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Summary
Background Cerebral microbleeds are a neuroimaging biomarker of stroke risk. A crucial clinical question is whether 
cerebral microbleeds indicate patients with recent ischaemic stroke or transient ischaemic attack in whom the rate of 
future intracranial haemorrhage is likely to exceed that of recurrent ischaemic stroke when treated with antithrombotic 
drugs. We therefore aimed to establish whether a large burden of cerebral microbleeds or particular anatomical 
patterns of cerebral microbleeds can identify ischaemic stroke or transient ischaemic attack patients at higher absolute 
risk of intracranial haemorrhage than ischaemic stroke.

Methods We did a pooled analysis of individual patient data from cohort studies in adults with recent ischaemic 
stroke or transient ischaemic attack. Cohorts were eligible for inclusion if they prospectively recruited adult 
participants with ischaemic stroke or transient ischaemic attack; included at least 50 participants; collected data on 
stroke events over at least 3 months follow-up; used an appropriate MRI sequence that is sensitive to magnetic 
susceptibility; and documented the number and anatomical distribution of cerebral microbleeds reliably using 
consensus criteria and validated scales. Our prespecified primary outcomes were a composite of any symptomatic 
intracranial haemorrhage or ischaemic stroke, symptomatic intracranial haemorrhage, and symptomatic ischaemic 
stroke. We registered this study with the PROSPERO international prospective register of systematic reviews, number 
CRD42016036602.

Findings Between Jan 1, 1996, and Dec 1, 2018, we identified 344 studies. After exclusions for ineligibility or declined 
requests for inclusion, 20 322 patients from 38 cohorts (over 35 225 patient-years of follow-up; median 1∙34 years 
[IQR 0·19–2·44]) were included in our analyses. The adjusted hazard ratio [aHR] comparing patients with cerebral 
microbleeds to those without was 1∙35 (95% CI 1∙20–1∙50) for the composite outcome of intracranial haemorrhage 
and ischaemic stroke; 2∙45 (1∙82–3∙29) for intracranial haemorrhage and 1∙23 (1∙08–1∙40) for ischaemic stroke. The 
aHR increased with increasing cerebral microbleed burden for intracranial haemorrhage but this effect was less 
marked for ischaemic stroke (for five or more cerebral microbleeds, aHR 4∙55 [95% CI 3∙08–6∙72] for intracranial 
haemorrhage vs 1∙47 [1∙19–1∙80] for ischaemic stroke; for ten or more cerebral microbleeds, aHR 5∙52 [3∙36–9∙05] vs 
1∙43 [1∙07–1∙91]; and for ≥20 cerebral microbleeds, aHR 8∙61 [4∙69–15∙81] vs 1∙86 [1∙23–1∙82]). However, irrespective 
of cerebral microbleed anatomical distribution or burden, the rate of ischaemic stroke exceeded that of intracranial 
haemorrhage (for ten or more cerebral microbleeds, 64 ischaemic strokes [95% CI 48–84] per 1000 patient-years vs 
27 intracranial haemorrhages [17–41] per 1000 patient-years; and for ≥20 cerebral microbleeds, 73 ischaemic strokes 
[46–108] per 1000 patient-years vs 39 intracranial haemorrhages [21–67] per 1000 patient-years).

Interpretation In patients with recent ischaemic stroke or transient ischaemic attack, cerebral microbleeds are 
associated with a greater relative hazard (aHR) for subsequent intracranial haemorrhage than for ischaemic stroke, 
but the absolute risk of ischaemic stroke is higher than that of intracranial haemorrhage, regardless of cerebral 
microbleed presence, antomical distribution, or burden.
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Research in context

Evidence before this study
We searched Medline and EMBASE from Jan 1, 1996, 
to Dec 1, 2018 (search strategy: “cerebral adj2 micro*” OR “CMB” 
OR “microbleed.mp” AND [“stroke.mp” OR “stroke/” OR 
“intracerebral h?emorr*” OR “intracranial h?emorr*” OR 
“isch?emic stroke” OR “isch?emic infarct*”]) for studies in English 
that included patients with ischaemic stroke or transient 
ischaemic attack in whom the presence and anatomical 
distribution of cerebral microbleeds were measured at baseline, 
with at least 90 days of follow-up. An aggregate level meta-
analysis (n=5068) showed that cerebral microbleeds were 
associated with both intracranial haemorrhage 
(risk ratio [RR] 3·8 [95% CI 3·5–11·4]) and ischaemic stroke 
(RR 1·8 [1·4–2·5]); this pooled analysis, and another study in 
two cohorts (one including 1003 mainly Chinese participants and 
the other including 1080 mainly white participants) reported that 
five or more cerebral microbleeds were associated with similar 
absolute risks of intracranial haemorrhage and ischaemic stroke. 
However, small sample sizes and few intracranial haemorrhage 
outcome events in previous studies did not provide enough 
statistical power and precision to establish whether a large 
cerebral microbleed burden or distribution pattern is associated 
with a higher absolute risk of intracranial haemorrhage than 
ischaemic stroke in patients with recent ischaemic stroke or 
transient ischaemic attack treated with antithrombotic drugs.

Added value of this study
Our pooled analysis of individual data from 20 322 patients 
shows that regardless of cerebral microbleed burden and 
distribution (ie, mixed, deep, or lobar), or the type of 
antithrombotic treatment received (oral anticoagulants or 
antiplatelet therapy), the absolute rate of ischaemic stroke is 
consistently substantially higher than that of intracranial 
haemorrhage. By contrast with previous studies, the large 
number of participants provided more precise estimates of 
stroke recurrence rates and risks, while inclusion of individual 
patient data allowed adjustment for potential confounding 
factors. Our study adds new data for patients with many 
(eg, ≥20) cerebral microbleeds, which cause the most clinical 
concern regarding intracranial bleeding. 

