{\rm cm^{-1}}$ and $40970~{\rm cm^{-1}}$, respectively. This is above the experimental spectral range covered in this work. On the other hand, the lowest ${}^1\pi\pi^*$ transition of the ${\bf 4}$ (N3H) tautomer is predicted to lie very close to that of the ${\bf 1}$ (N1H) tautomer. However, tautomer ${\bf 4}$ is calculated to be 5.5-5.8 kcal/mol less stable than tautomer ${\bf 1}$, hence we do not expect this tautomer to be observable in the supersonic jet. Ground- and Excited-State Structures: In the SCS-CC2 S_0 optimized structure of 1a the pyrimidinone framework is C_s symmetric, and the amino group and the trimethylene ring are bent slightly out of the ring plane. In the ${}^1\pi\pi^*$ excited state, the SCS-CC2 and TD-CAMB3LYP methods predict (i) a stronger Publishingi dalization of the amino group, (ii) an in-plane deformation of the pyrimidinone framework and (iii) an out-of-plane bend at the C⁶ atom (see Figure 1 for the atom numbering). Figure 2 shows the SCS-CC2/aug-cc-pVDZ calculated geometries and geometry changes of TMCyt for both amino-keto N1H conformers. The TD-CAM-B3LYP optimized structure has similar out-of-plane deformations, see Figure S1 in the supplementary material. This is in line with previous results for 1-MCyt³³ for which both methods predict a substantial deplanarization at the ${}^1\pi\pi^*$ state minimum. Interconversion between the **1a** and **1b** isomers: As shown in Table I, three correlated quantum-chemical methods (MP2, CC2 and SCS-MP2) predict the energy difference between conformers **1a** and **1b** to be very small $(1 - 10 \text{ cm}^{-1})$. At the typical $T_{vib} = 5 - 7 \text{ K}$ in our supersonic jet expansions, the relative population of **1a** and **1b** should thus be within a factor of 2 - 3. Given the computed adiabatic transition frequencies of 31534 cm^{-1} for **1a** and 31483 cm^{-1} for **1b** (see Table II), we should observe two spectra that are mutually shifted by about 50 cm^{-1} . However, the R2PI and UV/UV holeburning spectra discussed below show only a *single* ground-state species. The reason for this is the large-amplitude amino-inversion of TMCyt, which interconverts the conformers **1a** and **1b**. In the S_0 state, the SCS-CC2/aug-cc-pVDZ calculated barrier height between ${\bf 1a}$ and ${\bf 1b}$ is $\sim 30~{\rm cm}^{-1}$. We calculated the one-dimensional (1D) inversion potential at the same level by incrementing the H-N-C⁴-N³ and H-N-C⁴-C⁵ angles θ_{inv} from $\theta_{inv}=0^{\circ}$ by 5° in the positive and negative directions, relaxing all other internal coordinates at every point. The resulting 1D potential is shown in Figure 3. The inversion eigenfunctions in this potential were calculated by numerically solving the 1D vibrational Schrödinger equation. The reduced mass $\mu_{red,\theta}$ was determined by calculating the SCS-CC2/aug-cc-pVDZ aminoinversion imaginary normal-mode frequency at $\theta_{inv}=0^{\circ}$; the central five points of the inversion potential were taken to represent the harmonic potential at this angle, and $\mu_{red,\theta}$ for the 1D calculation was fixed such that the calculated normal-mode and 1D frequencies in this harmonic potential were the same. Figure 3 shows that lowest-energy $v_{inv}=0$ level lies $\sim 130~{\rm cm}^{-1}$ above the barrier. Its wave function is delocalized over both the ${\bf 1a}$ and ${\bf 1b}$ geometries with its maximum near planarity ($\theta_{inv}=0^{\circ}$). That the vibrational
ground state of TMCyt is quasiplanar (delocalized over both ${\bf 1a}$ and ${\bf 1b}$) explains why the UV/UV holeburning spectra, discussed in the next section, reflect the presence of a single ground-state species only. The second amino-inversion level $v_{inv}=1$ lies $380~{\rm cm}^{-1}$ higher. It will be collisionally cooled out in the supersonic expansion and will not be considered further. In the S_0 state, the planar (C_s symmetric) structure of TMCyt is an index-2 stationary point. Normal-mode analysis at this point yields imaginary frequencies for both the NH₂ inversion and trimethylene-ring Publishing-plane vibrations. The S_0 -state barrier to planarity is 307 cm^{-1} at the SCS-CC2 level. In the $^1\pi\pi^*$ excited state the barrier to planarity is much higher, 1297 cm^{-1} . Four imaginary frequencies are obtained at the C_s stationary point. # B. Experimental Results: Two-Color Resonant Two-Photon Ionization, UV/UV Holeburning and Depletion Spectra Figure 4(a) shows a two-color R2PI overview spectrum of jet-cooled TMCyt in the $31300-38500 \, \mathrm{cm^{-1}}$ range, recorded with the UV-OPO. The 0_0^0 transition of the amino-keto **1a/1b** tautomer is observed at $31510 \, \mathrm{cm^{-1}}$. At the $\sim 5 \, \mathrm{cm^{-1}}$ resolution of the UV-OPO, vibronic bands are resolved up to $+2100 \, \mathrm{cm^{-1}}$ above the 0_0^0 band. The R2PI signal extends up $4000 \, \mathrm{cm^{-1}}$ above, but due to the high density of vibronic excitations and the moderate $\sim 5 \, \mathrm{cm^{-1}}$ resolution, the band structure is washed out in this range. In Figure 4(b) we show a PGOPHER vibronic band simulation based on SCS-CC2 structures and normal modes of TMCyt. They are seen to be in qualitative agreement with the R2PI spectrum, and will be discussed in more detail in section III F. Starting at 35930 cm^{-1} or 4420 cm^{-1} above the amino-keto 0_0^0 band in Figure 4(a), further intense narrow-band absorption features are observed. Based on the SCS-CC2 calculations of the previous section we assign these to the amino-enol tautomers **2b** predicted at 34508 cm^{-1} and **2a** predicted at 35008 cm^{-1} , see also Table II. Figure 5(a) shows a higher-resolution 2C-R2PI spectrum of the amino-keto tautomers over the lowest $1500~\rm cm^{-1}$ range $(31400-32900~\rm cm^{-1})$ using a narrow-band frequency-doubled dye laser for excitation. Because of its $0.05~\rm cm^{-1}$ bandwidth, the vibronic bands are much better resolved in this spectrum. Detailed vibronic assignments are given in the next section. A high-resolution UV/UV holeburning spectrum is shown in Figure 5(b) and was recorded with the burn