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Abstract

In this multi-institutional study we compiled a retrospective cohort of 86 posterior fossa tumors having received the
diagnosis of cerebellar glioblastoma (cGBM). All tumors were reviewed histologically and subjected to array-based
methylation analysis followed by algorithm-based classification into distinct methylation classes (MCs). The single
MC containing the largest proportion of 25 tumors diagnosed as cGBM was MC anaplastic astrocytoma with piloid
features representing a recently-described molecular tumor entity not yet included in the WHO Classification of
Tumours of the Central Nervous System (WHO classification). Twenty-nine tumors molecularly corresponded to
either of 6 methylation subclasses subsumed in the MC family GBM IDH wildtype. Further we identified 6 tumors
belonging to the MC diffuse midline glioma H3 K27 M mutant and 6 tumors allotted to the MC IDH mutant glioma
subclass astrocytoma. Two tumors were classified as MC pilocytic astrocytoma of the posterior fossa, one as MC
CNS high grade neuroepithelial tumor with BCOR alteration and one as MC control tissue, inflammatory tumor
microenvironment. The methylation profiles of 16 tumors could not clearly be assigned to one distinct MC. In
comparison to supratentorial localization, the MC GBM IDH wildtype subclass midline was overrepresented, whereas
the MCs GBM IDH wildtype subclass mesenchymal and subclass RTK II were underrepresented in the cerebellum.
Based on the integration of molecular and histological findings all tumors received an integrated diagnosis in line
with the WHO classification 2016. In conclusion, cGBM does not represent a molecularly uniform tumor entity, but
rather comprises different brain tumor entities with diverse prognosis and therapeutic options. Distinction of these
molecular tumor classes requires molecular analysis. More than 30% of tumors diagnosed as cGBM belong to the
recently described molecular entity of anaplastic astrocytoma with piloid features.

Keywords: Cerebellar glioblastoma, Methylation-based classification, Copy number variation load, Anaplastic
pilocytic astrocytoma, Anaplastic astrocytoma with piloid features, Integrated diagnosis
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Introduction
Glioblastoma (GBM) of cerebellar localization (cGBM)
constitutes less than 1% of all GBMs [1, 16]. Morpho-
logical distinction from other established glioma entities
of the posterior fossa is often challenging. Particularly
difficult is the histological separation from the recently
described anaplastic astrocytomas with piloid features
(AAP) which exhibit a more favorable clinical outcome
compared to GBM IDH wt and which have been shown
to harbor MAPK pathway alterations as potential thera-
peutic targets [25]. GBMs can be divided into molecular
subgroups based on their epigenetic profiles [7, 33].
Most frequent are the MCs GBM RTK II and MC GBM
mesenchymal (MES) followed by MC GBM RTK I, MC
GBM RTK III, MC GBM midline (MID), MC GBM
MYCN and MC GBM H3 G34 mutant (G34) [31]. The
WHO classification currently does not discriminate be-
tween these subgroups and collectively classes them as
GBM IDH wildtype (wt). Several studies and case re-
ports have shown that patients with cGBM are younger
at first diagnosis than patients with supratentorial GBM
(sGBM) [2, 10, 16, 37]. So far, only single investigations
on genetic and epigenetic profiles of cGBMs have been
carried out. Mutations and DNA copy number changes
commonly observed in cerebral malignant gliomas were
less frequently encountered infratentorially. Moreover,
enrichment for PDGFRA and ATRX alterations was found,
whereas EGFR and TERT alterations were rare [9, 13, 21,
36]. Two previous studies on methylation profiles of
cGBMs have reported assignment to the MCs diffuse
midline glioma H3 K27M mutant (DMG K27), GBM RTK
I, GBM MID and IDH mutant glioma subclass astrocytoma
(A IDH). However, the inclusion of only 14 and 4 cGBMs
in these studies is a limitation for general conclusions [9,
23]. Further, the MCs AAP and GBM MID were not repre-
sented in the reference sets of the respective clustering ana-
lyses. In summary, molecular markers and epigenetic
profiles of cGBMs have not yet been comprehensively eval-
uated. Therefore, definition of clinical and molecular fea-
tures warranting the designation as a distinct GBM variant
is still controversially discussed [5, 9, 13].
With this work we set out to molecularly characterize

cGBM by applying a more comprehensive molecular
diagnostic work-up.

