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SUMMARY

During heart regeneration in the zebrafish, fibrotic
tissue is replaced by newly formed cardiomyocytes
derived from preexisting ones. It is unclear whether
the heart is composed of several cardiomyocyte
populations bearing different capacity to replace
lost myocardium. Here, using sox10 genetic fate
mapping, we identify a subset of preexistent cardio-
myocytes in the adult zebrafish heart with a distinct
gene expression profile that expanded after cryoin-
jury. Genetic ablation of sox10+ cardiomyocytes im-
pairs cardiac regeneration, revealing that these cells
play a role in heart regeneration.

INTRODUCTION

Cardiomyocyte (CM) renewal in the human heart is marginal and,

after acute myocardial infarction, millions of CMs are irreversibly

lost and replaced by a fibrotic scar (Prabhu and Frangogiannis,

2016). Adult mammalian CMs have a poor capacity to proliferate,

and an efficient contribution of an adult stem cell pool for

myocardial replacement has not been demonstrated (Lerman

et al., 2016). By contrast, zebrafish have an extraordinary capac-

ity for heart regeneration after injury (González-Rosa et al., 2017;

Kikuchi, 2014). Lineage tracing studies have revealed that

preexisting CMs are the origin of de novo formed cardiac muscle

(Jopling et al., 2010; Kikuchi et al., 2010). Upon injury, CMs adja-

cent to the injury lose their sarcomeric organization and exhibit a

more immature phenotype. Concomitant with this structural

change, CMs were described to express developmental genes,

suggesting a reversion of their differentiated phenotype to a

more embryonic-like state (Lepilina et al., 2006). Indeed, gata4,

hand2, and tbx5a, which play key roles during heart develop-

ment (Garrity et al., 2002; Grajevskaja et al., 2018; Kuo et al.,

1997; Molkentin et al., 1997; Srivastava et al., 1997), are required

for heart regeneration (Grajevskaja et al., 2018; Gupta et al.,

2013; Schindler et al., 2014). Moreover, CMs contributing to
Cell Rep
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heart regeneration activate gata4 and ctgfa enhancer elements

upon injury (Gupta et al., 2013; Kikuchi et al., 2010; Pfefferli

and Ja�zwi�nska, 2017). While CMs that will contribute to heart

regeneration upregulate a specific set of genes, it is unclear

whether CM subsets contributing to regeneration can be distin-

guished by means of their expression profile in the uninjured

heart.

Like mammals, zebrafish CMs derive from first and second

heart field progenitors (de Pater et al., 2009; Mosimann et al.,

2015; Zhou et al., 2011). However, in the zebrafish, the neural

crest represents a third progenitor population that contributes

to the developing heart. Cell transplantation and fluorescent

dye tracing experiments suggested that cardiac neural crest

cells incorporate not only into the areas of the outflow tract, as

in mammals and birds, but also into the atrium and ventricle

(Li et al., 2003; Sato and Yost, 2003). Moreover, genetic lineage

tracing using sox10 as a neural crest cell marker revealed a

cellular contribution of sox10+ cells to the zebrafish heart (Cava-

naugh et al., 2015; Mongera et al., 2013) and suggested that

sox10-derived CMs are necessary for correct heart development

(Abdul-Wajid et al., 2018). Noteworthy, it is still unclear if a

sox10+ neural crest population differentiates into CMs or if alter-

natively, a sox10+ CM subset is relevant for heart development.

Here, we assessed the contribution of sox10-derived cells to

the adult zebrafish heart using sox10:CreERT2 fate mapping

during homeostasis and regeneration. We found that embryonic

sox10-derived cells contributed to significant portions of the

adult heart. We also identified adult sox10+ CMs that expanded

to a higher degree upon injury than other CMs and significantly

contributed to cardiac regeneration. Their transcriptome differed

from other CMs in the heart, and their genetic ablation impaired

recovery from ventricular cryoinjury.

RESULTS

sox10-Expressing Cells Contribute to the Regenerated
Myocardium
sox10-derived cells were proposed to contribute to the adult

zebrafish heart (Abdul-Wajid et al., 2018). Since a non-inducible
orts 29, 1041–1054, October 22, 2019 ª 2019 The Author(s). 1041
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sox10:Cre line was used for these studies, it was not clear

whether embryonic sox10+ cells or adult sox10+ contributed to

the adult zebrafish heart. To clarify the source of sox10-derived

cells contributing to the adult heart, we used the line Tg(sox10:

CreERT2) (Mongera et al., 2013), in which CreER is driven by

the �4.9-kb sox10 promoter (Carney et al., 2006). This line was

crossed with Tg(ubb:loxP-GFP-loxP-mCherry) (Mosimann

et al., 2011), from now on named ubb:Switch (Figure 1A). In

double-transgenic animals, 4-hydroxytamoxifen (4-OHT) admin-

istration leads to constitutive mCherry expression in cells ex-

pressing sox10:CreERT2 at the time of recombination (Figure 1A).

Recombination in adult sox10:CreERT2;ubb:Switch zebrafish led

to the activation of mCherry expression in a few cardiac cells in

the atrium, ventricle, and valves (Figures 1B–1G). We observed

both sox10-derived CMs (mCherry+/MHC+) (Figures 1B0–1C00 0,
1D0 –1D00 0, and 1F0 –1F00 0 0) and non-CMs (only mCherry+) (Fig-

ure 1B00), the latter mostly contributing to the valves. Thus, the

adult heart bears a very small population of CMs present with

an active sox10-promoter element.

We next wanted to assess if sox10-derived cells contribute to

heart regeneration. When 4-OHT treatment was performed

shortly after ventricular cryoinjury (Figure 1H), we observed an

expansion of sox10-derived cells (Figures 1I–1O). Immunostain-

ings confirmed that sox10-derived cells were CMs, as they co-

expressed the myocardial marker myosin heavy chain (MHC)

(Figures 1J0–J00 0 and 1M0–M00). In order to estimate the contribu-

tion of sox10-derived CMs during the regeneration process, we

measured the ratio of sox10-derived CMs (mCherry+/ MHC+)

versus other CMs (MHC+) in the entire heart (Figure 1O). When
Figure 1. Contribution of sox10-Derived CMs to Heart Regeneration

(A) Analysis of sox10-derived cells in the adult zebrafish heart. Two 4-OHT pulse

brafish between 1 and 3weeks before heart extraction to inducemCherry in sox10

(green) in uninjured hearts (B–G) or hearts at 14 dpi (I–N).