laser at the intense band at $0_0^0 + 59~\rm cm^{-1}$, marked by with an asterisk in Figure 5(a). It reproduces the 2C-R2PI spectrum in Figure 5(a) in great detail. From this we conclude that all the observed vibronic bands originate from the ground-state level that gives rise to the transition at $0_0^0 + 59~\rm cm^{-1}$. Figure 5(c) shows the corresponding UV/UV depletion spectrum in which the holeburning laser is scanned with the detection laser fixed at the intense $0_0^0 + 59~\rm cm^{-1}$ band. The UV/UV depletion spectrum also reproduces the R2PI spectrum, although the signal/noise ratio is lower than in the UV holeburning spectrum. At $900~\rm cm^{-1}$ above the electronic origin the widths of the vibronic bands begin to increase, which indicates the onset of rapid non-radiative processes, see AIP Publishing Publishing III F. Although no further bands can be observed in the depletion spectrum above $+1000 \text{ cm}^{-1}$, the signal remains slightly below the baseline, indicating a constant depletion of the ion signal. #### C. Vibronic Band Assignments We first attempted to assign the vibronic bands in the R2PI spectrum of TMCyt in Figure 5(a) based on the SCS-CC2, CC2 and TD-B3LYP harmonic frequencies of the $^1\pi\pi^*$ state given in Table III. The lowest-frequency in-plane vibration is predicted to be $\nu_1'=254~\rm cm^{-1}$ (SCS-CC2), $\nu_1'=248~\rm cm^{-1}$ (CC2) or $\nu_1'=262~\rm cm^{-1}$ (TD-B3LYP), hence the vibronic bands below $\sim 250~\rm cm^{-1}$ must arise from out-of-plane vibrations. Experimentally, the two lowest-frequency bands at 38 cm⁻¹ and 59 cm⁻¹ cannot belong to the same progression, so we assign these as fundamentals of the lowest-frequency out-of-plane vibrations ν_1' and ν_2' (that is, as 1_0^1 and 2_0^1). Table III shows that the lowest two frequencies calculated with the SCS-CC2, CC2 and TD-B3LYP methods are two to three times larger. Previous experience with SCS-CC2, CC2 and TD-B3LYP excited-state calculations of cytosine derivatives and pyrimidinones has shown that while the in-plane S_1 state vibrational frequencies are well reproduced, the calculated out-of-plane vibrational frequencies are often 2-3 times higher than observed experimentally. $^{6-8,31,33}$ For the PGOPHER⁴⁴ vibronic band simulations (see section II B), we therefore decreased the out-of-plane frequencies to the experimental values. Figure 6(a)-(c) shows the simulated vibronic bands in red for the 0-420, 420-870 and 870-1320 cm⁻¹ sections of the spectrum and compares these to the high-resolution 2C-R2PI spectrum in black. We first fitted the S_1 state in-plane vibrational frequencies. The SCS-CC2 calculation predicts the lowest four in-plane fundamentals ν'_6 , ν'_{11} , ν'_{12} and ν'_{15} at 254, 461, 472 and 618 cm⁻¹, respectively, see Table III. These normal-mode eigenvectors are shown in Figure 7. The ν'_{11} and ν'_{42} normal-modes correspond to the ν'_{6a} and ν'_{6b} in-plane vibrations that are characteristic of the $S_0 \rightarrow S_1$ spectra of benzene and its derivatives. We therefore assigned the bands at 449 cm⁻¹ and 471 cm⁻¹ as 12_0^1 and 11_0^1 , respectively, see Figure 6(b); the order of these two vibrations was interchanged to obtain a better fit with the experimental R2PI spectrum. The 6_0^1 transition was fitted to the band at 257 cm⁻¹; its intensity is rather small and it does not contribute further to the spectrum. The band at 615 cm⁻¹ was assigned to the 15_0^1 fundamental. The band at 944 cm⁻¹ is assigned as the in-plane fundamental ν'_{23} , as the overtone 11_0^2 had no intensity, see Figure 6(c). We then fitted the out-of-plane vibrations, see Figure 6(a). The weak band at $38~\rm cm^{-1}$ is assigned as the ν_1' fundamental. Since the ν_2' and ν_4' vibrations involve structural changes of the trimethylene ring, see Published II and hardly appear in the simulation, the intense 59 cm^{-1} band is assigned as the 3_0^1 "butterfly" vibrational fundamental. The 3_0^2 overtone was fitted to the band at 126 cm^{-1} . The fundamentals of ν_5' and ν_7' were fitted to the bands at 93 cm^{-1} and 221 cm^{-1} . The out-of-plane normal-mode eigenvectors ν_1' , ν_3' , ν_5' and ν_7' are shown in Figure 8. Note that the SCS-CC2, CC2 and TD-B3LYP harmonic frequencies in Table III differ from the fitted frequencies (Table IV) by a factor of 2-3, indicating that the S_1 state potential-energy surface is much flatter and more anharmonic along these coordinates than predicted by the excited-state calculations. #### D. Photoionization Efficiency Curves Figure 9 shows the photoionization efficiency (PIE) curves of the $S_1(^1\pi\pi^*)$ state, which were recorded at 0 ns delay of the ionization laser, and of a long-lived state, which was recorded at 50 ns delay. The PIE curve of the long-lived state shown in Figure 9 is scaled according to the relative signal heights discussed in the next section, where the T_1 ion signal reaches 25 % of the S_1 signal when ionizing at 225 nm. The PIE curve of the $S_1(^1\pi\pi^*)$ state in Figure 9 exhibits a steplike ionization threshold at $33930\pm20~{\rm cm^{-1}}$, indicating that the geometry change between the v'=0 level of the $S_1(^1\pi\pi^*)$ state and the TMCyt⁺ ion ground state D_0 is small. The Franck-Condon factor for adiabatic ionization from the S_1 state is sufficiently large so the adiabatic ionization energy (AIE) threshold can be observed. The sum of the $S_0 \to S_1 \ 0_0^0$ excitation energy of $31510~{\rm cm^{-1}}$ and the PIE threshold in Figure 9 is $65440\pm20~{\rm cm^{-1}}$, giving an AIE= $8.114\pm0.002~{\rm eV}$. The SCS-CC2 calculated AIE= $8.18~{\rm eV}$ of tautomer 1a is in good agreement with this value (see Table II). The delayed-ionization RIE curve of the long-lived state shown in Figure 9(b) is relatively noisy; since the UV spectrum of the TMCyt amino-enol forms begins around $\sim 36000~\rm cm^{-1}$, this contribution to the signal had to be subtracted. The PIE curve exhibits a gradual signal onset at $40320~\rm cm^{-1}$ followed by a slow rise. We interpret the long-lived state as the lowest triplet state T_1 , and this slow onset as