Materials and methods
Sample selection
We collected formalin fixed and paraffin embedded
(FFPE) tissue from 86 patients with cerebellar tumors
having received the diagnosis of GBM according to
the WHO classification 2007 [20]. The tumor samples
were collected and originally diagnosed at neuro-
pathological institutions of the universities of Bern,
Bonn, Dresden, Duesseldorf, Erlangen, Essen,

Freiburg, Marburg/Giessen, Hannover, Heidelberg,
Cologne, London, Magdeburg, Miami, Moscow,
Muenster, Romford, Tuebingen and Zurich. We also
obtained tumors via the German Glioma Network
that had been centrally reviewed at the German Brain
Tumor Reference Center in Bonn. Tumors extending
beyond the posterior fossa were included only if the
major tumor portion was within the cerebellum and
if the clinical data supported a primarily cerebellar
origin. Tumors with obvious initial manifestation in
the brain stem prompting the diagnosis of malignant
brain stem glioma and tumors with known additional
supratentorial manifestation were excluded. Tissue
collection and processing as well as data collection
were in compliance with local ethics regulations and
approval. Upon identification of a suitable area on HE
sections DNA was extracted employing standard
methods as previously described [25].
For each tumor, the following data sets were collected,

if available: local histological diagnosis, patient gender,
patient age at histological diagnosis of GBM, tumor
localization and information on the time point of tissue
sampling (primary surgery versus re-resection). For com-
parison of cGBM and sGBM cohorts two-sided T-test
was applied in Excel.

Histology and immunohistochemistry
Morphological criteria for diagnosing GBM were the
appearance of a malignant glial tumor with astro-
cytic differentiation, brisk mitotic activity and the
presence of necrosis and/or prominent microvascu-
lar proliferation [20]. Routine immunohistochemical
analyses included assessment of IDH1 R132H by the
H09 antibody (Dianova, Hamburg, Germany), of
BRAF V600E by the VE1 antibody (Roche, Basel,
Switzerland), of ATRX (Sigma-Aldrich, St. Louis,
Missouri, USA) and of H3 K27 M (Merck Millipore,
Burlington, Massachusetts, USA) status. Immunohis-
tochemistry was performed on a Ventana Bench-
Mark XT Immunostainer (Ventana Medical Systems,
Tucson, Arizona, USA) using established protocols.
For dilutions and antibody details, see Add-
itional file 1. Immunostaining with antibodies
against BRAF V600E, IDH1 R132H and H3 K27 M
was scored as either positive or negative. Care was
taken to exclude unspecific binding and binding to
non-tumorous cells. Loss of nuclear ATRX expres-
sion was scored as specific, if tumor cell nuclei
showed loss of expression, while nuclei of non-
neoplastic cells, such as endothelia, microglia, lym-
phocytes and reactive astrocytes, were positive. Of
note, weak to moderate staining of tumor cell cyto-
plasm was occasionally seen and was considered as
non-specific [27].
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Methylation-based classification, determination of copy
number variations (CNVs) and statistics
DNA was extracted from FFPE tissue using the auto-
mated Maxwell system (Promega, Fitchburg, Massachu-
setts, USA) according to the manufacturer’s instructions.
DNA concentration was determined using the Qubit
dsDNA BR Assay kit (Invitrogen, Carlsbad, California,
USA) following the producer’s guidelines. DNA was sub-
jected to methylation analysis applying Illumina 450 K
BeadChip (84/86 samples) or EPIC analysis (2/86 sam-
ples) (Illumina, Carlsbad, California, USA) as previously
described [25]. IDAT files were analyzed by a recently
described algorithm designated brain tumor classifier [7]
(www.molecularneuropathology.org). Using this brain
tumor classifier highly characteristic methylation classes
(MCs) were established, for which correlations to the re-
spective brain tumor entities in the WHO classification
were evident. Classifier scores with a probability greater
0.9 were taken as indicative for the respective MC.
CNVs were calculated from the IDAT files using the R/
Bioconductor package conumee [14] (http://bioconduc-
tor.org/packages/release/bioc/html/conumee.html) after
additional baseline correction (https://github.com/dsti-
chel/conumee). As a measure for the frequency of struc-
tural chromosomal aberrations in a tumor DNA sample
the CNV load was computed [30]. It represents the cu-
mulative length of all aneuploid chromosomal segments
of a sample. Amplifications (amp) and homozygous dele-
tions (del) were visually assessed from the CNV plots
and were defined as focal regions of copy number gain
or loss with a notably higher amplitude than regions of
suspected single-copy gains or losses. IDAT files were
also employed for t-SNE and unsupervised clustering
analyses. Tumors grouping together in these analyses
were designated as methylation clusters.
The DNA methylation array data were processed with