Implications of all the available evidence
Although cerebral microbleeds can inform regarding the hazard 
for intracranial haemorrhage in patients with recent ischaemic 
stroke or transient ischaemic attack treated with antithrombotic 
drugs, the absolute risk of ischaemic stroke is much higher than 
that of intracranial haemorrhage, regardless of cerebral 
microbleed presence, burden, or pattern. The available evidence 
does not support witholding antithrombotic treatment because 
of cerebral microbleeds, but to definitively answer this question 
requires data from randomised controlled trials.

Introduction
A central challenge in stroke prevention after ischaemic 
stroke or transient ischaemic attack is to predict the risk 
of intracranial haemorrhage and to differentiate this from 
the risk of recurrent ischaemic stroke in patients treated 
with antithrombotic therapy—usually antiplate let drugs 
or, in patients with atrial fibrillation, oral anti coagulants.1 
Cerebral microbleeds are a radiological finding of small 
(<10 mm), hypointense (black), ovoid or rounded regions 
on T2*-weighted gradient-recalled echo (GRE) or suscepti-
bility-weighted imaging (SWI).2 Cerebral micro bleeds 
mostly correspond pathologically to haemosiderin-laden 
macrophages close to arterioles affected by small vessel 
diseases;3,4 strictly lobar cerebral micro bleeds suggest 
cere bral amyloid angiopathy (CAA), whereas deep 
patterns probably indicate arterioloscler osis and mixed 
patterns probably indicate mixed pathologies.5–8 Cerebral 
micro bleeds might result from red blood cell leakage 
from arterioles and capillaries, raising clinical concerns 
that they herald an increased risk of potentially devastat-
ing intracranial haem orrhage, particularly in patients 
treated with antithrombotic drugs.9 However, cerebral 
micro bleeds signal small vessel diseases that can also 

cause ischaemic stroke, and might result from non-
haemorrhagic mechanisms.10–13 In ischae mic stroke co-
horts, cerebral microbleeds are associ ated with the 
risks of both subsequent intracranial haem orrhage 
and recurrent ischaemic stroke.14–28 As the number of 
cerebral microbleeds increases, the risk of intracranial 
haem orrhage seems to rise more steeply than that of 
ischae mic stroke, and having five or more cerebral micro-
bleeds has been reported to be associated with similar 
absolute risks of intracranial haemorrhage and ischaemic 
stroke.28,29

Because previous studies had small sample sizes and 
few intracranial haemorrhage outcome events, they could 
not reliably answer the important clinical question of 
whether many cerebral microbleeds, or patterns (distrib-
utions) of cerebral microbleeds, indicate a higher risk 
of intra cran ial haemorrhage than of recurrent ischaemic 
stroke. We established the Microbleeds International 
Collaborative Network30 to undertake large-scale pooled 
analyses of prospective observational cohort studies. We 
tested the hypothesis that a large burden of cerebral 
microbleeds, or their anatomical patterns, can identify 
ischaemic stroke or transient ischaemic attack patients at 
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higher absolute risk of intracranial haemorrhage than 
ischaemic stroke.

Methods
Study design
For this pooled analysis of individual patient data, we 
identified cohorts by searching Medline and EMBASE 
(search terms “cerebral adj2 micro*” OR “CMB” OR 
“microbleed.mp” AND “stroke.mp” OR “stroke/” OR 
“intracerebral h?emorr*” OR “intracranial h?emorr*” OR 
“isch?emic stroke” OR “isch?emic infarct*”), clinical trial 
databases (clinicaltrials.gov and strokecenter.org), and 
scientific meeting abstracts. We invited members of the 
METACOHORTS consortium;31 an international database 
of more than 90 studies of small vessel disease, includ-
ing 660 000 patients. Two authors (DW and DJWe) 
independently did the search and reviewed all titles and 
abstracts; they also did an independent risk of bias 
assessment for all included studies. Cohorts were elig-
ible for inclusion if they prospectively recruited adult 
participants with ischaemic stroke or transient ischaemic 
attack; included at least 50 participants; collected data on 
stroke events over at least 3 months follow-up; used an 
appropriate MRI sequence that is sensitive to magnetic 
susceptibility (GRE or SWI); and documented the number 
and anatomical distribution of cerebral microbleeds 
reliably using consensus criteria and validated scales. 
Each patient was only included in one cohort. We assessed 
all studies for risk of bias (including selection bias) and 
quality using the Cochrane Collaboration tool.32 All cohorts 
obtained ethical approval as required by local regula tions 
to allow data sharing. All data reviewed by the co-
ordinating centre was fully anonymised. The project 
was approved by the Health Research Authority of the 
UK (REC reference: 8/HRA/0188). The Microbleeds 
International Collaborative Network protocol and statisti-
cal analysis plan were registered with PROSPERO on 
April 5, 2016 (CRD42016036602).

Outcomes
Our prespecified primary outcomes were a composite of 
any symptomatic intracranial haemorrhage (confirmed 
radiologically, including subdural, extradural, and sub-
arachnoid haemorrhage, and excluding intracranial haem-
orrhages attributed to intravenous thrombolysis or trauma) 
or ischaemic stroke (acute or subacute neuro logical symp-
toms lasting >24 h and attributed to cerebral ischaemia, 
diagnosed clinically, with or without radio logical con-
firmation); symptomatic intracranial haem orrhage; and 
symptomatic ischaemic stroke. Secondary outcome events 
were death (all cause) and vascular death. All events were 
adjudicated according to individual cohort protocols.