photoionization of the hot vibrational levels of T_1 that are formed by $S_1 \rightsquigarrow T_1$ intersystem crossing (ISC); the $S_4 \leftrightarrow T_1$ energy difference is converted to vibrational energy of the T_1 state during the ISC process. The signal onset at $40320~\rm cm^{-1}$ is thus interpreted as the lower limit to the AIE of the T_1 state. The upper limit to the AIE is estimated by back-extrapolation of the linear part of the PIE curve to the zero-signal line at $41400~\rm cm^{-1}$. Subtracting these two values from the AIE of the $S_1(^1\pi\pi^*)$ state $(65440 \pm 20~\rm cm^{-1})$ places the T_1 state between $24020~\rm cm^{-1}$ and $25140~\rm cm^{-1}$ above the S_0 ground state. is $\sim 27800~{\rm cm^{-1}}$, whereas the alternative of a dark $^1n_O\pi^*$ state can be discarded because its estimated energy is much higher, $37597~{\rm cm^{-1}}$, see Table II. #### E. Ns Pump/ Ionization Delay Scan Measurements and
Nonradiative Kinetics We measured the excited-state lifetime and nonradiative kinetics of TMCyt using ns laser pump/delayed ionization measurements by ionizing at 225 nm. The convolution of the pulse widths of the pump and ionization laser yields a Gaussian instrument response function (IRF) with a full width at half-maximum (FWHM) of 4.2 ns. We modeled the S_1 ($^1\pi\pi^*$) state kinetics as $$\frac{d[S_1]}{dt} = -(k_{rad}^{S_1} + k_{IC}^{S_1} + k_{ISC}^{S_1}) \cdot [S_1]$$ (1) where k_{rad} is the $S_1 \to S_0$ radiative decay rate. The SCS-CC2 calculated oscillator strength of TMCyt is $f_{el} = 0.0918$, giving $\tau_{rad} \sim 12$ ns or $k_{rad} = 8.3 \cdot 10^7 \, \mathrm{s}^{-1}$. This value is in good agreement with the $\tau_{rad} = 13$ ns that Zgierski et al. estimated from the integrated $S_0 \to S_1$ absorption spectrum of TMCyt in aqueous solution. The S_1 state is assumed to decay nonradiatively to S_0 by internal conversion (IC) with the rate constant $k_{IC}^{S_1}$ and by intersystem crossing (ISC) to the T_1 state with the rate constant $k_{ISC}^{S_1}$. T_1 is assumed to relax to S_0 by $T_1 \leadsto S_0$ reverse ISC and also by phosphorescence; these two pathways are combined into a single rate constant k_T : $$\frac{d[T_1]}{dt} = k_{ISC}^{S_1} \cdot [S_1] - k_T \cdot [T_1] \tag{2}$$ However, k_T is very low ($< 5 \cdot 10^6$ s) and we cannot determine it by delay measurements on the ~ 50 ns time scale, so it is set to zero. The simulated time-dependent concentrations $[S_1]$ and $[T_1]$ were convoluted with the IRF and were least-square fitted to the experimental pump/ionization signal traces. Note that because of the 4.2 ns width of the IRF, which is similar to the inverse of the k_{IC} and k_{ISC} rate constants, the ratio of the ionization efficiencies of molecules in the S_1 and T_1 states, $\sigma_{ion}(S_1)$: $\sigma_{ion}(T_1)$, can only be estimated within certain limits discussed below. If the width of the two laser pulses were significantly shorter than the inverse of the k_{IC} and k_{ISC} rates, then the experimental pump/ionization transient would exhibit a much more intense S_1 signal that would peak close to 100 % on the scale of Figure 10, and the observed S_1 : T_1 signal ratio would be correspondingly larger. Publishing igure 10(a-c) we show the experimental pump/ionization transient with excitation at the 0_0^0 band and ionization at 225 nm, marked by a dashed vertical line in Figure 9. This transient is fitted for three different assumptions for the ionization efficiency ratio $\sigma_{ion}(S_1)$: $\sigma_{ion}(T_1)$. In Figure 10(a) we assume $\sigma_{ion}(S_1)$: $\sigma_{ion}(T_1)=1$, giving the nonradiative rate constants $k_{IC}=2.2\cdot 10^8~{\rm s}^{-1}$ and $k_{ISC}=4.1\cdot 10^7~{\rm s}^{-1}$. Note, however, that this ratio is unrealistically low, since ionization at $225~{\rm nm}$ is $10000~{\rm cm}^{-1}$ above the S_1 ionization threshold but only $2700~{\rm cm}^{-1}$ above the T_1 ionization threshold. For the fit in Figure 10(b) we assume that the ionization efficiency ratio $\sigma_{ion}(S_1)$: $\sigma_{ion}(T_1)=4$, which is the apparent experimental ratio between the S_1 and S_1 ion signals at S_2 nm shown in Figure 9, and between the ion signals at 0 ns delay and S_1 and S_2 and in Figure 10. This fit gives the nonradiative rate constants S_1 and S_2 and the S_3 in S_4 These IC and ISC rate constants of TMCyt can be compared to those of 1-MCyt, which are $k_{IC} = 2 \cdot 10^9 \text{ s}^{-1}$ and $k_{ISC} = 2 \cdot 10^8 \text{ s}^{-1}$ near the $S_1(v'=0)$ level.³³ The main difference lies in the decrease of k_{IC} by a factor of 10 - 20. The ISC rate constant probably changes little upon rigidization of the pyrimidinone, but the uncertainty is large. Thus the increase in excited-state lifetime at the 0_0^0 band upon clamping the C^5 - C^6 bond originates mainly from the decrease of the IC rate. The pump/ionization transients were also measured at an ionization wavelength of 245 nm, which is the same wavelength as used to record the 2C-R2PI spectra. The measured 0_0^0 band transient was well fitted with the three sets of k_{IC} and k_{ISC} constants that correspond to Figure 10(a-c). However, Figure 9 shows that ionization of the T_1 state at 245 nm is very inefficient; thus, the $\sigma_{ion}(S_1)$: $\sigma_{ion}(T_1)$ ratio was re-fitted and is 15.5 times larger that for ionization at 225 nm. These fits are shown in the supplementary Figure S3(a-c). Ns pump/ionization transients were also measured for the bands at 0_0^0+530 , 0_0^0+1174 and 0_0^0+1646 cm⁻¹, but only with ionization at 245 nm, see supplementary Figure S3(d-f). These transients were fitted with a fixed $\sigma_{ion}(S_1)$: $\sigma_{ion}(T_1)=15.5$, which corresponds to assuming $\sigma_{ion}(S_1)$: $\sigma_{ion}(T_1)=1$ and T_1 states at 225 nm. All fitted k_{IC} and k_{ISC} values assuming $\sigma_{ion}(S_1)$: $\sigma_{ion}(T_1)=1$ at 225 nm are collected in Table V. Summarizing, one sees that although the ns time resolution of the pump/ionization transient measurement and the unknown ratio $\sigma_{ion}(S_1)$: $\sigma_{ion}(T_1)$ lead to considerable uncertainty, k_{IC} is