the R/Bioconductor package minfi (version 1.20) [22]. For
unsupervised hierarchical clustering analysis of cGBMs and
reference samples, we selected the 20,000 most variably
methylated CpG sites across the dataset according to me-
dian absolute deviation. Pairwise similarity of samples was
calculated using Euclidean distance. Clusters were then
linked according to the Ward’s linkage method. The t-SNE
plot was computed via the R package Rtsne [23] using the
20,000 most variable CpG sites according to standard devi-
ation, 3000 iterations and a perplexity value of 10.

H3F3A, BRAF, IDH1, IDH2 and TERT promoter mutation
analysis and next generation sequencing
Mutation analyses were performed by bidirectional
Sanger sequencing as previously described [17, 25]. 27/
86 tumors (31%) have been examined by next generation
sequencing employing a gene panel also covering the
TERT promoter [28].

Assignment of integrated diagnoses
An integrated diagnosis was assigned to each tumor ap-
plying the procedures introduced by the WHO classifi-
cation 2016 [19].

Reference datasets for t-SNE and summary-CNV profiles
For t-SNE, clustering analysis and calculation of summary-
CNV profiles, the following 12 glioma reference MCs were
used comprising a sum of 707 reference cases: diffuse mid-
line glioma H3 K27M mutant (DMG K27, 38 cases), GBM
IDH wt H3 G34 mutant (GBM G34, 37 cases), GBM IDH
wt subclass midline (GBM MID, 23 cases), GBM IDH wt
subclass mesenchymal (GBM MES, 128 cases), GBM IDH
wt subclass RTK I (GBM RTK I, 72 cases), GBM IDH wt
subclass RTK II (GBM RTK II, 171 cases), GBM IDH wt
subclass RTK III (GBM RTK III, 9 cases), GBM IDH wt
subclass MYCN (GBM MYCN, 18 cases), low grade glioma
subclass posterior fossa pilocytic astrocytoma (PA PF, 114
cases), CNS high grade neuroepithelial tumor with BCOR
alteration (HGNET BCOR, 22 cases) anaplastic astrocy-
toma with piloid features (AAP, 41 cases) and IDH mutant
glioma subclass astrocytoma (A IDH, 34 cases). Notably,
MC A IDH does not distinguish between IDH mutant as-
trocytoma and IDH mutant glioblastoma. Detailed descrip-
tions of the reference MCs used in this study are outlined
under: https://www.molecularneuropathology.org.

Results and discussion
Patients with cGBM present at a younger age than
patients with sGBM
Within the cohort of 86 patients with cGBM, 73 patients
were adults with a median age of 56 years comparing
well with median ages ranging from 50 to 58 years re-
ported in previous studies on adult patients with cGBM,
respectively [1, 37]. Median age of all 86 patients with
cGBM was 52 years (range: 5–88 years). In contrast, the
median age of our reference cohort of patients with
sGBMs was 60 years (range: 0–86 years) which is in line
with previous reports [35]. Student’s t-Test comparing
the ages of our patients with supratentorial compared to
cGBM revealed a p value of 0.004 confirming that cGBM
patients present at a younger age at diagnosis than pa-
tients with sGBM.