Statistical analysis
As per our prespecified protocol, a single dataset was 
created by combining individual participant data from the 
38 cohorts. We compared baseline demographic and risk 

factor profiles between patients with and without cerebral 
microbleeds and between patients with and without 
outcome events using the Mann-Whitney test if not 
normally distributed or the t test if normally distributed; 
we compared categorical variables between groups with 
the χ² test or Fisher’s exact test. We censored patients at the 
last available follow-up (truncated to 5 years) or at the time 
of the prespecified outcome event. When a patient had 
multiple events of the same type, we censored follow-up at 
the first event. We calculated absolute event rates per 1000 
patient-years for primary outcomes in patients with and 
without cerebral micro bleeds. We assessed the proportional 
hazards assumption through visual inspection of (log–log) 
plots of log cumulative hazard against time and tested for a 
non-zero slope in a regression of scaled Schoenfeld 
residuals against time. We calculated univariate Kaplan-
Meier survival probabilities in patients with and without 
cerebral microbleeds to estimate event rates and used the 
log-rank test to compare groups. We did multivariable Cox 
regression adjusting for the follow ing prognostic and 
confounding variables (selected by consensus based on 
availability, biological plausibility, and known associations 
with cerebral microbleeds and out comes): age, sex, 
presentation with transient ischaemic attack or ischaemic 
stroke, history of hypertension, pre vious stroke, known 
atrial fibrillation, antithrombotic use after index event, and 
type of MRI sequence used to detect cerebral microbleeds 
(T2*-weighted GRE or SWI). We investigated the effect of 
predefined cerebral microbleed burden categories (one, 
two to four, five or more, ten or more, and 20 or more). 
When investigating cerebral microbleed distribution, we 
adjusted for number of cerebral microbleeds. We added a 
shared frailty term33 to account for patients being nested in 
individual studies (thus potentially having correlated data). 
We performed subanalyses for patients treated with oral 
anticoagulants and antiplatelet drugs and added interaction 
terms between antithrombotic therapy and presence of 
cerebral microbleeds. We categorised ethnicity (when 
available) as white or Asian (Japanese, Chinese, Malays, 
Indian, Pakistani, or Korean) to investigate the interaction 
be tween ethnicity and cerebral microbleed presence. We 
performed two prespecified sensitivity analyses: the first 
exploring time-varying risks within the Cox model to 
investigate later events (beyond the first year) accounting 
for death as a competing risk (using the Fine-Gray sub-
distribution hazard model), calculating subdistribution 
hazard ratios (sHRs); and the second, a two-stage indi-
vidual-patient meta-analysis to quantify between-study 
heterogeneity using the inverse-variance method (which 
fits a separate survival model for each cohort then pools 
and displays estimates in a forest plot). We did three post-
hoc analyses as follows: (1) we added white matter 
hyperintensities (another common marker of cerebral 
small vessel disease, rated using the Fazekas scale34 and 
considered severe if rated two or greater in the peri-
ventricular of deep white matter) into our multivariable 
model; (2) we included only intracerebral haemor rhage, 
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convexity subarachnoid haem orrhage, and subdural haem-
or rhage, because these bleeding events are the most likely 
to be associated with cerebral microbleeds; and (3) we 
investigated the interaction between cerebral micro bleeds 
and age (<80 years or ≥80 years). In sensitivity analyses, if 
data for a variable of interest was not sufficiently available 
in a cohort, the cohort was excluded. We did all statistical 
analysis using STATA, version 15.

Role of the funding source
The funder of the study had no role in the study design, 
data collection, data analysis, or data interpretation, or 
writing of the report. The corresponding author had 
full access to all the data in the study and had final 
responsibility for the decision to submit for publication.

Results
Between Jan 1, 1996, and Dec 1, 2018, we identified and 
screened 344 records (325 from database search and 
19 from other sources; figure 1). 263 records were excluded 
because they were not full-text articles, and then a further 
29 full-text articles were excluded because they did not 
meet study inclusion criteria. The remaining 52 studies 
were included in our qualitative analyses, but 14 of these 
were excluded from the meta-analysis because they did not 
respond to requests for individual patient data or declined 
to join the collaboration (reasons included a lack of 
resources or because of data sharing policies). From the 
38 remaining cohorts (23 published and 15 unpublished 
studies), we included 20 322 participants (table 1). Although 
more than half of participants and outcome events came 
from the six largest cohorts, no major risk of bias was 
detected for any included cohort (appendix). The mean age 
of participants was 70 years (SD 13); 8593 (42%) of the 
20 322 were women. Cerebral micro bleeds were present in 
5649 (28%) patients (appendix), including 2415 (12%) 
with one cerebral microbleed, 1990 (10%) with two to 
four cerebral microbleeds, and 1244 (6%) with five or 
more cerebral microbleeds. Over the 35 225 patient-
years of follow-up (median 1·34 years [IQR 0·19–2·44]), 
1474 composite events occurred: 189 intracranial haem-
orrhages; 1113 ischae mic strokes; and 172 compo site events 
of unknown type from one cohort of 3355 participants, 
which did not subclassify composite out comes as intra-
cranial haemorrhage or ischaemic stroke. Char acteristics 
between patients with and without events are in the 
appendix. Visual assessment of the log-log plots and the 
results of testing the Schoenfeld residuals suggest that the 
proportional hazards assump tion was not violated in any 
of the following analyses.