determined within a factor of 2.5 between $k_{IC} = 9.8 \cdot 10^7$ and $2.2 \cdot 10^8$ s⁻¹. Similarly, the limits of the ISC rate constant are determined within a factor of four as $k_{ISC} = 4.1 \cdot 10^7$ to $1.6 \cdot 10^8$ s⁻¹. For all three fits, the lifetime AIP Publishthe Publishing 0_0 band is $\tau=2.9$ ns. Given the calculated radiative rate constant $k_{rad}=8.3\cdot 10^7~{\rm s}^{-1}$ and that $\tau=1/(k_{rad}+k_{ISC}+k_{IC})$, one finds that the fluorescence quantum yield of TMCyt is $\Phi_{fl}=24$ %. This value does not depend on the exact k_{IC} and k_{ISC} rate constants. For TMCyt in room-temperature aqueous solution, Zgierski et al. determined $\Phi_{fl}\sim 10$ % from the lifetime of $\tau=1.2$ ns. That the fluorescence quantum yield at room temperature is lower than at the low temperature in the supersonic jet is very reasonable and to be expected from the increase of k_{IC} with increasing vibrational energy, as is documented in Table V. #### **F.** The $S_1 \leftrightarrow S_0$ Conical Intersections In contrast to the $S_0 \to S_1$ vibronic spectra of Cyt and its derivatives 1-MCyt, 5-MCyt and 5-FCyt, $^{6-8,33}$ which exhibit sharp break-offs at 450-1200 cm $^{-1}$ above the 0_0^0 bands, indicating the onset of an ultrafast process, the $S_0 \to S_1$ 2C-R2PI spectrum of TMCyt 1a/1b extends up to 4400 cm $^{-1}$ above the 0_0^0 band and does not show a spectral break-off. The vibronic bands either merge or become diffuse at ~ 2100 cm $^{-1}$ above the 0_0^0 band of the amino-keto tautomer. To investigate the reason for the broadening, we modeled the complete vibronic spectrum for TMCyt using PGOPHER 8.0; ⁴⁴ the simulated spectrum is shown in Figure 4(b). In addition to the nine optically active vibrational modes ν_1' , ν_3' , ν_5' , ν_7' , ν_6' , ν_{11}' , ν_{12}' , ν_{15}' and ν_{23}' that were employed for the simulation in Figure 6 in section III C, we included the fundamental excitations of all vibrations with calculated Franck-Condon factors > 15% of the 0_0^0 band. These are the in-plane vibrations ν_{33}' , ν_{39}' , ν_{43}' , ν_{44}' and ν_{45}' and the ν_8' out-of-plane vibration. These frequencies were *not* fitted to experimental transitions but were taken from the SCS-CC2 calculations. The overtones and combination tones of these six vibrations could not be included because of the limited array sizes of PGOPHER. A Gaussian line shape with a FWHM of 5 cm⁻¹ was employed, reflecting the bandwidth of the UV-OPO. When setting the Lorentzian linewidth contribution Δ_{Lor} to zero, the simulated spectrum exhibits resolved vibronic bands up to +4400 cm⁻¹. If we include a Lorentzian linewidth contribution $\Delta_{Lor} = 5 \text{ cm}^{-1}$ in the simulation, which corresponds to a lifetime of 1 ps, we see in Figure 4(b) that the bands broaden and merge into a semi-continuous background that is similar to the experimental spectrum in Figure 4(a). This suggests that the broadening of the spectrum at excess energies above +2100 cm⁻¹ does not reflect just spectral congestion, but arises from a decrease in the excited-state lifetime. To account for the additional broadening observed in the experimental spectrum, we have calculated Publisher we most energetically favorable excited-state decay paths that are analogous to those for cytosine and 1-MCyt. $^{10,16,18,19,46-49}$ According to expectations and in line with the calculations of Zgierski et al., 26 the access to the ethylene-type intersection is hindered by the trimethylene modification. The calculated energy of the $(Eth)_X$ CI is approximately 6800 cm^{-1} relative to the 0_0^0 transition. The path from $^1\pi\pi^*_{Min}$ to that CI has a sloped topology, and the barrier for the decay is given by the energy of the CI itself, see Figure S2 in the supplementary material. The energetically favored decay path involves out-of-plane deformation of N³ and the amino group. The calculated energy profile along this path is shown in Figure 11. The path leads from the $S_1(^1\pi\pi^*_{Min})$ structure through a transition state (TS) to a second minimum, $(OP)_{Min}$, which is similar to that previously characterized for Cyt and 1-MCyt. $^{10,16,18,19,46-49}$ The MS-CASPT2 barrier over the TS is 1935 cm $^{-1}$, and the energy of $(OP)_{Min}$ relative to $^1\pi\pi^*_{Min}$ is 1056 cm $^{-1}$. The decay path leads further to the $(OP)_X$ CI, which has a relative energy of approximately 4300 cm $^{-1}$. The $(OP)_{Min}$ and $(OP)_X$ structures are characterized by a large out-of-plane bending of N³, with a $C^2 - N^3 - C^4 - C^5$ angle
of 60.1° and 58.2° , respectively. The ring puckering and out-of-plane bending of the amino group also increase from $(OP)_{Min}$ to $(OP)_X$ (see the $O^8 - C^2 - N^1 - C^6$ and $N^7 - C^4 - C^5 - C^6$ angles in Figure 12), which is consistent with the decay path where $(OP)_{Min}$ lies before the $(OP)_X$ CI. The fact that broadening of the vibronic bands in the R2PI spectrum sets in at around $\sim 2100~\rm cm^{-1}$, but a semi-continuous spectrum continues up to $4400~\rm cm^{-1}$ above the electronic origin is in qualitative agreement with the calculated decay path topology. We interpret the additional broadening beyond $\sim 2100~\rm cm^{-1}$ as due to the coupling between the vibrations belonging to the $S_1(\pi\pi^*)$ - and the OP_{Min} -minima below the barrier. The density of vibronic states belonging to both minima rises enormously when the energy exceeds this barrier (MS-CASPT2 barrier 1935 cm⁻¹). The semi-continuous spectrum that reaches up to at least $4400~\rm cm^{-1}$ is also in good agreement with the calculated CI at $4300~\rm cm^{-1}$. ## IV. CONCLUSIONS We have measured the UV vibronic spectra of jet-cooled amino-keto 5,6-trimethylenecytosine (TM-Cyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies. The 0_0^0 band is identified at $31510~{\rm cm}^{-1}$. The lowest $400~{\rm cm}^{-1}$ of the $S_0 \to S_1$ spectrum is dominated by fundamentals, overtone excitations and combination bands of four out-of-plane vibrations. Based on the energetic sequence of the SCS-CC2 calculated vibrational frequencies and on