The majority of cGBMs correnponds to the methylation
clusters AAP and GBM MID
t-SNE distribution and unsupervised hierarchical clustering
analysis showed that more than half of the histologically di-
agnosed cGBMs (54/86 tumors, 63%) fall into the methyla-
tion clusters AAP and GBM MID (Fig. 1, Additional file 2).
Notably, the methylation profiles of these two entities show
close proximity to each other. The methylation cluster
GBM MID comprises tumors with the histological diagno-
sis of glioblastoma and location in midline structures
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(thalamus, cerebellum, spinal cord). These tumors share
epigenetic similarities with the methylation cluster DMG
K27, but lack the characteristic histone mutation [26]. The
second largest group of cerebellar tumors was allotted to
the methylation clusters GBM RTK I/II and MES, thus cor-
responding to typical profiles of supratentorial GBMs IDH
wt. A small fraction was allocated to the methylation cluster
DMG K27, whereas another small fraction was allotted to
the methylation cluster A IDH. Finally, only single cases
mapped to the methylation clusters HGNET BCOR, GBM
MYCN and PA PF. Some of these tumors occurred in
pediatric patients (see Additional file 3a).
The close proximity of the cerebellum to the

brainstem may explain the inclusion of 8 H3 K27M
mutant tumors into our cohort receiving the inte-
grated diagnosis DMG K27 WHO grade IV although
our inclusion algorithm excluded tumors with obvi-
ous localization in the brainstem or pons [4, 33].
However, inclusion of H3 K27M mutant tumors into
a series of cerebellar gliomas without brain stem
manifestation has also been reported in previous
studies [11, 13, 23].

In a recent publication, the methylation profile of one
of four adult cGBMs was classified as MC A IDH,
whereas the three others were allotted to MC GBM
MID [9]. So far, IDH mutations have been known to
occur preferentially in gliomas of supratentorial
localization, whereas little is known about their fre-
quency in infratentorial diffuse gliomas [33]. One inves-
tigation of IDH1 R132H mutations in gliomas of the
infratentorial compartment revealed an overall fraction
of 7%. However, in that study IDH mutations were ex-
clusively found in tumors of the brainstem, but in none
of 12 cerebellar tumors [12]. Further analyses of larger
cohorts of infratentorial gliomas are necessary to deter-
mine the specific IDH mutation frequencies in the sub-
compartments spinal cord, brainstem and cerebellum.

Different distribution of MCs in cerebellar versus
supratentorial tumors
In comparison to supratentorial sites, MC GBM MID was
overrepresented, MCs GBM RTK II and GBM MES were
underrepresented, whereas MC GBM G34 was not repre-
sented at all in the cerebellum (Table 1). A slight cerebellar

Fig. 1 Methylation-based t-SNE distribution of 86 tumors designated cerebellar glioblastoma and 12 established reference methylation clusters
comprising a reference cohort of 707 gliomas. Reference cases are indicated as colored dots with each color representing one reference
methylation cluster. Tumors of the study cohort are indicated as black-rimmed circles. The table shows the distribution of tumors in the
cerebellar study cohort among the reference methylation clusters. cGBM – cerebellar glioblastoma, meth. Cluster – methylation cluster, # -
number of tumors in the cGBM cohort, HGNET BCOR – high grade neuroepithelial tumor with BCOR alteration, DMG K27 – diffuse midline glioma
H3 K27 M mutant, GBM G34 – glioblastoma IDH wildtype subclass H3 G34 mutant, GBM MYCN – glioblastoma IDH wildtype subclass MYCN, GBM
MES – glioblastoma IDH wildtype subclass MES, GBM RTK I/II/III – glioblastoma IDH wildtype subclass(es) RTK I/II/III, GBM MID – glioblastoma IDH
wildtype subclass midline, AAP – anaplastic astrocytoma with piloid features, A IDH – IDH mutant glioma, PA PF – low grade glioma subclass
posterior fossa pilocytic astrocytoma. ** Frequencies of these tumors may be biased depending on the supplier diagnosis, the date of diagnosis
and the availability and application of antibodies or sequencing methods detecting IDH and histone mutations
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enrichment appeared to occur for the MCs DMG K27 and
A IDH. An increased number of DMG in the cerebellum
can be expected, because occurrence in older patients not
exhibiting the characteristic localization restricted to brain
stem and pons has been described [6, 22, 29]. However, the
high proportion of GBM IDH mutant (GBM IDH mut)
was not expected. It should be considered that reported fre-
quencies of DMG K27 and GBM IDH mut in cGBM co-
horts may be biased depending on the date of diagnosis,
the availability and application of antibodies and sequen-
cing methods detecting IDH and histone H3mutations.