The composite outcome of any intracranial haemorrhage 
or ischaemic stroke (aHR 1·35 [95% CI 1·20–1·50], 
p<0∙0001; log-rank test), symptomatic intracranial haem-
orrhage (2·45 [1·82–3·29], p<0∙0001), and symptomatic 
ischaemic stroke (1·23 [1·08–1·40], p<0∙0001) were more 
frequent in patients with cerebral microbleeds than those 
without (figure 2; appendix).

The incidence of all composite events in patients with 
any cerebral microbleed was 59 per 1000 patient-years 
(95% CI 54–64) compared with 35 per 1000 patient-
years (33–38) in those without cerebral microbleeds, an 
absolute increased incidence of 24 per 1000 patient-years 
(21–26; table 2). The aHR for a composite event be-
came larger with increased cere bral microbleed burden 
(figure 2, table 2; ptrend<0·0001). aHRs were similar across 
different cerebral microbleed anatomical distributions 
(table 2).

189 patients had a symptomatic intracranial haemorrhage 
over 32 847 patient-years of follow-up (151 intracerebral 
haemorrhages, 31 subdural haemorrhages, eight sub-
arachnoid haemorrhages [ four of which were cortical], and 
three extradural haemorrhages; four patients had more 
than one type of intracranial haemorrhage). The incidence 
of intracranial haemorrhage was 12 per 1000 patient-years 
(95% CI 10–14) in those with cerebral microbleeds 
compared with 4 per 1000 patient-years (3–5) in those 
without cerebral microbleeds, an absolute increased 
incidence of 8 per 1000 patient-years (7–9; table 2). The rate 
of intracranial haemorrhage increased with increasing 
cerebral microbleed burden, but was consistently lower 
than the rate of ischaemic stroke (table 2). The aHR for 
symptomatic intracranial haemorrhage was 2∙45 (95% CI 
1∙82–3∙29) for patients with cerebral microbleeds versus 
those without, and became larger with increased cerebral 
microbleed burden (ptrend <0·0001; figure 2; table 2); 
aHRs did not significantly differ between different cere-
bral microbleed anatomical distributions. Patients with 
multiple strictly lobar cerebral microbleeds (fulfilling the 
Boston criteria5 for probable CAA) did not have a 
significantly higher aHR for symptomatic intracranial 
haemorrhage than those without multiple strictly lobar 
cerebral microbleeds (1∙29 [95% CI 0∙60–2∙77]; table 2). 
No interaction was detected be tween cerebral microbleeds 
and antiplatelet medi cation (pinteraction=0∙358), oral anticoag-
ulants (pinteraction=0∙717), or combined oral anticoagulants 
and anti platelet medication (pinteraction=0∙163) for intracranial 
haemorrhage risk.

1113 patients had a symptomatic ischaemic stroke over 
32 293 patient-years of follow-up. The incidence of 
symptomatic ischaemic stroke in patients with cerebral 
microbleeds was 46 per 1000 patient-years (95% CI 42–51) 
compared with 30 per 1000 patient-years (28–33) in 
those without, with an absolute increased incidence of 
16 per 1000 patient-years (14–18; table 2). The rate of 
ischaemic stroke became greater with an increasing 
burden of cerebral microbleeds, and for each burden 
category substantially exceeded the rate of intracranial 
haemorrhage (table 2). The aHR for symptomatic 
ischaemic stroke was 1∙23 (95% CI 1∙08–1∙40) for patients 
with cerebral microbleeds versus those with out, and the 
aHR became larger with in creasing cere bral micro bleed 
burden (ptrend=0·0053; figure 2; table 2). Cerebral micro-
bleed anotomical distribution had little effect on ischae-
mic stroke risk (table 2). No interaction was detected 
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between cerebral microbleeds and antiplatelet medication 
(pinteraction=0·943) or oral anti coagulants (pinteraction=0·408) for 
ischaemic stroke risk, but there was weak evidence for an 
interaction between cerebral microbleeds and combined 
use of oral anticoagulants and antiplatelet medication  
(pinteraction=0·047).

There were 2148 deaths, 484 of which were due 
to vascular causes. In multivariable analyses, cerebral 
microbleed presence was not associated with all-cause 
death (aHR 1∙03 [95% CI 0∙94–1∙12]) or vascular death 
(aHR 0∙97 [0∙79–1∙19]). No interaction was detected 
between cerebral microbleeds and ethnicity (n=15 123; 
6743 white and 8380 Asian) for the risks of the composite 
outcome of intracranial haem orrhage or ischaemic stroke 
(pinteraction=0∙707); intracran ial haemorrhage (pinteraction=0∙537); 
or ischaemic stroke (pinteraction=0∙654). No interaction 
was detected between cerebral microbleed and older 
age (4376 patients older than 80 years) for the risk 
of the composite outcome (pinteraction=0∙538); intracranial 
haemorrhage (pinteraction=0∙219); or ischaemic stroke 
(pinteraction=0∙286).

Using a two-stage meta-analysis, the estimated risks 
associated with cerebral microbleed presence were con-
sistent with our main model for the composite outcome 
(heterogeneity [I²=31·7%]; intracranial haemorrhage 
[I²=0%]; and ischaemic stroke [²=24·2%]; appendix).

23 cohorts, including 10 235 patients, provided ratings 
for white matter hyperintensities, which were moderate 
to severe (Fazekas grade ≥2) in 3105 (30%) patients. 
Including white matter hyperintensities in multivariable 
models did not substantially change the aHR associated 
with the presence of cerebral microbleeds for the com-
posite outcome (aHR 1.30 [95% CI 1.12–1.52]); intracranial 
haemorrhage (aHR 2.44 [1.68–3.53]); or for ischaemic 
stroke (aHR 1.16 [0.98–1.37]).