their predicted Franck- AIP Publishing Publishing 1 factors, we assign these as ν'_1 , ν'_3 , ν'_5 and ν'_7 . Similar to the spectra of cytosine, 5-methyl- and 5-fluorocytosine, $^{6-8}$ the longest vibronic progression is observed for the butterfly vibration ν'_3 . Combination progressions in ν'_3 are also built on the in-plane vibrational fundamentals ν'_{11} , ν'_{12} , ν'_{15} and ν'_{23} . In contrast to unsubstituted cytosine, whose $S_0 \to S_1$ spectrum breaks off above ~ 500 cm⁻¹, the R2PI spectrum of TMCyt extends to ~ 4400 cm⁻¹ above, with more than 100 resolved vibronic bands. This is the most extended $S_0 \to S_1$ spectrum of any cytosine derivative measured so far. We have also observed the R2PI spectra of the amino-enol tautomers $\bf 2a$ and $\bf 2b$ starting at ~ 36000 cm⁻¹, but these will be discussed elsewhere. Sharp vibronic bands can be observed up to $+2100 \text{ cm}^{-1}$ above the 0_0^0 band. Hence, bridging of the C^5 - C^6 bond with the trimethylene ring strongly raises the barrier to the ethylene-type $(Eth)_X$ conical intersection. Above $+2100 \text{ cm}^{-1}$ a semi-continuous R2PI spectrum is observed up to at least $+4400 \text{ cm}^{-1}$. The vibronic band simulation performed with the PGOPHER program⁴⁴ nicely reproduces the vibronic band structure and intensities of the R2PI spectrum up to $+1320 \text{ cm}^{-1}$. Towards higher frequencies the simulations predict resolved vibronic transitions, whereas in the R2PI spectrum an increased density of bands leads to an intense continuous signal. From a mechanistic perspective, our computational work shows that by blocking the twist of the C^5 - C^6 bond we not only change the energetically favored decay path, but also the topology. In Cyt and 1-MCyt, the decay path leads from the ${}^1\pi\pi^*$ minimum via a TS to the ethylene-type $(Eth)_X$ CI. The CI can be reached as soon as enough energy is available to go over the TS, and this is observed as a sharp break-off of the R2PI spectrum above $\sim 500~{\rm cm}^{-1}$ in these systems. In contrast, in TMCyt the lowest CI is the amino out-of-plane bend $(OP)_X$ and the $(Eth)_X$ CI is raised $\sim 6800~{\rm cm}^{-1}$ above the S_1 vibrationless level. The path to $(OP)_X$ involves an additional minimum that lies before the intersection. As a consequence, the R2PI spectrum does not completely break off when enough energy is available to go over the TS. This suggests that the broad, shapeless spectral region between 2100 and 4300 cm $^{-1}$ is a signature of the calculated topology. The excited-state lifetime of amino-keto TMCyt at the 0_0^0 band is $\tau=2.9$ ns, which is a fourfold increase relative to that of cytosine at its 0_0^0 band. Additionally, the lifetime τ drops off much more slowly with increasing vibrational excess energy, being $\tau=1.6$ ns even at a vibrational excess energy $E_{exc}=1174~{\rm cm}^{-1}$. From the calculated S_1 state radiative lifetime and experimental lifetime τ , we infer that the fluorescence quantum yield at the v'=0 level is $\Phi_{fl}=24$ %, which makes TMCyt the strongest fluorescing cytosine derivative in the gas phase known to date. Φ_{fl} drops to ~ 6 % at $E_{exc}=10.00$ Publishing m^{-1} . These fluorescence lifetimes and quantum yields are in qualitative agreement with the $\tau = 1.2$ ns and $\Phi_{fl} \sim 10$ % values that Zgierski et al. determined for TMCyt in room-temperature aqueous solution. The availability of a strongly fluorescent gas-phase cytosine derivative opens exciting new research opportunities based on fluorescence measurements. #### SUPPLEMENTARY MATERIAL See supplementary material for the synthesis of 5,6-trimethylenecytosine, additional computational details on the MS-CASPT2 calculations and additional ns pump/ionization transients. #### **ACKNOWLEDGEMENTS** The Bern group acknowledges support by the Schweizerische Nationalfonds (project no. 200020-152816). L.B. acknowledges financial support from the Spanish Ministerio de Economía y Competitividad (CTQ2015-69363-P) and the Generalitat de Catalunya (2014SGR-2012). ^{*} E-mail: lluis.blancafort@udg.edu [†] E-mail: leutwyler@dcb.unibe.ch ¹ H. KANG, K. T. LEE, B. JUNG, Y. J. Ko, and S. K. KIM, J. Am. Chem. Soc. **124**, 12958 (2002). ² C. CANUEL, M. MONS, F. PIUZZI, B. TARDIVEL, I. DIMICOLI, and M. ELHANINE, *J. Chem. Phys.* **122**, 074316 (2005). ³ S. Ullrich, T. Schultz, M. Z. Zgierski, and A. Stolow, *Phys. Chem. Chem. Phys.* 6, 2796 (2004). ⁴ K. KOSMA, C. SCHRÖTER, E. SAMOYLOVA, I. V. HERTEL, and T. SCHULTZ, *J. Am. Chem. Soc* **131**, 16939 (2009). ⁵ J. W. Ho, H.-C. YEN, W.-K. CHOU, C.-N. WENG, L.-H. CHENG, H.-Q. SHI, S.-H. LAI, and P.-Y. CHENG, J. Phys. Chem. A 115, 8406 (2011). ⁶ S. LOBSIGER, M. A. TRACHSEL, H. M. FREY, and S. LEUTWYLER, J. Phys. Chem. B 117, 6106 (2013). ⁷ M. A. TRACHSEL, S. LOBSIGER, and S. LEUTWYLER, *J. Phys. Chem. B* **116**, 11081 (2012). ⁸ S. LOBSIGER, M. A. TRACHSEL, T. DEN, and S. LEUTWYLER, J. Phys. Chem. B 118, 2973 (2014). - ДIР Publishing - Chem. Lett. 7, 752 (2016). - ¹⁰ N. ISMAIL, L. BLANCAFORT, M. OLIVUCCI, B. KOHLER, and M. ROBB, *J. Am. Chem. Soc.* **124**, 6818 (2002). - ¹¹ M. MERCHÁN and L. SERRANO-ANDRÉS, J. Am. Chem. Soc. **125**, 8108 (2003) - ¹² K. TOMIC, J. TATCHEN, and C. M. MARIAN, J. Phys. Chem. A **109**, 8410 (2005). - ¹³ M. Z. ZGIERSKI, S. PATCHKOVSKII, T. FUJIWARA, and E. C. LIM, J. Chem. Phys. 123, 081101 (2005). - ¹⁴ L. Blancafort, B. Cohen, P. M. Hare, B. Kohler, and M. A. Robb, *J. Phys. Chem. A* 109, 4431 (2005). - M. MERCHÁN, R. GONZALEZ-LUQUE, T. CLIMENT, L. SERRANO-ANDRÉS, E. RODRÍGUEZ, M. REGUERO, and D. PELÁEZ, J. Phys. Chem. B 110, 26471 (2006). - ¹⁶ K. A. KISTLER and S. MATSIKA, J. Phys. Chem. A 111, 2650 (2007). - ¹⁷ K. A. KISTLER and S. MATSIKA, *J. Chem. Phys.* **128**, 215102 (2008). - ¹⁸ H. R. HUDOCK and T. J. MARTÍNEZ, Chem. Phys. Chem. **9**, 2486 (2008). - ¹⁹ M. BARBATTI, A. J. A. AQUINO, J. J. SZYMCZAK, D. NACHTIGALLOVA, and H. LISCHKA, *Phys. Chem. Phys.* 13, 6145 (2011). - ²⁰ R. IMPROTA, F. SANTORO, and L. BLANCAFORT, *Chem. Rev.