(B–C00) Cryosections of uninjured hearts fixed 19 days after the last 4-OHT pul

mCherry+ CMs; arrows, mCherry+ non-CMs within the atrioventricular valve.

(D–G) Whole-mount views (D) and sections (F and G) of uninjured hearts fixed 11

projection of 352 mm, 44 z planes. (D0–D00 0) Maximum projection of zoomed view o

an uninjured heart. (F0–F00 00) Zoomed view of boxed area in (F). Images are stitched

and non-CMs are observed in the subepicardial area of the ventricle. mCherry+ c

(yellow arrowheads).

(H) Analysis of sox10-derived cells in the regenerating heart. Two 4-OHT pulses

3 days after the injury to induce mCherry expression in sox10:CreERT2-expressin

(I and J) Whole-mount view of injured heart at 14 dpi (594 mm, 73 z planes). Shown

the apical region of the heart. (J0–J00 0) Zoomed view of boxed area in (J).

(K and L) z stack from heart in I (252 mm, 31 z planes), showing injured area. Image

are the merged (K) and the red (L) channels. Yellow arrowheads, mCherry+; MHC

(M and N) Paraffin sections of injured hearts at 14 dpi. Note the distribution of sox

and the red channel (N). Zoomed view of boxed area in (M) is shown in (M0) and (M

derived CMs adjacent to the IA.

(O) Percentage of the volume from mCherry+/MHC+ cells relative to all MHC+ cel

derived CMs expands after injury. Data are mean ± SD; p = 0.0022 (two-tailed n

(P) The ventricles from whole-mount stained hearts were digitally sectioned in inc

volume frommCherry+/MHC+ cells relative to all MHC+ cells within different heart s

and decreases toward more distant ventricular regions (injured hearts, n = 6). D

Tukey’s post hoc test).

(Q) The ventricle was digitally sectioned in increments of 100 mmstarting from the a

to all MHC+ cells within different heart segments. The percentage of mCherry+/M

ventricle (uninjured hearts n = 6). Data are mean ± SD; p > 0.05 (one-way ANOV

4-OHT, 4-hydroxytamoxifen; At, atrium; CI, cryoinjury; CMs, cardiomyocytes; dpi

bars, 100 mm. See also Figure S1.
comparing the proportion of mCherry+ ventricular CMs from

cryoinjured and control hearts, we observed that the portion of

mCherry+ myocardium increased �100-fold at 14 days post-

injury (dpi) (Figure 1O). We questioned whether sox10-derived

cells expanded globally in the injured heart or whether there

was a distinct contribution to the regenerating myocardium. To

do this, we generated a distance distribution map for the

sox10-derived CMs from the injury site (for injured hearts;

Figure 1P) or apical myocardium (for uninjured hearts; Figure 1Q)

to the basal myocardium. The closer to the injury area, the

greater the contribution of sox10-derived CMs (Figure 1P;

n = 6). This bias toward an apical region was not detected in

uninjured hearts (Figure 1Q; n = 6).

The presence of adult sox10+ CMs was confirmed using the

line Tg(�4.9sox10:GFP)ba2 (Carney et al., 2006; Figure S1A).

We were able to detect few sox10:GFP+ CMs in the ventricle

of injured and uninjured hearts (Figures S1B–S1E00; n = 4 hearts).

Moreover, RNAScope mRNA detection revealed sox10 expres-

sion in the heart (Figures S1F–S1I00). In uninjured hearts, we

found expression both in the atrium (2 out of 3 hearts) as well

as in the ventricle (1 out of 3 hearts). In injured hearts, sox10

signal was detected close to the cortical and trabecular

myocardial boundaries, as well as at the borders of the injury

area (n = 3 out of 3 hearts). This suggests that sox10 mRNA

increases upon injury or that sox10+ cells accumulate at the

site of injury. Surprisingly, we did not detect an expansion of

sox10:GFP+ cells after cardiac injury (Figures S1A–S1E00; n = 4

hearts). The inconsistency between sox10 mRNA detection

and sox10:GFP expression in the reporter line might be a
s were administered to adult sox10:CreERT2;ubb:loxP-GFP-loxP-mCherry ze-

:CreERT2-expressing cells. mCherry (red), sox10 lineage. Anti-MHCmarksCMs

se. Upper row, mCherry channel, lower row, merged channels. Arrowheads,

days after 4-OHT treatment. (D and E) Whole-mount immunostaining. Maximal

f boxed area in D (7 mm, 7 z planes). (F and G) Immunostaining on cryosection of

high resolution acquisitions (9 images stitched together). sox10-derived CMs

ells in the cortical myocardium (white arrowheads), mCherry+ trabecular CMs

were administered to adult sox10:CreERT;ubb:loxP-GFP-loxP-mCherry 1 and

g cells. Hearts were extracted at 14 dpi.

are the merged (I) and red (J) channel. sox10-derived CMs can be observed in

shown in (K) is comprised of four stitched high-resolution acquisitions. Shown
+ trabecular CMs. White arrowheads, mCherry+; MHC+ cortical CMs.

10-derived CMs around the IA (yellow arrowheads). Shown are the merged (M)
00). Note cortical (white arrowheads) and trabecular (yellow arrowheads) sox10-

ls in uninjured (n = 6) and injured hearts (n = 6) at 14 dpi. The volume of sox10-

on-parametric t test).

rements of 100 mm starting from the injury site. Shown is the percentage of the

egments. The percentage of mCherry+/MHC+ cells is high near to the injury site

ata are mean ± SD; *p < 0.05; ***p < 0.001 (one-way ANOVA test followed by

pex. Shown is the percentage of the volume frommCherry+/MHC+ cells relative

HC+ cells is similarly distributed through ventricular regions of the uninjured

A followed by Tukey’s post hoc test).

, days post-injury; dpt, days post-treatment; IA, injured area; V, ventricle. Scale
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consequence of partial silencing of the reporter leading to an

incomplete recapitulation of endogenous sox10 expression.

Alternatively, it might indicate that the sox10-derived cells in

regenerating hearts were descendants from a small subset

of sox10+ progenitor cells within the uninjured heart that turn

off sox10 expression after cellular expansion and CM

differentiation.

Preexistent sox10-Derived CMs Contribute to Cardiac
Regeneration
To assess whether the increased number of sox10-derived CMs

is a result of the expansion of a small pool of preexistent sox10+

cells, we induced recombination in adult zebrafish before cryoin-

jury (Figures 2 and S1J–S1T). 4-OHT treatments 2 weeks prior to

cardiac injury allowed us to rule out that non-metabolized 4-OHT

could be active and induce recombination after injury (Figure 2A).