In our sensitivity analysis including only intracerebral, 
convexity subarachnoid, and subdural intracranial haem-
orrhages, 183 patients had a sympto matic intracranial 
haemorrhage over 32 847 patient-years of follow-up. The 
aHR for symptomatic intracranial haemorrhage was 2∙59 
(95% CI 1∙91–3∙50) for patients with cerebral microbleeds 
versus patients without, and became larger with increasing 
burden. Compared with no cerebral microbleeds, aHRs 
were 1∙92 (95% CI 1∙25–2∙94) for one cerebral microbleed; 
2·02 (1∙30–3∙16) for two to four cerebral microbleeds; 
4∙88 (3∙29–7∙25) for five or more cerebral microbleeds; 
5∙87 (3∙56–9∙66) for ten or more cerebral micro bleeds; 
and 9∙32 (5∙06–17∙16) for 20 or more cerebral micro-
bleeds. These results are consistent with our primary 
findings.

There were 102 symptomatic intracranial haemorrhages 
over 12 794 patient-years of follow-up within the first year, 
and 87 over 31 059 patient-years of follow-up after the first 
year. In patients with cerebral microbleeds, the rate of 
intracranial haemorrhage was 18 per 1000 patient-years 
(95% CI 14–23) within the first year, and 5 per 1000 patient-
years (3–6) after the first year.

696 ischaemic strokes were recorded over 12 873 patient-
years of follow-up within the first year and 417 symptomatic 
ischaemic strokes during 30 447 patient-years of follow-up 
after the first year. In patients with cerebral microbleeds, 
the rate of symptomatic ischaemic stroke within the first 
year was 70 (95% CI 62–80), then 18 (15–21) after the 
first year. 

Accounting for death as a competing risk, we found no 
evidence for a change in risk over time associated with 
cerebral microbleed presence for intracranial haemor-
rhage (sHR 4∙96 [95% CI 3∙18–7∙74] at day 0 vs 4∙81 
[3∙15–7∙35] after 1 year) or ischaemic stroke (sHR 1∙46 
[1∙23–1∙73] at day 0 vs 1∙49 [1∙27–1∙75] after 1 year).

In those treated with oral anticoagulants after their 
index ischaemic stroke or transient ischaemic attack 
(n=7737; vitamin K antagonist=5253, non-vitamin K 
oral anticoagulant=2484), 91 intracranial haemorrhages 
occurred over 13 942 patient-years of follow-up, and 
384 ischaemic strokes occurred over 13 737 patient-
years of follow-up. For patients with cerebral micro-
bleeds, the rate of intracranial haemorrhage was 
12 per 1000 patient-years (95% CI 9–16); the rate of 
ischaemic stroke was 32 per 1000 patient-years (26–39; 
table 3). The rate of ischaemic stroke was much higher 
than that of intra cranial haemorrhage for all cere-
bral microbleed burden and anatomical distribution 
categories; the aHR for intra cranial haemorrhage for 
patients with cerebral micro bleeds (vs those without) 

Figure 1: Study selection profile

325 records identified through database 
         searching
  19 additional records idenitified through 
        other sources
        10 from METACOHORTS
          8 studies idenitified through emails to 
              centres with previous cerebral 
              microbleed publications
          1 study identified through conferences    

344 records screened

81 full-text articles assessed for eligibility

52 studies included in qualitative synthesis

   38 studies included in pooled analysis

263 records excluded because not appropriate to study aims

29 full-text articles excluded
       3 population-based study
       5 ineligible patient populations
       6 cross-sectional studies
       6 reviews or letters
       3 retrospective studies
       2 case reports
       4 outcome measures not appropriate

14 studies excluded because they did not respond or did 
      not have resources to join collaboration
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rose more steeply than that of ischaemic stroke with 
increasing cerebral microbleed burden. Mixed and deep 
cerebral microbleed distributions had similar aHRs for 
intracranial haem orrhage, but patients with lobar 
cerebral microbleeds had a lower risk of intracranial 
haemorrhage (table 3). Cerebral micro bleeds were not 
significantly associated with ischaemic stroke risk. We 
found no evidence of an interaction between oral 
anticoagulants type (vita min K antagonist vs direct oral 
anticoagulant) and cere bral micro bleed presence for 
intracranial haemorrhage (pinteraction=0∙4) or ischaemic 
stroke (pinteraction=0∙61).

In patients treated with antiplatelet drugs only 
(n=11 520), 93 intracranial haemorrhages occurred over 
18 059 patient-years of follow-up and 664 ischaemic 
strokes occurred over 17 731 patient-years of follow-up. 
The rate of ischaemic stroke remained higher than that 
of intracranial haemorrhage for all cere bral microbleed 
burden and anatomical distribution categories (appendix); 

aHRs for intracranial haemorrhage and ischaemic stroke 
in patients with versus without cerebral microbleeds were 
similar to those in the full cohort, with little variation 
according to cerebral microbleed anatomical distribution 
(appendix).