* **116**, 3540 (2016). - ²¹ L. SERRANO-ANDRÉS and M. MERCHÁN, J. Photochem. Photobiol. C 10, 21 (2009). - ²² M. KOTUR, T. C. WEINACHT, C. ZHOU, K. A. KISTLER, and S. MATSIKA, *J. Chem. Phys.* **134**, 184309 (2011). - ²³ J. M. PECOURT, J. PEON, and B. KOHLER, J. Am. Chem. Soc. **122**, 9348 (2000). - ²⁴ J. PEON and A. H. ZEWAIL, *Chem. Phys. Lett.* **348**, 255 (2001). - ²⁵ T. GUSTAVSSON, A. SHARONOV, and D. MARKOVITSI, Chem. Phys. Lett. **351**, 195 (2002). - ²⁶ M. Z. ZGIERSKI, T. FUJIWARA, W. G. KOFRON, and E. C. LIM, *Phys. Chem. Chem. Phys.* **9**, 3206 (2007). - D. BERRY, K.-Y. YUNG, D. S. WISE, A. D. SERCEL, W. H. PEARSON, H. MACKIE, J. B. RANDOLPH, and R. L. SOMERS, *Tetrahedron Lett.* 45, 2457 (2004). - ²⁸ K. C. THOMPSON and N. MIYAKE, *J. Phys. Chem. B* **109**, 6012 (2005). - ²⁹ S. J. O. HARDMAN, S. W. BOTCHWAY, and K. C. THOMPSON, *Photochem, Photobiol.* **84**, 1473 (2008). - ³⁰ O. E. THOMPSON, J. Am. Chem. Soc. **80**, 5483 (1958). - AIP Publishing (2011) - ublishing Obsider, H.-M. Frey, S. Leutwyler, P. Morgan, and D. Pratt, J. Phys. Chem. A 115, 13281 (2011). - ³² R. K. SINHA, S. LOBSIGER, M. TRACHSEL, and S. LEUTWYLER, *J. Phys. Chem. A* **115**, 6208 (2011). - ³³ M. A. TRACHSEL, T. WIEDMER, S. BLASER, H.-M. FREY, Q. LI, S. RUIZ-BARRAGAN, L. BLANCAFORT, and S. LEUTWYLER, *J. Chem. Phys.* **145**, 134307 (2016). - ³⁴ N. FORSBERG and P. A. MALMOVIST, *Chem. Phys. Lett.* **274**, 196 (1997). - ³⁵ G. GHIGO, B. O. ROOS, and P. A. MALMOVIST, *Chem. Phys. Lett.* **39**6, 142 (2004). - ³⁶ C. GONZÁLEZ and H. B. SCHLEGEL, J. Phys. Chem. **94**, 5523 (1990). - P. CELANI, M. A. ROBB, M. GARAVELLI, F. BERNARDI, and M. OLIVUCCI, Chem. Phys. Lett. 243, 1 (1995). - ³⁸ S. RUIZ-BARRAGAN, M. A. ROBB, and L. BLANCAFORT, J. Chem. Theory Comput. 9, 1433 (2013). - TURBOMOLE *V6.4 2013*, A Development of Universität Karlsruhe (TH) and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH; available from http://www.turbomole.com. (accessed May 19, 2015). - The thresholds for SCF and one-electron density convergence were set to 10^{-9} a.u. and 10^{-8} a.u., respectively. The convergence thresholds for all structure optimizations were set to 10^{-8} a.u. for the energy change, $6
\cdot 10^{-6}$ a.u. for the maximum displacement element, 10^{-6} a.u. for the maximum gradient element, $4 \cdot 10^{-6}$ a.u. for the RMS displacement and 10^{-6} a.u. for the RMS gradient. - M. J. FRISCH, G. W. TRUCKS, H. B. SCHLEGEL, G. E. SCUSERIA, M. A. ROBB, J. R. CHEESEMAN, G. SCALMANI, V. BARONE, B. MENNUCCI, G. A. PETERSSON, and ET AL, Gaussian 09 Revision A.02, 2009, Gaussian, Inc., Wallingford CT, 2009. - ⁴² G. Karlstrom, R. Lindh, P. A. Malmqvist, B. O. Roos, U. Ryde, V. Veryazov, P. O. Widmark, M. Cossi, B. Schimmelpfennig, P. Neogrady, and L. Seijo, *Comput. Mat. Sci.* **28**, 222 (2003). - F. AQUILANTE, L. DE VICO, N. FERRÉ, G. GHIGO, P.-A. MALMQVIST, P. NEOGRADY, T. B. PEDERSEN, M. PITONAK, M. REIHER, B. O. ROOS, L. SERRANO-ANDRÉS, M. URBAN, V. VERYAZOV, and R. LINDH, *Journal of Computational Chemistry* 31, 224 (2010). - ⁴⁴ C. M. WESTERN, *PGOPHER 8.0, a Program for Simulating Rotational, Vibrational and Electronic Structure*, University of Bristol, 2015, pgopher.chm.bris.ac.uk. - ⁴⁵ G. FOGARASI, *J. Mol. Struct.* **413**, 271 (1997). - ⁴⁶ L. Blancafort, J. Photochem. Photobiol. **83**, 603 (2007). AIP PublishingN Publishing Akayama, Y. Harabuchi, S. Yamazaki, and T. Taketsugu, *Phys. Chem. Chem. Phys.* **15**, 12322 (2013). - ⁴⁸ Q. S. LI and L. BLANCAFORT, *Photochem. Photobiol. Science* **12**, 1401 (2013). - ⁴⁹ A. NAKAYAMA, S. YAMAZAKI, and T. TAKETSUGU, *J. Phys. Chem. A* **118**, 9429 (2014). TABLE I. Calculated relative energies (in kcal/mol) of 5,6-trimethylenecytosine tautomers and rotamers (see Figure 1 for definitions). | | B3LYP | MP2 | CC2 | SCS-MP2 | |----------------------------|-------|------------------|-----------|-------------| | | TZVP | aVTZ | aVTZ | aug-cc-pVTZ | | amino-keto N1H (1a) | 0.00 | 2.69 | 1.08 | 1.54 | | amino-keto N1H (1b) | 0.02 | 2.69 | 1.09 | 1.55 | | amino-enol-trans (2b) | 0.42 | 0.00 | 0.00 | 0.00 | | amino-enol-cis (2a) | 1.01 | 0.56 | 0.57 | 0.57 | | imino-keto-trans (3a) | 0.58 | 2.87 | 2.05 | 0.60 | | imino-keto-cis (3b) | 2.20 | 4.55 | 3.68 | 2.20 | | amino-keto N3H (4) | 5.52 | 8.46 | 6.64 | 7.39 | | imino-enol-cis-trans N1H | 27.8 | - (| | | | imino-enol-cis-cis N1H | 18.2 | | | 3) | | imino-enol-trans-trans N1H | 32.5 | \mathbb{C}_{4} | | | | imino-enol-trans-cis N1H | 21.9 | | \supset | | | imino-enol-cis-trans N3H | 15.4 | V 1 | | | | imino-enol-cis-cis N3H | 24.6 | | | | | imino-enol-trans-trans N3H | 12.5 | | | | | imino-enol-trans-cis N3H | 20.6 | | | | | | | | | | Publishing II. SCS-CC2 and MS-CASPT2 calculated adiabatic and vertical transition energies (in cm⁻¹) and electronic oscillator strengths f_{el} for five tautomers of 5,6-trimethylenecytosine (see Figure 1). | | | | | | | | ` ` | | | |---------------------|------------------|--------------------|-------|--------------|-------------|-----------|-------------|--------------|-------------| | SCS-CC2/aug-cc-pVDZ | | | MS-C | ASPT2/A | ANO-L | | | | | | Tautomer | Transition | adiab. | vert. | $f_{el}{}^a$ | - | adiab. | vert.b | $f_{el}{}^a$ | Expt. | | 1a | $^{1}\pi\pi^{*}$ | 31534 | 36610 | 0.0918 | | 31831 | 36500 | 0.1174 | 31510 | | | $^{1}n\pi^{*}$ | | 42349 | 0.00152 | | 37597^c | 43580^{d} | 0.0410 |) | | | | | | | | | 46288^{e} | 0.0032 | | | | (OP) | | | | | 33017^f | - « | | | | | $^3\pi\pi^*$ | 27978 | 30671 | | | 27774^g | 31217 | V | 24020-25140 | | | ion | 65975 | | | 65440 | | | | | | 1b | $^{1}\pi\pi^{*}$ | 31483 | 36580 | 0.0918 | 31510 | ~ | | | | | | $^{1}n\pi^{*}$ | | 42352 | 0.00191 | | 0 | K- | | | | | $^3\pi\pi^*$ | | 30654 | | 24020-25140 | | - | | | | | ion | | | | 65440 | | | | | | 2a | $^{1}n\pi^{*}$ | 38631 ^h | 43035 | 0.00608 | | | | | | | | $^{1}\pi\pi^{*}$ | 34508 | 38589 | 0.102 | | | | | | | | $^3\pi\pi^*$ | | 35415 | | - | _ | | | | | 2b | $^{1}n\pi^{*}$ | 39319^{h} | 43631 | 0.00658 | | 9 | | | | | | $^{1}\pi\pi^{*}$ | 35008 | 38871 | 0.101 | 35930 | | | | | | | $^3\pi\pi^*$ | | 35446 | | | | | | | | 3a | $^{1}n\pi^{*}$ | | 43312 | 0.00925 | | | | | | | | $^1\pi\pi^*$ | 41401 | 