While in controls we again saw only few cells scattered

throughout the ventricle, at 7 dpi, we indeed observed sox10-

derived CMs close to the injury area (Figures 2B–2C0). More

sox10-derived cells contributed to the ventricle after 7 dpi

compared to uninjured hearts (Figure 2D). The percentage of

sox10-derived CM was higher close to the injury area compared

to the basal ventricle (Figure 2E). This preferential distribution of

sox10-derived CMs toward the apical region was not found in

uninjured hearts of siblings (Figure 2E). The proportion of

sox10-derived CMs significantly expanded upon injury both in

the trabecular and cortical myocardium regions (Figure S1S).

We also analyzed the proportion of sox10-derived cells at later

stages of regeneration to assess if the expansion is transient or

whether these cells contribute to the regenerated heart (Figures

2F–2J and S1T). At 14 dpi, sox10-derived CMs remained around

the injured area (Figures 2F and 2G). Even at 210 dpi, when

regeneration is complete (González-Rosa et al., 2011),

mCherry+/MHC+ CMs were still detected within the region pre-

sumably corresponding to the regeneratedmyocardium (Figures

2H and 2H0). Similar to the observation when tracing sox10-

derived cells after cryoinjury, the volume of mCherry+ cells

increased over 100-fold after injury when compared with unin-

jured hearts (Figure 2I). Quantification showed that consistent

with the results at 7dpi, the mCherry+/MHC+ myocardial volume

was significantly higher in injured hearts than in uninjured hearts

at all regeneration stages analyzed (Figures 2J and S1T).

To understand the mechanisms of the accumulation of sox10-

derived cells at the injury area, we assessed cell proliferation

(Figure 3). Recombination was induced 2 weeks before cryoin-

jury, and bromodeoxyuridine (BrdU) was injected at 6 dpi (Fig-

ure 3A). Immunostaining against mCherry to detect the sox10

lineage, the myocardial marker MHC, and BrdU to label prolifer-

ating cells showed the presence of mCherry+/BrdU+ double-

positive cells (Figures 3B–3G00 0 0). Quantification revealed a

statistically significant increase of �30% in the amount of

proliferating sox10-derived CMs (n = 6) when compared to

sox10-lineage negative CMs (n = 6) (Figure 3H). We also

observed a higher degree of BrdU+ /mCherry+ cells compared

to the rest of CMs at later stages of regeneration (Figures 3I–

3K). Thus, CMs with an active sox10 promoter element in the un-

injured heart divide at a higher rate than the rest of theCMswithin

the same anatomical region in response to injury.
1044 Cell Reports 29, 1041–1054, October 22, 2019
Origin of sox10-Derived Cells Contributing to
Regeneration
Next, we wanted to determine the developmental time point

at which this sox10+ CM subset with capacity to contribute to

heart regeneration appears, as well as elucidate a possible neu-

ral crest cell origin. We treated sox10:CreERT2;ubb:Switch em-

bryos with 4-OHT between 12 and 48 h post-fertilization, the

time window of neural crest cell addition to the developing heart

(Abdul-Wajid et al., 2018; Cavanaugh et al., 2015;Mongera et al.,

2013). We followed individual sox10:CreERT2;ubb:Switch ani-

mals in a longitudinal study (Figure S2A). First, we performed

live imaging at 5 days post-fertilization (dpf). The sox10:CreERT2

line additionally harbors a myocardial reporter cassette, a

myosin light chain 7 (myl7) promoter element driving GFP

expression in CMs, which was useful to mark myocardial cells.

We detected mCherry+/myl7:GFP+ in the larval heart,

indicating the presence of a subset of CMs derived from

sox10-expressing cells (Figures S2B and S2C; n = 7). As re-

ported for sox10:Cre genetic tracing (Abdul-Wajid et al., 2018),

using the sox10:CreERT2 line, the proportion of sox10-derived

cells in the trabecular myocardium was higher than in the

compact myocardium, which at this stage is composed exclu-

sively of the primordial layer (Gupta and Poss, 2012; Figure S2D).

After live imaging, larvae were grown separately to adulthood to

follow the fate of mCherry+ cells. In the adult, we again detected

mCherry+ cell clusters, showing that embryonic sox10-derived

cells contribute to the adult heart (Figures S2E and S2F; n = 7)

and confirming observations using a non-inducible sox10:Cre

line (Abdul-Wajid et al., 2018). Embryonic sox10-derived cells

contributed to 5% of the total ventricular volume of the adult

heart (Figure S2G). Indeed, immunofluorescence staining and

fluorescence activated cell (FAC) sorting confirmed that most

of the mCherry+ cells were also myl7:GFP+ and MHC+ and

thus CMs (Figures S2H–S2L). We observed mCherry+ cells in

the ventricle and atrium in most of the animals analyzed. The

mCherry signal was particularly evident in the basal and medial

portion of the ventricle, presumably due to a higher cell density

in these regions (Figure S2M; n = 19 hearts analyzed).

To determine whether the embryonic sox10-derived popula-

tion expanded in response to injury, we cryoinjured ventricles

from adult sox10:CreERT2;ubb:Switch zebrafish recombined

during embryogenesis and compared the percentage of

mCherry+ cells in injured and uninjured hearts (Figure 4A).

mCherry+ cells were detected in a similar proportion in uninjured

hearts (Figures 4B–4E; n = 12) and hearts at 14 dpi (Figures 4F–

4J, n = 9; and Figure 4K, n = 5). While a tendency of higher

amount of mCherry+ signal was observed within the injury

area, the increase did not reach significance, eventually due to

the high degree of heterogeneity in injury response. Similarly,

in uninjured hearts, no apicobasal region was identified with a

preferred contribution of mCherry+ cells (Figure 4L; n = 5). These

results imply that in the adult heart, CMs derived from sox10+

embryonic cells do not expand in response to injury and are

not preferentially contributing to myocardium regeneration.