Compared with patients who received antithrombotic 
treatment (oral anticoagulants or antiplatelets), those not 
treated with antithrombotic drugs (n=1065) were older 
(mean age 72 years [SD 14] for those not treated with 
antithrombotic drugs vs 70 years [SD 13] for those treated 
with antithrombotic drugs), a greater proportion were 
women (46% vs 42%), more had ischaemic stroke 
(91% vs 83%), more had a previous intracranial haemor-
rhage (6% vs 2%), more had atrial fibrillation (44% vs 37%), 
fewer had been taking regular antiplatelet drugs before 
the qualifying event (27% vs 34%), and more had been 
taking regular oral anticoagulants before the qualifying 
event (13% vs 8%). No difference in the prevalence of 
cerebral microbleeds was observed based on receiving 

Figure 2: Kaplan-Meier estimates for the primary outcomes in all patients (n=20 322)
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antithrom botic treatment (29% vs 28%). In those not 
treated with any antithrombotic drugs, five had intra-
cranial haemor rhages over 846 patient-years and 65 had 
ischaemic strokes over 825 patient-years. The aHRs 
associated with cerebral microbleed presence were 1·10 
(95% CI 0∙17–7∙34) for intracranial haemorrhage and 
1∙51 (0∙87–2∙65) for ischaemic stroke.

Discussion
Our large-scale pooled analysis of individual patient data 
confirms that, in patients with recent ischaemic stroke or 
transient ischaemic attack treated with antithrombotic 
drugs, cerebral microbleeds are associated with the 
subsequent risks of symptomatic intracranial haem-
orrhage and ischaemic stroke; as cerebral microbleed 
burden increases, the relative risk (aHR) of intracranial 
haemorrhage rises more steeply than that of ischaemic 
stroke. Our most important new finding is that, regardless 
of cerebral microbleed burden and distribution (ie, mixed, 
deep, or lobar), or the type of antithrombotic treatment 
received (oral anticoagulants or antiplatelet therapy), 
the absolute risk of ischaemic stroke is consistently sub-
stantially higher than that of intracranial haemorrhage.

As well as confirming the association between cerebral 
microbleeds and both recurrent ischaemic stroke and 
symptomatic intracranial haemorrhage found in smaller 
cohorts of patients with ischaemic stroke and transient 
ischaemic attack treated with antiplatelet drugs28 or 
oral anticoagulants,27,57,35 the large number of partici-
pants has improved the precision of our estimates of 
stroke recurrence rates and relative hazards, while the 

inclusion of individual patient data allowed adjustment 
for potential confounding factors. Our study also adds 
new data for the important subgroups of patients with 
many (eg, ≥20) cerebral microbleeds, which cause the 
most clinical concern and could not be addressed by any 
of the previously published meta-analyses. The association 
of cerebral microbleeds with a consistently higher rate 
of ischaemic stroke than intracranial haemorrhage 
suggests that cerebral micro bleeds are a marker for 
cerebral small vessel diseases that can cause not only 
intracranial haemorrhage, but also ischaemic stroke. 
Although it has been inferred that cerebral microbleeds 
are a marker of direct extravasation of red blood cells from 
arterioles and capillaries dam aged by bleeding-prone 
arteriopathies, alternative non-haemorrhagic mechanisms 
include ischaemia-mediated iron store release by oligo-
dendrocytes10 or phagocytosis of red cell microemboli 
into the perivascular space.11 A report of haemorrhagic 
transformation of small acute micro in farcts into cerebral 
microbleeds provides direct evidence that cerebral micro-
bleeds can result from ischaemic mech anisms.13 These 
varied mechanisms under lying cerebral micro bleeds 
might explain why even patients at the highest risk of 
intracranial haemorrhage still have a higher absolute risk 
of ischaemic stroke. Moreover, patients with cerebral 
micro bleeds often have multiple vascular risk factors, so 
are at risk of not only small vessel ischaemic stroke but 
also other ischaemic stroke sub types.58 Patients with 
cerebral microbleeds usually also have white matter 
hyper intensities, which are associ ated with the risk of 
recurrent stroke, death, and poor functional outcome after 

Composite of intracranial haemorrhage 
and ischaemic stroke 
(n=19 816 for multivariable model)

Symptomatic intracranial haemorrhage 
(n=16 447 for multivariable model)

Symptomatic ischaemic stroke 
(n=16 464 for multivariable model)

Rate, per 1000 
patient-years*

Absolute rate 
increase, 
per 1000  
patient-years

Adjusted hazard 
ratio
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per 1000 
patient-years

Absolute rate 
increase, 
per 1000 
patient-years

Adjusted hazard 
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Rate, per 1000 
patient-years

Absolute rate 
increase, 
per 1000 
patient-years

Adjusted hazard 
ratio
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Any 59 (54–64) 24 (21–26) 1·35 (1·20–1·50) 12 (10–14) 8 (7–9) 2·45 (1·82–3·29) 46 (42–51) 16 (14–18) 1·23 (1·08–1·40)

One 46 (40–53) 11 (7–15) 1·21 (1·03–1·42) 8 (5–12) 4 (2–7) 1·87 (1·23–2·84) 37 (31–44) 7 (3–11) 1·14 (0·94–1·37)

Number

Two to four 58 (50–67) 23 (17–29) 1·25 (1·06–1·47) 9 (6–14) 5 (3–9) 1·89 (1·22–2·93) 48 (40–56) 18 (12–23) 1·17 (0·97–1·42)

Five or more† 85 (73–99) 50 (40–61) 1·74 (1·46–2·06) 23 (16–31) 19 (13–26) 4·55 (3·08–6·72) 64 (53–77) 34 (25–43) 1·47 (1·19–1·80)

Ten or more† 91 (73–113) 56 (40–75) 1·82 (1·44–2·29) 27 (17–41) 23 (14–36) 5·52 (3·36–9·05) 64 (48–84) 34 (20–51) 1·43 (1·07–1·91)