Integrated diagnoses of the 86 investigated cerebellar
tumors
Based on morphology, methylation profile and single mo-
lecular parameters an integrated diagnosis was assigned in
line with the recommendations in the WHO classification
2016 update [19]. Additional file 3a provides an overview
of integrated diagnoses, clinical and molecular data of all
86 cerebellar tumors. GBM morphology and matching
methylation subclasses of GBM IDH wt occurred in 29
cases prompting the integrated diagnosis of GBM IDH wt
WHO grade IV. In 8 additional tumors (cases 1–8) we
also provided the integrated diagnosis of GBM IDH wt
WHO grade IV for reasons given in Additional file 3a. It
should be kept in mind that the integrated diagnosis GBM
IDH wt comprises 7 different MCs [7, 8, 31], (https://
www.molecularneuropathology.org).

Because AAP lacks unifying morphological criteria,
however, is characterized by a distinct methylation profile,
occurrence of MC AAP (calibrated score > 0.9) was taken
as evidence for this diagnosis in a total of 25 cases. Two
additional tumors (cases 16 and 28 in Additional file 3a)
with high, but below-threshold classifier scores for the
MC AAP received this diagnosis because of exhibiting
other typical features such as homozygous deletion of
CDKN2A/B or nuclear loss of ATRX expression [7, 25]. 8
tumors carried the H3 K27M mutation and consequently
received the integrated diagnosis of DMG K27 WHO
grade IV with 6 of them belonging to the MC DMG K27.
Among the remaining two cases (cases 42 and 46 in Add-
itional file 3a) one had a low classifier score for MC DMG
K27 and the other received the highest classifier score for
MC control tissue, inflammatory tumor microenviron-
ment. However, in both cases tumor cell content was high
and prominent inflammatory infiltration was absent. 6 tu-
mors classified as MC A IDH carried an IDH mutation
and were diagnosed as GBM IDH mut WHO grade IV ac-
cordingly. Notably, 5 of the 6 GBMs IDH mut harbored a
rare IDH1 mutation. Inability of the IDH1 R132H anti-
body in recognizing rare IDH mutations likely explains
why these tumors initially have not been identified as IDH
mutant. Whether rare IDH mutations are more frequent
in the cerebellum cannot be addressed with our series.
Further analyses with unbiased and higher patient num-
bers will be needed for clarification.
Two tumors of MC PA PF, one of them with a

KIAA1549-BRAF fusion, were re-diagnosed as pilocytic
astrocytoma WHO grade I (PA I). One tumor with MC
HGNET BCOR and lack of gross chromosomal alterations
was diagnosed accordingly. The MC HGNET BCOR has
emerged from the analysis of a large cohort of tumors
previously termed CNS PNET, presents with characteristic
features, but is not yet represented in the WHO classifica-
tion [32].
Five of the tumors (cases 9–13 in Additional file 3a)

were descriptively diagnosed as “tumor NOS” in two cases
due to lack of histological slides and as “malignant neu-
roectodermal brain tumor” in three cases due to lack of
diagnostic molecular evidence. Of note, all tumors with
inconclusive molecular results (cases 1–13 in Additional
file 3a) were dispersed among the reference methylation
clusters with the majority falling into the clusters GBM
MID and AAP. Additional file 3b depicts the assignment
of these tumors in the original t-SNE plot (see also Fig. 1).
The fact that only 51/86 (59%) cerebellar tumors his-

tologically diagnosed as cGBM received an integrated
diagnosis of a WHO grade IV glioma corresponding to
either GBM or DMG K27 (see Additional file 3a) dis-
closes that the morphological diagnosis of cGBM is chal-
lenging. Figures 2 and 3 illustrate how five cerebellar
gliomas with GBM morphology were given five different