To further fine-tune the characterization of sox10-derived

cells, we performed 4-OHT recombination in juveniles. We

used 9-week-old sox10:CreERT2;ubb:Switch as well as sox10:

CreERT2cn17 crossed to vmhcl:loxP-tagBFP-loxP-mCherry-NTR



Figure 2. Preexistent sox10-Derived CMs Expand at the Injury Area and Contribute to Cardiac Regeneration

(A) Adult sox10:CreERT2;ubb:loxP-GFP-loxP-mCherry zebrafish were treated with 4-OHT on days 14 and 12 before cryoinjury. Hearts were fixed at 7, 14, or 210

dpi and processed for immunostaining with anti-mCherry+ (red, sox10-derived cells) and anti-MHC (green, myocardium).

(B) Whole mounts of uninjured hearts. Upper row, mCherry channel; lower row, myosin heavy chain (MHC) and mCherry merged channels. Arrowheads indicate

sox10-derived cells.

(C and C0) Cryosection of an injured heart at 7 dpi. sox10-derived CMs are detected near the injured area (IA) and subepicardial regions of the myocardium. White

arrowheads indicate mCherry+ CMs in the cortical myocardium, and yellow arrowheads indicate mCherry+ CMs in the trabecular myocardium.

(D) Quantification of the proportion of sox10-derived CMs in uninjured (n = 4) and injured hearts (n = 6) at 7 dpi. Each dot represents the value from one heart. Data

are mean ± SD; p = 0.0095 (two-tailed non-parametric t test).

(E) Quantification of the distribution of ventricular mCherry+ CMs on uninjured and cryosectioned hearts at 7 dpi. The ventricle was digitally divided into in-

crements of 100 mm starting from the injury site in injured hearts or apex in uninjured hearts. Shown is the percentage of the mCherry+/MHC+ area relative to the

whole MHC+ area within different heart segments. The percentage of mCherry+/MHC+ is high near the IA and decreases toward ventricular regions distant from

the IA (injured hearts n = 5; uninjured hearts, n = 4). Dashed lines represent statistical differences, and red bars represent injured hearts. The percentage

of mCherry+/MHC+ cells is higher in every region of the injured heart ventricle (red bars) compared to uninjured heart ventricles (blue bars). Data are mean ± SD;

*p < 0.05 (two-tailed non-parametric t test).

(F) Whole-mount image of a heart at 14 dpi. sox10-derived CMs are distributed around the IA and distant part of the ventricle.

(G–H0) Whole-mount view (G) and cryosections (H and H0) of regenerated hearts at 210 dpi. sox10-derived CMs can be observed in the apical region of the heart.

White arrowheads show mCherry+ CMs in the cortical myocardium, and yellow arrowheads showmCherry+ CMs in the trabecular myocardium. Image shown in

(H) is comprised of nine stitched high-resolution acquisitions.

(I) Quantification of the percentage of mCherry+ CMs in uninjured cardiac ventricles compared to ventricles at 14 and 210 dpi (whole-mount immunostained

hearts). Shown are measurements of individual hearts (dots) as well as mean ± SD (two-tailed non-parametric t test; uninjured, n = 8; 14 dpi, n = 6; 210 dpi, n = 6).

(J) Quantification of the distribution of mCherry+ CMs in whole mount immunostained hearts. Distance calculation as shown in (E). Data are mean ± SD. *p < 0.05;

**p < 0.01 (two-tailed non-parametric t test; n = 6).

At, Atrium; dpi, days post-injury; IA, injured area; MHC, myosin heavy chain; V, ventricle. Scale bars represent 100 mm (except for C0, where scale bars represent

200 mm). See also Figure S1.
(vmBRN), a line that allows to specifically trace recombined

vmhcl-expressing ventricular CMs by mCherry expression (Sán-

chez-Iranzo et al., 2018). After recombination, animals were
raised and cryoinjured at 17 weeks of age (Figure 5A). We

observed an increase in the sox10-derived cell area after injury

(Figures 5B–5S). This was most evident when observing
Cell Reports 29, 1041–1054, October 22, 2019 1045



Figure 3. Proliferation of sox10-Derived CMs

(A) Assessment of the proliferation index of sox10-derived CMs. Two pulses of 4-OHT were administered 14 and 12 days before the injury. BrdU was added at 6

dpi, and hearts were collected at 7 dpi.

(B–E) Heart section immunostained with anti-BrdU (white), anti-mCherry (red, sox10 lineage), and MHC (green). Nuclei were counterstained with DAPI (blue).

Shown are merged channels (B), as well as single channels for MHC (C), mCherry (D), and BrdU (E) staining.

(F–G00 00) Zoomed views of boxed regions in (B). Yellow arrowheads, mCherry+, BrdU+,MHC+ triple-positive cells. Shown aremerged channels (F and G), as well as

single channels for DAPI (F0 and G0), BrdU (F00 and G00), MHC (F00 0 and G00 0) and mCherry (F00 00 and G00 00).
(H) Quantification of mCherry+, BrdU+,MHC+ triple-positive cells versus all BrdU+, MHC+ double-positive cells in the 100 mm IA border zone. Shown are values for

individual hearts as well as mean ± SD. *p < 0.05 (two-tailed non-parametric t test; n = 6).

(I) Assessment of proliferation at late stages of regeneration. 4-OHT was added at �12 and �14 days to sox10:CreERT2;ubb:loxP-GFP-loxP-mCherry zebrafish

before cryonjury. BrdU was added at 6 and 29 dpi. Hearts were collected at 30 dpi.

(J) Immunofluorescence staining on heart at 30 dpi. MHC, green; mCherry, red; BrdU, white; nuclei are counterstained with DAPI (blue). Shown are merged

images and single channels, and the zoomed region is highlighted with dotted lines.

(K) Quantification of BrdU+ CMs at 30 dpi. Data are mean ± SD (p = 0.029; two-tailed non-parametric t test).

At, Atrium, dpi, days post-injury; IA, injured area; MHC, myosin heavy chain; V, ventricle. Scale bars, 100 mm.
whole-mount hearts (Figures 5D and 5M). sox10-derived CMs

were predominantly observed in the subepicardial regions of

the ventricle (Figures 5H–5J and 5Q–5S). Quantification of

mCherry signal within the ventricle indicated a difference be-

tween uninjured and injured groups, which did not reach statis-

tical significance (Figure 5T). Also, no overall expansion of

mCherry+ cells could be observed by quantification on the

sectioned hearts (Figure 5U). However, we observed that within

the different apicobasal regions, the proportion ofmCherry+ cells

was clearly increased when compared to uninjured hearts (Fig-

ure 5V). Similar to results obtained in adults, mCherry+ cells
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accumulated close to the injury site, suggesting that the

sox10+ population is already present in the juvenile heart. Impor-

tantly, control experiments, with no 4-OHT, yielded no recombi-

nation, and the hearts were completely devoid of mCherry

expression, both in juveniles and adults (Figures 5W–5Y). Thus,

with sox10:CreERT2, we are fully controlling recombination

events and can therefore faithfully trace the fate of cells

with active sox10:CreER T2 expression at the time of 4-OHT

addition.