20 or more† 118 (86–160) 83 (53–122) 2·61 (1·90–3·57) 39 (21–67) 35 (18–62) 8·61 (4·69–15·81) 73 (46–108) 43 (18–75) 1·86 (1·23–1·82)

Anatomical distribution

Mixed 80 (68–94) 45 (35–56) 1·28 (1·06–1·54) 20 (14–28) 16 (11–23) 2·38 (1·55–3·65) 60 (49–73) 30 (21–40) 1·12 (0·88–1·41)

Deep 73 (65–82) 38 (32–44) 1·29 (1·12–1·48) 17 (13–22) 13 (10–17) 2·57 (1·78–3·70) 57 (49–66) 27 (21–33) 1·14 (0·96–1·36)

Lobar 60 (53–67) 25 (20–29) 1·22 (1·06–1·41) 13 (9–16) 9 (6–9) 1·87 (1·29–2·71) 48 (42–56) 18 (14–23) 1·17 (0·99–1·40)

Probable cerebral 
amyloid angiopathy

55 (40–73) 20 (7–35) 1·21 (0·90–1·64) 9 (4–18) 5 (1–13) 1·29 (0·60–2·77) 48 (34–66) 18 (6–33) 1·31 (0·94–1·83)

Ranges in brackets are 95% CIs. Cerebral microbleed location hazard ratios are versus patients without cerebral microbleeds in each location and are adjusted for cerebral microbleed number and our prespecified 
variables. *Number of patients and time at risk are shown in the appendix. †Overlapping categories.

Table 2: Rate and risk of outcome events according to number (burden) and anatomical distribution of baseline cerebral microbleeds in all patients (n=20 322)
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ischaemic stroke59 and might also contribute to the 
increased risk of ischaemic stroke associated with cerebral 
microbleeds.

We found no evidence that a strictly lobar pattern of 
cerebral microbleeds (fulfilling the Boston criteria for 
probable CAA,5 causing clinical concern for intracranial 
bleeding risk35) is associated with the risk of intracranial 
haemorrhage or ischaemic stroke. These findings might 
reflect low diagnostic accuracy when using cerebral 
microbleeds for diagnosis of CAA in patients without 
intracerebral haemorrhage or dementia,60 rather than a 
true absence of any association of CAA with intracranial 
haemorrhage. Furthermore, the aHRs for intracranial 
haemorrhage associated with lobar cerebral microbleeds 
(compared with patients without lobar cerebral micro-
bleeds [including none]) were closer to those associated 
with deep or mixed cerebral microbleeds (compared with 
patients without deep or mixed cerebral microbleeds 
[including none]).

Our results differ from some previous observations in 
smaller cohorts. First, in contrast to a smaller two-centre 
study,29 we did not find that the risk of intracranial 
haemorrhage approached the risk of ischaemic stroke 
after 1 year. Rather, we found that the rate of ischaemic 
stroke was consistently higher than that of intracranial 
haemorrhage, and the aHRs associated with cerebral 
microbleeds for both ischaemic stroke and intracranial 
haemorrhage remained stable over time. Second, our 
data indicate a smaller increase in the relative risk of 
intracranial haemorrhage for patients with five or more 
cerebral microbleeds than reported in a previous smaller 

meta-analysis,28 but our much larger individual participant 
sample size allowed us to investi gate high cerebral 
microbleed burdens (five or more, ten or more, and 20 or 
more) with adjustment for confounders and greater 
statistical precision and power.

The comparatively low frequency of symptomatic intra-
cranial haemorrhage after ischaemic stroke or transient 
ischaemic attack and the consistently higher risk of 
recurrent ischaemic stroke make randomised controlled 
trials of antithrombotic treatment (themselves proven in 
large randomised trials) guided by cerebral microbleeds 
challenging. However, ongoing and future randomised 
controlled trials should provide further insights. The MRI 
substudy in the RESTART trial61 of antiplatelet therapy 
after intracerebral haemorrhage excluded all but a very 
modest harmful effect of antiplatelet therapy on recurrent 
intracerebral haemorrhage in the presence of cerebral 
microbleeds, but also illustrates how very large sample 
sizes are probably required to identify statistically signifi-
cant interactions in smaller cerebral microbleed subgroups 
in current (eg, the MRI substudy of NAVIGATE ESUS 
[NCT02313909]) and future randomised controlled trials. 
Nevertheless, our large collaborative pooled analysis pro-
vides the best available evidence on the associations 
of cerebral microbleeds with subsequent intracranial 
haemorrhage and ischaemic stroke after ischaemic stroke 
or transient ischaemic attack.

We included data from a worldwide collaborative 
network, making our results globally generalisable. The 
large individual patient dataset provides high statistical 
power and precision for risk estimates, allowing us to 

Composite of intracranial haemorrhage and 
ischaemic stroke (n=7582 for multivariable model)

Symptomatic intracranial haemorrhage 
(n=6942 for multivariable model)

Symptomatic ischaemic stroke 
(n=6958 in multivariable models)

Rate, per 1000 
patient-years*

Absolute rate 
increase, 
per 1000 
patient-years

Adjusted hazard  
ratio

Rate, 
per 1000 
patient-years

Absolute rate 
increase, 
per 1000 
patient-years

Adjusted hazard  
ratio

Rate, per 1000 
patient-years

Absolute rate 
increase, 
per 1000 
patient-years

Adjusted hazard  
ratio

None 31 (28 to 35) ·· 1 (ref) 5 (3 to 6) ·· 1 (ref) 27 (23 to 30) ·· 1 (ref)