Table 1 Methylation (sub)classa distribution of cerebellar and
supratentorial WHO grade IV gliomas

methylation
(sub)classa

supratentorial Percent cerebellar Percent

n = 522 n = 42

GBM G34 37 7 0 0

GBM MES 127 24 4 10

GBM MID 23 4 11 26

GBM MYCN 18 3 3 7

GBM RTK I 72 14 8 19

GBM RTK II 171 33 2 5

GBM RTK III 9 2 1 2

DMG K27b 33 6 7 17

A IDHb 32 6 6 14

GBM IDH mut glioblastoma IDH mutant, DMG K27 diffuse midline glioma H3
K27 M mutant, GBM G34 glioblastoma IDH wildtype subclass H3 G34 mutant,
GBM MYCN glioblastoma IDH wildtype subclass MYCN, GBM MES glioblastoma
IDH wildtype subclass MES, GBM RTK I/II/III glioblastoma IDH wildtype
subclass(es) RTK I/III/III, GBM MID glioblastoma IDH wildtype subclass midline, A
IDH IDH mutant glioma subclass astrocytoma or high grade astrocytoma
a Methylation class is defined as group of tumors with the same classifier
diagnosis (= epigenetic subgroup) which was allotted to a tumor sample with
a classifier score above 0.9
b Frequencies of these tumors may be biased depending on the supplier
diagnosis, the date of diagnosis and the availability and application of
antibodies or sequencing methods detecting IDH and histone mutations
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Fig. 2 Histological features of five tumors with different integrated diagnoses, but initially designated cerebellar glioblastoma by morphology: HEs of
pilocytic astrocytoma (PA I), glioblastoma IDH wildtype (GBM IDH wt) and glioblastoma IDH mutant (GBM IDH mut). All three tumors display a high
cell density, vascular endothelial cell proliferation and necrosis. PA I as well as GBM IDH wt even show calcifications. Gamma settings have been
adjusted in the second row, column I and II (400-fold magnification)
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Fig. 3 Histological features of five tumors with different integrated diagnoses, but initially designated cerebellar glioblastoma by morphology: HEs
of diffuse midline glioma H3 K27M mutant (DMG K27) and anaplastic astrocytoma with piloid features (AAP) also demonstrate a high cell density,
vascular endothelial cell proliferation and necrosis. The asterisk marks a thrombosed and re-canalized vessel. H3 K27M mutant protein was found
in the DMG K27, whereas nuclear loss of ATRX expression could be observed in the AAP. Gamma settings have been adjusted in the second and
fourth row, column I and II. (400-fold magnification)
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integrated diagnoses after performing molecular analysis.
These issues with histological differential diagnosis are
due to morphological overlaps between entities that have
to be considered in case of cerebellar glioma. Histology
of AAP for example shows overlaps with GBM, PA I
and the variant of pilocytic astrocytoma with anaplastic
features (APA). Whilst the diagnosis of APA is made on
histological grounds only [19], AAP is a molecularly de-
fined entity which shares histological features with APA,
but whose morphological spectrum has been shown to
be much more variable [25]. In particular, the presence
of necrosis, vascular endothelial proliferation and fre-
quent mitoses, but also the absence of eosinophilic
granular bodies or Rosenthal fibers can present a chal-
lenge in differentiating these tumors from GBM. Never-
theless, the recognition of AAP is relevant because
survival of patients with these tumors has been found to
be more favorable than that for patients with GBM IDH
wt. In fact, based on current knowledge survival of pa-
tients with AAP appears to be comparable to that of pa-
tients with GBM IDH mut. In addition, AAPs carry
MAPK alterations which may represent therapeutic tar-
gets [25]. Tumors diagnosed as AAP and/or APA have
been reported to frequently carry ATRX alterations [24,
25], which was also evident for the tumors in our series
(see Additional file 3a). In a recent study, molecular ana-
lyses on 19 cerebellar tumors diagnosed as GBM also
revealed 4 cases with ATRX alteration with three of
them lacking IDH1 R132H or H3F3A K27M [9]. As
these tumors may likely represent AAPs comprehensive
methylation analysis would be of interest.

No significant differences in CNV loads and summary CNV
profiles of cerebellar versus supratentorial MCs
Average CNV loads were calculated for the MCs of cere-
bellar tumors and compared to the MCs of supratentor-
ial reference cases (Additional file 4). No obvious
differences were observed except for a lower CNV load
in cerebellar tumors of the MC A IDH compared to tu-
mors belonging to the supratentorial control MC A
IDH. As the number of cerebellar IDH-mutant tumors
in this cohort was limited, further analyses of a larger
cohort are necessary for confirmation. Moreover, a trend
towards a higher CNV load in cerebellar MC GBM MID
tumors compared to supratentorial MC GBM MID tu-
mors was observed. In Fig. 4, individual CNV profiles of
three cerebellar tumors histologically diagnosed as
GBM, but resolving into the MC PA PF, MC AAP and
MC GBM RTK I are shown. The respective CNV loads
are indicated suggesting an association of CNV load with
malignancy [30]. We further compared summary CNV
plots of cerebellar and supratentorial MCs as illustrated
in Additional file 5. For most methylation subclasses lar-
ger chromosomal aberrations equally occurred in both