Collectively, these results show that sox10:CreERT2 fate

mapping enables the detection of a subset of CMs present



Figure 4. Embryonic sox10-Derived CMs Do

Not Expand after Cryoinjury

(A) 4-OHT was administered to sox10:CreERT2;

ubb:loxP-GFP-loxP-mCherry zebrafish during

embryogenesis (12–48 h post-fertilization), and

adult uninjured hearts or hearts at 14 dpi were

collected and imaged.

(B–I) Maximal intensity projection of a confocal z

stack through an immunostained heart. sox10-

derived cells are mCherry+ (red). The whole

myocardium is MHC+ (green). mCherry+ cells are

present in the ventricle (arrowheads) and atrium

(arrows). Shown are merged channel views (C, E,

G, and I) as well as mCherry (red) channel only

(B, D, F, and H).

(J) Relative volume of embryonic sox10-derived

CMs (mCherry+/ MHC+) compared to all CMs

(MHC+) in uninjured (n = 12) and injured hearts at 14

dpi (n = 9). Shown are values from individual hearts

as well as mean ± SD; p = 0.0955 (two-tailed non-

parametric t test).

(K and L) Quantification of the distribution of

mCherry+ CMs in whole mount immunostained

hearts. The ventricle was digitally sectioned in in-

crements of 100 mm starting from the injury site or

apex. Shown is the relative volume frommCherry+/

MHC+ cells versus all MHC+ cells within different

heart segments. The amount of mCherry+/MHC+

cells does not differ between segments (one-way

ANOVA). n = 5 hearts for 14 dpi (K) and n = 5 for

uninjured condition (L). The atrium, ventricle, and

injury area are outlined by dotted lines.

4-OHT, 4-hydroxytamoxifen; At, atrium; dpi, days

post-injury; IA, injured area; CI, cryoinjury; CMs,

cardiomyocytes; V, ventricle. Scale bars, 100 mm.

See also Figure S2.
in the adult heart that expands in response to injury and con-

tributes preferentially to myocardial regeneration in the

zebrafish.

sox10-Derived CMs Reveal a Specific Gene Signature
To investigate if sox10-derived CMs differ in their gene expres-

sion profile compared to other CMs, we performed transcrip-

tome analysis (Figures 6A and 6B). To make the characterization

specific for the myocardium, we used the sox10:CreERT2;

vmBRN line, in which upon 4-OHT-induced recombination,

sox10-derived CMs express mCherry and the rest of the ventric-

ular CMs express blue fluorescent protein (BFP). Two pulses

of 4-OHT were administered 2 weeks before injury and

3 weeks before heart dissection. mCherry+, BFP+, and double-

positive mCherry+/BFP+ CMs were FAC sorted from

sox10:CreERT2 cn17;vmBRN uninjured hearts and hearts at 7

dpi and processed for RNA sequencing (RNA-seq). For bioinfor-

matics analysis, we comparedmCherry+ (comprising all samples

that were mCherry+ or mCherry+/BFP+) with mCherry�

(comprising samples that were only BFP+).

In uninjured hearts, 101 genes were upregulated and 129

genes were downregulated in sox10-derived (mCherry+) CMs

compared to the rest of the ventricular CMs (mCherry�) (Figures
6A and 6B; Table S1). Gene enrichment analysis of mCherry+ and

mCherry� transcriptomic profiles in uninjured hearts revealed

several metabolic differences between these two groups,
including changes in oxidative phosphorylation and nucleic

acid metabolism (Figures 6C, 6D, and S3; Table S1).

Notably, when comparing mCherry+ and mCherry� groups

after injury, sox10-derived cells were transcriptionally more

active; 415 genes were upregulated in mCherry+ CMs, while

only 30 genes were upregulated in mCherry� CMs (Figure 6B;

Table S2). Importantly, sox10 mRNA was significantly upregu-

lated in mCherry+ CMs from injured hearts at 7 dpi, showing

that the sox10:CreERT2 line allows tracing of endogenous

sox10-expressing cells. The genes encoding the T-box tran-

scription factors tbx20 and tbx5awere among the genes upregu-

lated in sox10-derived CMs (Figure 6B; Table S2). These genes

were previously shown to be expressed in CM populations

involved in heart regeneration (Sánchez-Iranzo et al., 2018) and

play an active role in this process (Grajevskaja et al., 2018; Xiang

et al., 2016).

Gene enrichment analysis in injured conditions for mCherry+

and mCherry� CMs showed that Gene Ontology (GO) biological

processes related to negative regulation of the cell cycle were

inhibited in mCherry+ CMs. This suggests that mCherry+ CMs

have a pro-regenerative profile (Figures 6E–6G and S3; Table

S2). Furthermore, mCherry+ CMs were enriched for pathways

involved in myocardial growth, including CM differentiation,

cardiac cell development, and cardiac muscle contraction (Fig-

ures 6E–6G; Table S2). This result is consistent with a role for

sox10-derived CMs in rebuilding the lost myocardium.
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Figure 5. Fate Mapping of Juvenile sox10+ Cells and Evidence of Non-leaky sox10:CreERT2 Activity

(A) 4-OHT was administered to sox10:CreERT2; vmhcl:loxP-tagBFP-loxP-mCherry-NTR (sox10:CreERT2; vmBRN) zebrafish during juvenile stage (9 weeks post-

fertilization), and adult uninjured hearts or hearts at 7 dpi were collected and imaged.

(B–D) Fluorescence stereomicroscope acquisition of a dissected uninjured heart showing sox10-derived CMs in red (mCherry+) and other ventricular CMs in blue

(vmhcl:BFP+). (B) Merged channels (B), blue channel (C), and red channel (D) are shown.

(E–J) Cryosection of an uninjured heart. Shown aremerged (E) as well as single green (MHC+ cells; F) and red (mCherry+ cells; G) channels. (H–J) Zoomed views of

boxed region in (E). Again, merged (H) as well as single green (I) and red (J) channels are shown. sox10-derived CMs (mCherry+) are detected near the sub-

epicardial regions of the myocardium.