Any 46 (39 to 53) 15 (11 to 18) 1·30 (1·07 to 1·57) 12 (9 to 16) 7 (6 to 10) 2·49 (1·64 to 3·79) 32 (26 to 39) 5 (3 to 9) 1·07 (0·86 to 1·35)

One 38 (30 to 49) 7 (2 to 14) 1·19 (0·91 to 1·56) 10 (6 to 17) 5 (3 to 11) 2·15 (1·23 to 3·75) 26 (19 to 35) –1 (–4 to 5) 0·96 (0·69 to 1·33)

Number

Two to four 47 (36 to 60) 16 (8 to 25) 1·23 (0·93 to 1·62) 11 (6 to 19) 6 (3 to 13) 2·22 (1·21 to 4·06) 36 (26 to 48) 11 (3 to 18) 1·10 (0·80 to 1·52)

Five or more† 62 (45 to 84) 31 (17 to 49) 1·69 (1·22 to 2·35) 20 (11 to 34) 15 (8 to 28) 3·91 (2·08 to 7·34) 40 (26 to 59) 13 (3 to 29) 1·27 (0·84 to 1·91)

Ten or more† 75 (46 to 116) 44 (18 to 81) 2·15 (1·35 to 3·43) 23 (8 to 50) 18 (5 to 44) 4·63 (1·92 to 11·22) 46 (24 to 81) 19 (1 to 51) 1·52 (0·84 to 2·67)

Anatomical 
distribution

Mixed 58 (42 to 77) 27 (14 to 42) 1·43 (1·02 to 2·00) 15 (7 to 26) 10 (4 to 20) 2·21 (1·09 to 4·47) 42 (29 to 60) 15 (6 to 30) 1·28 (0·85 to 1·94)

Deep 52 (42 to 63) 21 (14 to 28) 1·43 (1·11 to 1·84) 14 (9 to 21) 9 (6 to 15) 2·71 (1·61 to 4·59) 35 (27 to 46) 8 (4 to 16) 1·16 (0·85 to 1·59)

Lobar 41 (32 to 51) 10 (4 to 16) 1·13 (0·87 to 1·47) 10 (6 to 16) 5 (3 to 10) 1·63 (0·94 to 2·83) 29 (22 to 38) 2 (–1 to 8) 1·00 (0·73 to 1·38)

Probable cerebral 
amyloid 
angiopathy

27 (13 to 47) –4 (–15 to 12) 0·76 (0·41 to 1·39) 10 (3 to 25) 5 (0 to 19) 1·29 (0·47 to 3·57) 17 (7 to 35) –10 (–16 to 5) 0·64 (0·30 to 1·37)

Ranges in brackets are 95% CIs. Cerebral microbleed location hazard ratios are versus patients without cerebral microbleeds in each location and are adjusted for cerebral microbleed number and our prespecified 
variables. *Number of patients and time at risk are shown in the appendix. †Overlapping categories.

Table 3: Rate and risk of outcome events according to baseline cerebral microbleeds in patients treated with oral anticoagulants with or without antiplatelet drugs (n=7737)
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explore associations with several clinically important 
primary outcomes, while adjusting for important prog-
nostic variables to minimise confounding. Included co-
horts used validated rating instru ments for cerebral 
micro bleeds, and we adjusted for the use of different MRI 
sequences (T2* GRE or SWI) to detect cerebral micro-
bleeds, which accounts for the higher sensitivity of SWI 
for detecting cerebral microbleeds compared with T2* 
GRE.62 We followed a published statistical analysis plan 
and confirmed our findings in a two-stage meta-analysis, 
indicating the robustness of our results.

In terms of limitations, our observational design has 
potential for selection bias and confounding of antithrom-
botic therapy by indication or unmeasured physician 
factors; thus, the relative hazards (aHRs) for intracranial 
haemor rhage and ischaemic stroke must be interpreted 
with caution. To definitively establish whether cerebral 
micro bleeds modify the net clinical benefit of anti-
thrombotic drugs would require a randomised controlled 
trial. Many of the included studies did not formally 
adjudicate events. The requirement for MRI-suitable 
patients probably led to the inclusion of less severe strokes 
than an unselected population. Even with the many indi-
vidual patients included, we could not precisely estimate 
risks associated with an extremely large number of 
cerebral microbleeds (eg, ≥50), but such patients are very 
rare in clinical practice. Although we adjusted for known 
prognostic variables, residual confounding secondary to 
unknown or uncontrolled factors such as stroke mech-
anism could still have affected our results. Furthermore, 
we were unable to include some candidate variables in our 
multivariable models because they were not sufficiently 
widely available across all participating cohorts (eg, white 
matter hyper intensities, MRI field strength, diabetes, 
ischaemic heart disease, renal function, and statin use 
on discharge). Our analyses did not formally assess net 
clinical benefit, accounting for the greater severity of intra-
cranial haemor rhage compared with recurrent ischaemic 
stroke.

In summary, our large-scale pooled analysis in patients 
with recent ischaemic stroke or transient ischaemic attack 
found that the absolute risk of ischaemic stroke is 
consistently higher than that of intracranial haemorrhage, 
regardless of the number or anatomical distribution of 
cerebral microbleeds. However, cerebral microbleeds are 
associated with a greater relative hazard (aHR) for intra-
cranial haemorrhage than ischaemic stroke; further 
studies are needed to establish the usefulness of neuro-
imaging biomarkers, including cerebral microbleeds, 
in improving risk pre diction scores for intracranial 
haemorrhage and ischaemic stroke.
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