41862 | 0.250 | | | | | | | | $^3\pi\pi^*$ | | 29432 | III. | | | | | | | | | | | - | | | | | | $^{^{\}mathrm{a}}$ Vertical excitation from S_0 equilibrium geometry, length. ^b At SCS-CC2 optimized geometry. ^c $n_O\pi^*$ minimum optimized at TD-CAMB3LYP level, S_1 energy $35282~cm^{-1}$. ^d Mixed $n_O\pi^*/n_N\pi^*$ with predominant $n_N\pi^*$ character. ^e Mixed $n_O\pi^*/n_N\pi^*$ with predominant $n_O\pi^*$ character. ^f Optimized at CASSCF level. ^g Optimized at TD-CAMB3LYP level. ^h Not fully converged. TABLE III. CC2, TD-B3LYP and SCS-CC2 calculated normal-mode and wavenumbers (in cm $^{-1}$) for the lowest $^{1}\pi\pi^{*}$ excited state of 5,6-trimethylenecytosine. | | | | | Conformer 1a | | | Conformer 1b Ex | | | |------------|--------------------|--|--------|--------------|---------|--------|-----------------|---------|-------| | | Irrep. a | Description ^b | CC2 | B3LYP | SCS-CC2 | CC2 | B3LYP | SCS-CC2 | - | | | | | aVDZ | TZVP | aVDZ | aVDZ | TZVP | aVDZ | | | ν_1 | $a^{\prime\prime}$ | boat | 90.9 | 95.7 | 76.6 | 91.7 | 108.3 | 67.3 | 37.6 | | ν_2 | $a^{\prime\prime}$ | pyrimidine/five-ring twist | 120.1 | 122.7 | 119.8 | 119.8 | 136.6 | 120.9 | | | ν_3 | $a^{\prime\prime}$ | butterfly | 157.8 | 170.5 | 146.6 | 156.2 | 212.8 | 145.9 | 59.2 | | ν_4 | $a^{\prime\prime}$ | γN_1 /five-ring planarization | 212.1 | 203.2 | 191.1 | 212.0 | 221.9 | 186.2 | | | ν_5 | $a^{\prime\prime}$ | γ_{as} NH ₂ / δ C ₂ O | 319.4 | 373.2 | 232.6 | 323.6 | 471.4 | 224.1 | 92.4 | | ν_6 | a' | $\beta_{as} NH_2/\beta_{as}$ five-ring | 247.7 | 261.5 | 253.8 | 246.8 | 270.1 | 248.9 | 256.7 | | ν_7 | $a^{\prime\prime}$ | γ_{as} NH ₂ / γ C ₆ | 326.5 | 403.6 | 288.0 | 270.2 | 448.6 | 274.9 | 221.0 | | ν_8 | $a^{\prime\prime}$ | γ_s NH ₂ / γ C ₅ / γ C ₆ | 367.5 | 343.1 | 336.1 | 327.6 | 372.0 | 345.1 | | | ν_9 | $a^{\prime\prime}$ | $\gamma N_1 H/\gamma C_4/\gamma_s NH_2$ | 528.6 | 625.5 | 352.8 | 550.6 | 722.3 | 357.7 | | | ν_{10} | | $\gamma N_1/\gamma_{as}NH_2$ | 269.2 | 301.8 | 434.7 | 377.6 | 287.6 | 425.2 | | | ν_{11} | a' | 6a | 455.3 | 473.2 | 461.4 | 454.8 | 471.4 | 466.4 | 470.5 | | ν_{12} | | $6b/\delta N_1H/\delta C_2O$ | 469.1 | 497.2 | 471.5 | 470.2 | 536.7 | 453.9 | 449.3 | | ν_{13} | | $\gamma N_1 H$ | 495.5 | 538.4 | 504.9 | 502.6 | 645.2/600.7 | 500.2 | 501.8 | | ν_{14} | $a^{\prime\prime}$ | 6b?/ γ_s NH ₂ / γ N ₁ H/ γ C ₄ / γ C ₅ | 559.1 | 579.5 | 553.0 | 532.1 | 579.9 | 552.0 | | | ν_{15} | a' | $3/\delta N_1H$ | 603.2 | 640.2 | 617.7 | 603.0 | 640.9 | 618.0 | 615.1 | | ν_{16} | $a^{\prime\prime}$ | $\gamma C_7 H_2 / \gamma C_8 H_2 / \gamma C_9 H_2 / \gamma_s NH_2$ | 628.5 | 670.1 | 636.5 | 633.2 | 680.6 | 639.9 | | | ν_{17} | $a^{\prime\prime}$ | 5 | 676.1 | 744.6 | 668.2 | 673.8 | 769.8 | 665.7 | | | ν_{18} | $a^{\prime\prime}$ | NH ₂ inversion | 649.1 | 483.7 | 691.3 | 647.6 | 532.7 | 700.5 | | | ν_{19} | a' | $\delta N_1 H/\delta N_1 C_2 N_3/\nu C_2 O$ | 742.2 | 777.0 | 736.6 | 743.2 | 781.1 | 740.3 | | | ν_{20} | a' | $\delta N_1 H/\nu N_1 C_2/\nu N_3 C_4/\beta_{as} NH_2$ | 1056.6 | 1090.9 | 771.1 | 1055.6 | | 770.6 | | | ν_{21} | $a^{\prime\prime}$ | five-ring stretch/ $\gamma C_7 H_2/\gamma C_8 H_2$ | 846.7 | 847.5 | 847.9 | 845.6 | 848.0 | 847.7 | | | ν_{22} | a' | $\gamma C_7 H_2 / \gamma C_9 H_2 / \delta C_8 H_2 \text{ shear} / \beta_{as} N H_2 / \nu N_3 C_4$ | 879.8 | 883.4 | 868.0 | 882.5 | 905.1 | 866.6 | | | ν_{23} | a' | $\beta_{as} NH_2/\delta N_1 C_2 N_3/\delta N_1 H$ | 858.4 | 926.1 | 901.8 | 858.1 | 888.7 | 900.2 | 944.4 | | ν_{24} | a' | five-ring stretch/ ν C ₂ O | 913.1 | 901.2 | 912.9 | 912.5 | 925.0 | 912.4 | | | ν_{25} | a' | $\delta C_8/\delta C_8$ H/five-ring deformation (as) | 1006.1 | 997.1 | 999.6 | 1006.2 | 1000.8 | 999.2 | | | ν_{26} | $a^{\prime\prime}$ | five-ring planar./ $\gamma C_7 H_2/\gamma C_8 H_2/\gamma C_9 H_2/\delta C_6 N_1 C_2$ | 1033.7 | 1058.6 | 1025.0 | 1032.6 | 1073.0 | 1027.3 | | | ν_{27} | $a^{\prime\prime}$ | five-ring planar./ $\gamma C_7 H_2 / \gamma C_8 H_2 / \gamma C_9 H_2$ | 1030.1 | 1052.1 | 1034.0 | 1031.9 | 1065.4 | 1033.9 | | | ν_{28} | a' | $\nu C_2 O/\beta_{as} NH_2/\delta C_7 C_8 C_9$ | 919.4 | 1105.9 | 1058.5 | 918.4 | 1092.4 | 1056.6 | | | ν_{29} | a' | $\delta C_7 H_2$ shear/ $\delta C_8 H_2$ shear/ $\delta C_9 H_2$ shear | 1113.8 | 1135.6 | 1119.2 | 1114.2 | 1171.6 | 1119.3 | | | ν_{30} | a' | $\delta N_1 H/\delta C_7 H_2/\delta_s C_9 H_2/\delta_{as} C_8 H_2$ | 1176.8 | 1210.9 | 1184.0 | 1176.5 | 1213.5 | 1183.2 | | | ν_{31} | a' | $\beta_{as} NH_2/\delta N_1 H/\delta C_7 H_2/\delta C_9 H_2$ | 1185.4 | 1196.8 | 1194.1 | 1183.8 | 1193.3 | 1192.0 | | | ν_{32} | a' | $\delta_{as} C_7 H_2 / \delta_{as} C_8 H_2 / \delta_{as} C_9 H_2$ | 1216.8 | 1230.0 | 1223.8 | 1218.5 | 1234.6 | 1224.9 | | | ν_{33} | , | $\nu N_1 C_6 / \delta C_8 H_a / \delta C_9 H_a / \delta N_1 H$ | 1231.8 | 1268.4 | 1233.3 | 1232.4 | 1155.7 | 1237.7 | | | ν_{34} | a' | $\delta_s C_7 H_2 / \delta_s C_8 H_2 / \delta N_1 H / \nu C_6 N H_2$ | 1325.8 | 1362.7 | 1273.1 | 1325.9 | 1360.4 | 1274.6 | | | ν_{35} | a' | $\delta_s C_9 H_2 / \delta_{as} C_8 H_2 / \delta N_1 H$ | 1284.5 | 1313.4 | 1291.6 | 1284.5 | | 1291.5 | | | ν_{36} | , | $\delta_s C_7 H_2 / \beta_{as} N H_2$ | 1273.0 | 1299.8 | 1315.4 | 1272.2 | 1295.9 | 1313.8 | | | ν_{37} | a' | $\delta_s C_8 H_a$ | 1311.6 | 1335.7 | 1328.0 | 1311.9 | | 1326.7 | | | ν_{38} | a' | $\nu N_1 C_2 / \nu C_5 C_6 / \delta N_1 H / \delta C_9 H_2 / \delta C_7 H_2$ | | 1465.7 | 1392.1 | 1395.2 | 1180.8 | 1401.2 | | | | | | | | | | | | | ^a Irreducible representation in the C_s point group. ^b Based on SCS-CC2/aug-cc-pVDZ