(K–M) Fluorescence stereomicroscope acquisition of a dissected injured heart showing sox10-derived cells in red (mCherry+) and ventricular CMs in blue

(vmhcl:BFP+). Merged channels (K), blue channel (L), and red channel (M) are shown.

(N–S) Cryosection of an injured heart at 7 dpi. sox10-derived CMs are detected near the subepicardial regions and close to the injured area. Shown aremerged (N)

as well as single green (MHC+ cells; O) and red (mCherry+ cells; P) channels.

(Q–S) Zoomed views of boxed region in (N). Shown are merged and single channels of MHC andmCherry signal. Again, merged (Q) as well as single green (R) and

red (S) channels are shown.

(legend continued on next page)
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Wenext analyzed if mCherry+ cells respond equally to an injury

as other CMs. For this, we compared on the one hand the

changes in gene expression of mCherry+ CMs in injured with un-

injured hearts (Figure S4) and on the other the changes in gene

expression of mCherry� CMs between both conditions (Fig-

ure S5). Upon injury, mCherry+ cells upregulated 767 genes,

and only 26 genes were downregulated (Figure S4C; Table S3).

Thus, overall, mCherry+ CMs respond to injury with an increase

in gene expression. Biological processes related to cell prolifer-

ation, cell motility, and response to injury were enriched in

mCherry+ CMs upon cryoinjury (Figure S4D; Table S3). Ingenuity

pathway analysis (IPA) further confirmed the enrichment of ca-

nonical pathways related to proliferation in mCherry+ CMs of

injured hearts (Figure S4E; Table S3).

When we analyzed the changes in gene expression of the rest

of the CMs (mCherry�) in response to injury, we observed fewer

differentially expressed genes (DEGs) than those detected for

mCherry+ cells (Figure S5; Table S4). This indicated that

sox10-derived cells reactivate gene expression to a larger extent

when compared to the rest of the CMs.

Altogether, these data indicate that sox10 promoter expres-

sion defines a group of myocardial cells in the adult uninjured

zebrafish heart with a unique gene expression signature and

pro-regenerative transcriptomic profile in response to injury.

sox10+ Cells Are Necessary for Cardiac Regeneration
The accumulation of sox10-derived cells in the regenerated

myocardium strongly suggests that these cells contribute to

the replacement of injured myocardium. To determine the func-

tion of this population during heart regeneration, we genetically

ablated sox10-derived cells using the transgenic line sox10:-

CreERT2;b-actin:loxP-mCherry-loxP-DTA (Wang et al., 2011),

which allows cell ablation upon diptheria toxin (DTA) overex-

pression. We administered 4-OHT to adults 3 days and 1 day

before cryoinjury (Figure S6A). At 21 dpi, the injured area was

larger in sox10+-cell-depleted animals than in the control group

(Figures S6B–S6D; n = 13 without 4-OHT and n = 8 with 4-

OHT), suggesting that sox10-derived cells are necessary for

heart regeneration. There was no significant reduction in animal

survival or cardiac function in sox10-cell ablated animals (Fig-

ures S6E–S6I; n = 6). During development, sox10-derived cells

contribute to the peripheral nervous system, which plays an

important role in heart regeneration (Mahmoud et al., 2015;
(T and U) Percentage of juvenile sox10-derived CMs area (mCherry+/MHC+) com

hearts at 7 dpi (n = 5). (T) Analysis performed on whole-mount images as shown in

Shown are data for individual hearts as well as mean ± SD (two-tailed non-param

(V) Quantification of sox10-derived cells in different apicobasal regions in injured

using one-way ANOVA followed by Tukey’s honest significant difference test. *p <

200–600 mm.

(W) sox10:CreERT2; vmBRN zebrafish as shown in (K)–(M) but without 4-OHT treat

sections (lower row) (n = 2).

(X) EtOH was administered to sox10:CreERT2;ubb:loxP-GFP-loxP-mCherry zebra

(n = 3).

(Y) Maximal intensity projection of a confocal z stack through a heart from con

myocardium is MHC+ (green). Shown are merged and single channels. mCherry+

resolution acquisitions.

4-OHT, 4-hydroxytamoxifen; At, atrium; CI, cryoinjury; CMs, cardiomyocytes; dpi,

See also Figure S2.
White et al., 2015). Thus, the impaired regeneration in animals

with sox10-ablated cells might be a consequence of compro-

mised cardiac innervation. Yet, the b-actin promoter used in

the transgenic line has been reported to be strongly expressed

in CMs but weak in other cardiac cells (Kikuchi et al., 2010).

Nonetheless, we assessed a possible change in innervation

upon induced Diphtheria toxin A (iDTA)-based sox10+ cell abla-

tion by anti-tyrosine hydroxylase immunostaining. This experi-

ment yielded no evidence of a reduction in innervation in

sox10+ cell ablated hearts when compared to controls (Figures

S6J–S6N), suggesting that the ablation of sox10-derived CMs

is responsible for the phenotype.

For confirmation, we genetically ablated sox10-derived cells in

ventricular CMs using sox10:CreERT2 cn17;vmBRN zebrafish

(Figure 7A). With this double transgenic line, ventricular

sox10+-derived CMs can be genetically ablated upon addition

of metronidazole (Mtz), which induces cell death in nitroreduc-

tase (NTR)-expressing cells (Curado et al., 2008; Figure 7A).

We ablated mCherry+ cells 1 week before cryoinjury and

confirmed the efficiency of ablation by comparing the amount

of mCherry+ cells with Mtz-nontreated animals (Figures 7B and

7C; n = 26 treated and 20 untreated). A significant difference in

the amount of sox10-derived CMs could be observed between

untreated (n = 5) and treated (n = 8) adult zebrafish (Figure 7D),

confirming the efficiency of ablation. Consistent with the results

using the DTA ablation model, the survival rate of the different

groups was similar (Figure 7E). To assess if loss of adult

sox10-derived ventricular CMs affects heart regeneration after

cryoinjury, we collected hearts at 30 dpi and assessed fibrotic

tissue deposition (Figures 7F–7H). Fish in which ventricular

sox10-derived CMs had been ablated revealed a persistent

fibrotic scar and a larger injury area compared to the control

groups sox10:CreERT cn172;vmBRN without Mtz administration

and sox10:CreERT2 cn17;ubb:loxP-mCherry with Mtz (Figures

7F–7I). This indicates that ablation of the small pool of sox10-

derived ventricular CMs in the uninjured adult zebrafish heart,

comprising less than 1%of total myocardial volume, affects sub-

sequent heart regeneration upon cryoinjury.