cerebellar and supratentorial localization. One exception
was the MC GBM RTK I where chromosome 7 gain was
less frequently observed in the cerebellar tumors. In
contrast, cerebellar tumors of the MC A IDH appeared
to show a higher frequency of chromosome 7 gain com-
pared to their supratentorial counterparts. Because the
case number for cerebellar MCs was low, these data re-
quire further confirmation.

PDGFRA amp and CDKN2A/B loss are overrepresented,
whereas EGFR amp is underrepresented in cerebellar
versus supratentorial tumors of the MC family GBM IDH
wt
In addition to summary CNV profiles assessing larger
chromosomal aberrations, focal alterations comprising
amplifications and deletions were analyzed. Recent stud-
ies proposed that case cohorts of cGBMs are enriched
for PDGFRA alterations and CDKN2A/B loss, whereas
EGFR amp is comparatively rare [9, 23, 34, 36]. We
assessed the frequencies of these alterations in 29 cere-
bellar tumors of the MC family GBM IDH wt versus 457
supratentorial reference tumors (see Additional files 3
and 6) and also considered their distribution differences
between the individual methylation subclasses. Indeed,
PDGFRA amp and CDKN2A/B loss were more fre-
quently observed among the cerebellar compared to
supratentorial tumors. High proportions of these alter-
ations were particularly evident for the MCs GBM MID
and RTK I. The fact that these MCs were more frequent
among the cerebellar (19/29, 65%) compared to supra-
tentorial tumors (95/457, 21%) may explain the enrich-
ment of PDGFRA amp and CDKN2A/B loss previously
reported in cGBMs. Our data also confirmed that EGFR
amp is less frequently encountered in cGBMs. This al-
teration is most abundant in the MCs GBM RTK II and
GBM MES, whereas not found in the MC GBM MID.
Therefore, the different distributions of these MCs in
the cerebellum also appear to explain the lower fre-
quency of EGFR amp found in previous studies on
cGBMs.

TERT promoter mutations occur less frequently in
cerebellar than in supratentorial tumors of the MC family
GBM IDH wt
TERT promoter mutations have been reported in 54 to
84% of primary GBMs [3, 15, 17, 18, 26]. One previous
study identified a TERT promoter mutation in only one
of 27 diffuse cerebellar gliomas. Another investigation
revealed this alteration in two of 19 adult cGBMs [9,
23]. In our series, TERT promoter mutations were de-
tected in 31% (9/29) of cerebellar compared to 77% (98/
127) of supratentorial tumors of the MC family GBM
IDH wt (see Additional files 3 and 6). Interestingly, none
of the tumors allotted to the MC GBM MID harbored
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such an alteration, which has already been reported pre-
viously [26]. The vast majority of TERT promoter muta-
tions was distributed among the MCs GBM MES, RTK I
and RTK II. Therefore, overrepresentation of the MC
GBM MID, but also underrepresentation of the MCs
GBM MES and GBM RTK II may have contributed to
the comparatively low frequency of TERT promoter mu-
tations among cerebellar tumors of the MC family GBM
IDH wt.

Conclusions
Molecular analysis of a series of 86 histologically clas-
sified GBMs of the cerebellum revealed that this
tumor group contains clinically and genetically differ-
ent tumor entities. The frequencies of molecular sub-
classes differ between cerebellar and supratentorial
localization. To only 37/86 tumors (43%) the inte-
grated diagnosis of GBM IDH wt was assigned. The
most important entity to separate from the mixed bag
of tumors diagnosed as cGBM is the recently de-
scribed AAP (27/86 tumors, 31%). Assignment of this
diagnosis is relevant as patients with AAP have a
more favorable clinical outcome compared to GBM
IDH wt and their tumors may harbor a targetable
MAPK alteration.
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