eigenvectors; ν = stretching vibration; δ = in-plane bending vibration; γ = out-of-plane bending vibration; γ = scissoring vibration; γ = in-plane rocking vibration; γ = out-of-plane wagging vibration; γ = torsion vibration. Publishing IV. Experimental $^1\pi\pi^*$ state vibrational wavenumbers of 5,6-trimethylenecytosine (in cm⁻¹) measured by 2C-R2PI spectroscopy. | Assignment | Frequency | | Frequency | | Frequency | |---|-----------|---------------------------------|-----------|---|-----------| | Region I | | Region II | | Region III | | | 0_{0}^{0} | (31510.2) | $\nu_{12}^{'}$ | 449.3 | $ u_{11}^{'} + \nu_{12}^{'} $ | 919.8 | | $\nu_1^{'}$ | 37.7 | $ u_{11}^{'}$ | 470.6 | $ u_{23}^{'}$ | 944.4 | | $ u_3^{'}$ | 59.3 | $ u_{12}^{'}$ + $ u_{1}^{'}$ | 488.2 | $\nu_{11}' + \nu_{12}' + \nu_{3}'$ | 976.5 | | $\nu_5^{'}$ | 92.5 | | | $\nu_{23}^{'}$ + $\nu_{3}^{'}$ | 1002.5 | | $ u_1^{'}$ + $ u_3^{'}$ | 97.7 | $ u_{12}^{'} + \nu_{3}^{'} $ | 508.0 | | | | $2\nu_2^{'}$ | 125.7 | $\nu_{11}^{'} + \nu_{1}^{'}$ | 514.1 | $\nu'_{11} + \nu'_{12} + 2\nu'_{13}$ | 1049.7 | | $ u_1^{'}$ + $ u_5^{'}$ | 128.7 | $\nu_{11}^{'} + \nu_{3}^{'}$ | 529.6 | $\nu_{23}^{'}$ + $2\nu_{3}^{'}$ | 1067.1 | | $\nu_{3}^{'}$ + $\nu_{5}^{'}$ | 142.4 | | 0 | $\nu_{11}^{'} + \nu_{15}^{'}$ | 1085.1 | | $\nu_{1}^{'} + 2\nu_{3}^{'}$ | 165.4 | $\nu_{12}^{'}$ + $2\nu_{3}^{'}$ | 575.6 | $ u_{23}^{\prime}$ + $ u_{7}^{\prime}$ | 1164.5 | | $\nu_{1}^{'}$ + $\nu_{3}^{'}$ + $\nu_{5}^{'}$ | 190.3 | $\nu_{11}^{'} + 2\nu_{3}^{'}$ | 596.0 | $\nu_{23}^{'} + \nu_{3}^{'} + \nu_{7}^{'}$ | 1225.6 | | ? | 212.7 | $ u_{15}^{'}$ | 615.1 | $\nu_{12}^{'}$ + $\nu_{23}^{'}$ | 1392.5 | | $2\nu_{3}^{'}$ + $\nu_{5}^{'}$ | 218.4 | | | $ u_{11}' + \nu_{23}'$ | 1415.8 | | $ u_7^{'}$ | 221.0 | $\nu_{15}^{'} + \nu_{3}^{'}$ | 678.7 | $\nu_{12}^{'} + \nu_{23}^{'} + \nu_{1}^{'}$ | 1436.0 | | $\nu_{3}^{'}+\nu_{7}^{'}$ | 274.1 | $\nu_{11}^{7} + \nu_{7}^{7}$ | 693.9 | | 1447.0 | | | | $\nu_{15}^{7} + 2\nu_{3}^{'}$ | 739.4 | | 1473.8 | Publishing: V. Internal conversion (IC) and intersystem crossing (ISC) rate constants, decay lifetimes, fluorescence quantum yields Φ_{fl} and ISC quantum yields Φ_{ISC} , from fits to the ns excitation/ionization transients in Figure 10 and Figure S3 (supporting information), assuming the relative ionization efficiencies of the S_1 and T_1 state at 225 nm to be equal. | Band/cm ⁻¹ | $k_{IC}/10^8 \text{ s}^{-1}$ | $k_{ISC}/10^7 \text{ s}^{-1}$ | Lifetime τ/n | $\overline{ \Phi_{fl} \Phi_{ISC} }$ | |-----------------------|------------------------------|-------------------------------|---------------|-------------------------------------| | 0_{0}^{0} | 2.2 | 4.1 | 2.9 ± 0.2 | 0.24 0.12 | | +530 | 3.4 | 6.6 | 2.0 ± 0.3 | 0.17 0.13 | | +1174 | 4.6 | 9.4 | 1.6 ± 0.2 | 0.13 0.15 | | +1646 | 12 | 12 | 0.7 ± 0.4 | 0.06 0.09 | FIG. 1. The six most stable tautomers of gas-phase 5,6-trimethylenecytosine. The cytosine tautomer labels are analogous to that defined in reference 45. FIG. 2. SCS-CC2/aug-cc-pVDZ calculated geometries and geometry changes of amino-keto 5,6-trimethylenecytosine upon $^1\pi\pi^*$ excitation (ground state is light-colored and the $^1\pi\pi^*$ state is darker). Bond length changes ≥ 0.05 Å and bond angle changes $\geq 3^\circ$ are indicated. FIG. 3. SCS-CC2/aug-cc-pVDZ calculated S_0 state amino inversion potential energy curve of 5,6-trimethylenecytosine plotted along the inversion coordinate θ , see the text. The minima correspond to the $\bf 1a$ and $\bf 1b$ conformers, which are inequivalent; thus their energies differ by $\sim 6~{\rm cm}^{-1}$. The $\bf 1a \to \bf 1b$ barrier height is $30~{\rm cm}^{-1}$. The wave functions of the v''=0 and v''=1 inversion levels are shown in blue and red. FIG. 4. (a) Two-color resonant two-photon ionization spectrum of jet-cooled TMCyt recorded with an UV-OPO as excitation laser and (b) simulated vibronic spectra (with PGOPHER, plotted in the negative direction) based on the SCS-CC2/aug-cc-pVDZ S_0 and $S_1(^1\pi\pi^*)$ state calculations. FIG. 5. (a) $S_0 \to S_1$ two-color resonant two-photon ionization spectrum of supersonic-jet cooled amino-keto 5,6-trimethylenecytosine (ionization at 245 nm). (b) UV/UV holeburning spectrum with the holeburning laser at the $0^0_0 + 59 \ \mathrm{cm}^{-1}$ band (marked with an asterisk). (c) UV/UV depletion spectrum with the detection laser fixed at the $0^0_0 + 59 \ \mathrm{cm}^{-1}$ band. The wavenumber scale is relative to the 0^0_0 band at $31'510 \ \mathrm{cm}^{-1}$. FIG. 6. 2C-R2PI spectrum of jet-cooled TMCyt (upper traces, in black) and PGOPHER simulated vibronic spectrum (lower red traces, plotted in negative direction) for (a) the region $-30-420~\rm cm^{-1}$, (b) the region $420-870~\rm cm^{-1}$ (enhanced by factor 2) and (c) the region $870-1320~\rm cm^{-1}$ (enhanced by factor 1.5). For details of the PGOPHER simulation see Figure 4. # SCS-CC2/aug-cc-pVDZ FIG. 7. SCS-CC2/aug-cc-pVDZ normal-mode eigenvectors of the four lowest-frequency $S_1(^1\pi\pi^*)$ in-plane vibrations of 5,6-trimethylenecytosine. # SCS-CC2/aug-cc-pVDZ FIG. 8. SCS-CC2/aug-cc-pVDZ normal-mode eigenvectors of the $S_1(^1\pi\pi^*)$ state out-of-plane modes of 5,6-trimethylenecytosine. FIG. 9. Photoionization efficiency curves of 5,6-trimethylenecytosine following excitation at the S_1 0_0^0 band (a) with prompt ionization (0 ns delay), the steplike adiabatic photoionization threshold is shown in the insert (5x). (b) PIE curve with the ionization laser delayed by 50 ns, relative to the excitation. The uncertainty of the T_1 photoionization threshold is indicated with a blue bar. FIG. 10. Ns laser excitation/delayed ionization lifetime measurements of TMCyt (in black). Excitation at the 0_0^0 band, ionization at 225 nm. The kinetic fits assume that the ratio of S_1 and T_1 ionization cross-sections are (a) 1:1, (b) 4:1 and (c) 6.4:1, for details see the text. The S_1 state signal contribution is plotted in blue, that of the T_1 state in yellow, the fit of the total ion signal is in red. FIG. 11. MS-CASPT2 energy profile of the S_0 and S_1 singlet states along the CASSCF optimized paths for radiationless decay on S_1 from $(^1\pi\pi^*)_{Min}$ to $(OP)_X$ through $(OP)_{Min}$. Blue squares: S_1 ; blue dots: S_0 . FIG. 12. (a) Structure of the $(OP)_{Min}$ minimum in the S_1 energy surface of 5,6-trimethylenecytosine. (b) Structure of the $(OP)_X$ conical intersection. ## SCS-CC2/aug-cc-pVDZ (a) $v'_{6} = 253.8 \text{ cm}^{-1}$ (b) $v'_{11} = 461.4 \text{ cm}^{-1}$ (d) $v'_{15} = 617.7 \text{ cm}^{-1}$ ## SCS-CC2/aug-cc-pVDZ (a) $v'_1 = 76.6 \text{ cm}^{-1}$ (b) $v'_3 = 146.6 \text{ cm}^{-1}$ (c) $v'_5 = 232.6 \text{ cm}^{-1}$ (d) v'_{7} = 288.0 cm