DISCUSSION

CMs can proliferate in the adult zebrafish (Wills et al., 2008), and

this can represent a basis for the high regenerative capacity
pared to the area of all myocardial cells (MHC+) in uninjured (n = 4) and injured

(B) and (K); (U) analysis performed on sectioned hearts as shown in (E) and (N).

etric t test).

and uninjured hearts. Data are mean ± SD. Statistical testing was performed

0.05 when comparing percentage between injured at 100 mmwith uninjured at

ment. Note the lack of mCherry+ cells in whole-mount views (upper row) and on

fish 10 and 7 days before injury, and hearts at 7 dpi were collected and imaged

dition as described in (X). sox10-derived cells are mCherry+ (red). The whole

cells could not be detected. Image shown is comprised of nine stitched high-

days post-injury; EtOH, ethanol; IA, injured area; V, ventricle. Scale bar, 50 mm.
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Figure 6. sox10-Derived CMs Reveal a Spe-

cific Transcriptome Signature

sox10:CreERT2;vmhcl:loxP-tagBFP-loxP-mCherry-

NTR zebrafish were treated with 4-OHT. A group of

zebrafishwas cryoinjured and collected at 7dpi and

a control group was left uninjured. Hearts were

disaggregated, sox10-derivedCMs (mCherry+) and

the rest of the CMs of the heart (mCherry�) were

FAC sorted, and RNA-seq was performed on 26

samples consisting of 20 CMs each.

(A and B) Recombination and collection were

carried out either on uninjured hearts (A) or

hearts at 7 dpi (B). (A) Volcano plots representing

differentially expressed genes (DEGs) in

mCherry+ and mCherry� CMs from uninjured

(A) or 7 dpi (B) hearts. DEGs upregulated

in mCherry� CMs are shown in blue, and

DEGs upregulated in mCherry+ CMs in red.

These genes had an adjusted p value (adjp) %

0.05 and a log2 fold change (LFC) R2. Genes

with a false discovery rate (FDR) R0.05 are

represented in gray. Note the high number of

DEGs upregulated in mCherry+ cells at 7 dpi.

Some differentially expressed genes previously

linked to regeneration as well as sox10 are

highlighted.

(C) Biological processes differentially enriched in

mCherry+ versus mCherry� CMs from uninjured

hearts (source for analysis, DEG list).

(D) Pathway analysis using gene enrichment

analysis (GSEA) of genes with LFC R2 present in

mCherry+ and mCherry� CMs of uninjured hearts.

Representative biological processes were plotted

and ordered according to the normalized enrich-

ment score. Z score represents whether a specific

function is increased or decreased. Red bar, en-

riched in mCherry+ CMs; blue bar, enriched in the

rest of the CMs.

(E) Biological processes differentially enriched in

mCherry+ versus mCherry� CMs from injured

hearts (source for analysis, DEG list).

(F and G) Pathway analysis (F) and hallmarks (G)

using GSEA of genes with LFC R2 present in

mCherry+ and mCherry� CMs of injured hearts.

Representative biological processes were plotted

and ordered according to the normalized enrich-

ment score. Z score represents whether a specific

function is increased or decreased. Red bar, enriched in mCherry+ CMs; blue bar, enriched in the rest of the CMs.

4-OHT, 4-Hydroxytamoxifen; CI, cryoinjury; dpi, days post-injury; dpt, days post-treatment; GO, Gene Ontology. See also Figures S3–S5 and Tables S1, S2, S3,

and S4.
observed in the injured heart. Although little is known about CM

populations that contribute to regeneration, studies showed that

they activate gata4 and ctgfa regulatory elements in response to

injury (Kikuchi et al., 2010; Pfefferli and Ja�zwi�nska, 2017). Recent

clonal analysis studies using pan-myocardial lineage tracing

have suggested that distinct CM subsets can contribute to heart

regeneration in the zebrafish as well as mouse (Gupta et al.,

2013; Sereti et al., 2018). Here, we report genetic fate mapping

with a specific promoter element of preexistent CMs, which

are present in the adult heart and expand more than the rest of

the CMs in response to injury. Our study suggests that this small

sox10-derived CM population is essential for regeneration, since

its genetic ablation prior to cryoinjury impairs cardiac regenera-
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tion. Unfortunately, it was technically not possible to perform an

ablation of an equally small random CM population. Thus, we

could not fully evaluate if the effect on regeneration was specific

to of the effect due to ablation of the sox10-derived CM

population.

Adult neural crest stem cells were proposed as the source

of progenitor cells during adult pigment cell regeneration in

the zebrafish (Iyengar et al., 2015). Moreover, in rodents, neu-

ral crest stem cells were suggested to participate in repair

mechanisms after myocardial infarction (Tamura et al., 2016).

A neural crest cell origin of the sox10+ population contributing

to heart regeneration is plausible but should be confirmed with

genetic fate mapping using additional neural crest marker



Figure 7. Genetic Ablation of sox10+ CMs Impairs Cardiac Regeneration

(A) sox10:CreERT2;vmBRN or sox10:CreERT2;ubb:Switch zebrafish were treated with 4-OHT 14 and 12 days before cryoinjury. They were treated with Mtz on

days 10 and 7 before injury. A control group of sox10:CreERT2;vmBRN was not treated with Mtz. Cryoinjured hearts were collected at 30 dpi.

(B and C) Whole-mount view of a confocal 3D projection of z stacks through a sox10:CreERT2;vmBRN heart after 4-OHT and with (B) or without (C) Mtz

treatments and 30 dpi.

(D) Percentage of the volume from mCherry+ CMs relative to all CMs: mCherry+; myosin heavy chain (MHC)+ versus all MHC+ cells (p = 0.006; two-tailed non-

parametric t test).

(E) Survival rate of animals from the different groups as described in (A). No difference in mortality was observed among groups according to a Fisher’s exact test

(p = 1.000).

(F–H) AFOG histological staining on sagittal sections of cryoinjured hearts at 30 dpi. (F) 4-OHT- andMtz-treated sox10:CreERT2;vmBRN heart section. (G) 4-OHT-

treated sox10:CreERT2;vmBRN heart section. (H) 4-OHT- and Mtz-treated sox10:CreERT2;ubb:Switch heart section.

(I) Quantification of IA in the three conditions shown in (F-H). IA versus total ventricular myocardial area was measured. Shown are values for individual hearts as

well as mean ± SD (statistical analysis by non-parametric t test: sox10:CreERT2;vmBRN Mtz-treated versus sox10:CreERT2;vmBRN Mtz-untreated, p = 0.0078;

sox10:CreERT2;vmBRN Mtz-treated versus sox10:CreERT2;ubb:Switch Mtz-treated, p = 0.0072; sox10:CreERT2;vmBRN Mtz-untreated versus sox10:-

CreERT2;ubb:Switch Mtz-treated, p = 0.1020).

4-OHT, 4-hydroxytamoxifen; At, atrium; CI, cryoinjury; dpi, days post-injury; IA, injured area; Mtz, Metronidazole V, ventricle. Scale bars represent 100 mm (B and

C) and 200 mm (F–H). See also Figure S6.
genes. Alternatively, the zebrafish heart might harbor a small

pool of sox10+ CMs that efficiently expand in response to cry-

oinjury. It will be interesting to elucidate if such an expansion

also occurs in other injury setups such as ventricular resection

or genetic ablation. Adult sox10+ CMs reveal a unique gene

signature both in uninjured hearts and upon injury. Interest-

ingly, sox10 transcripts were also detected in CMs in a

recently published single-cell transcriptome of zebrafish em-

bryos (Wagner et al., 2018), further supporting our findings

of a sox10+ CM population in the zebrafish heart. Moreover,

here, we also report sox10 expression in sox10-derived

CMs, supporting that our driver lines recapitulate expression

of the endogenous gene. The biological pathways enriched

in sox10-derived CMs compared to the rest of the ventricular
myocardium were related to developmental processes, meta-

bolism, and cell proliferation. This gene signature could be key

for their increased contribution to the regenerated myocar-

dium. The fact that sox10-derived cells upregulate more genes

in response to injury than other ventricular CMs could suggest

that they are epigenetically less repressed and therefore more

sensitive to injury response and prone to contribute to heart

regeneration.

An active sox10 promotermight represent a particular state of

CMs. Alternatively, CMs with an active sox10 promoter might

represent a distinct CM population in the zebrafish heart with

high regenerative capacity. Understanding if cardiac sox10+

cells are unique to this species or shared in mammals might

help us understand the basis of regenerative capacity.
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(2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentia-

tion and proliferation. Nature 464, 606–609.

Kanehisa, M., and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and

Genomes. Nucleic Acids Res. 28, 27–30.

Kikuchi, K. (2014). Advances in understanding the mechanism of zebrafish

heart regeneration. Stem Cell Res. (Amst.) 13 (3 Pt B, 3PB), 542–555.

Kikuchi, K., Holdway, J.E.,Werdich, A.A., Anderson, R.M., Fang, Y., Egnaczyk,

G.F., Evans, T., Macrae, C.A., Stainier, D.Y., and Poss, K.D. (2010). Primary

contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Na-

ture 464, 601–605.

Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner

with low memory requirements. Nat. Methods 12, 357–360.

Kuo, C.T., Morrisey, E.E., Anandappa, R., Sigrist, K., Lu, M.M., Parmacek,

M.S., Soudais, C., and Leiden, J.M. (1997). GATA4 transcription factor is

required for ventral morphogenesis and heart tube formation. Genes Dev.

11, 1048–1060.

Lepilina, A., Coon, A.N., Kikuchi, K., Holdway, J.E., Roberts, R.W., Burns,

C.G., and Poss, K.D. (2006). A dynamic epicardial injury response supports

progenitor cell activity during zebrafish heart regeneration. Cell 127,

607–619.

Lerman, D.A., Alotti, N., Ume, K.L., and Péault, B. (2016). Cardiac repair and
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti MF20 DSHB Cat# MF 20, RRID:AB_2147781

Mouse monoclonal anti tropomyosin DSHB Cat# CH1, RRID:AB_2205770

Mouse monoclonal anti BrdU BD PharMingen Cat# 347583, RRID:AB_400327

Rat monoclonal anti mCherry Thermo Fisher Scientific Cat# M11217, RRID:AB_2536611

Rabbit polyclonal anti-Tyrosine Hydroxylase Sigma Aldrich Cat# T8700, RRID:AB_1080430

Rabbit polyclonal anti-RFP Abcam Cat# ab34771, RRID:AB_777699

Biotin-SP-conjugated AffiniPure anti-rabbit IgG (H+L) Jackson Immuno Research

Laboratories

Cat# 713-065-003, RRID:AB_2340715

Goat anti-Rabbit IgG (H+L) Secondary Antibody, Alexa

Fluor� 568 conjugate

Thermo Fisher Scientific Cat# S-11226, RRID:AB_2315774

Goat anti-Mouse IgG1 Secondary Antibody, Alexa

Fluor� 488 conjugate

Thermo Fisher Scientific Cat# A-21121; RRID:AB_2535764

Goat anti-Mouse IgG1 Secondary Antibody, Alexa

Fluor� 568 conjugate

Thermo Fisher Scientific Cat# A-21124; RRID:AB_2535766

Goat anti-Mouse IgG1 Secondary Antibody, Alexa

Fluor� 647 conjugate

Thermo Fisher Scientific Cat# A-21240; RRID:AB_2535809

Goat anti-Mouse IgG2b Secondary Antibody, Alexa

Fluor� 488 conjugate

Thermo Fisher Scientific Cat# A-21242, RRID:AB_253581

Chemicals, Peptides, and Recombinant Proteins

4’,6-Diamidino-2-phenylindole dihydrochloride (DAPI) Thermo Fisher Scientific Cat# D3571

5-bromo-20-deoxyuridine (BrdU) Sigma Aldrich Cat# 59-14-3

4-hydroxytamoxifen Sigma Aldrich Cat#T5648

2,3-butanedione monoxime Sigma-Aldrich Cat#B0753

Metronidazole Sigma-Aldrich Cat#M3761

Software and Algorithms

Fiji NIH SCR_002285

GraphPad Prism 7 GraphPad Software SCR_002798

Imaris software 8.2 Bitplane SCR_007370

Ingenuity Pathway Analysis QIAGEN SCR_008653

DESeq2 v1.20.00 SciCrunch SCR_015687

R Project for Statistical Computing SciCrunch SCR_001905

Gene Ontology SciCrunch SCR_002811

KEGG SciCrunch SCR_012773

clusterProfiler SciCrunch SCR_016884

MSigDB SciCrunch SCR_016863

biomaRt SciCrunch SCR_002987

Experimental Models: Organisms/Strains

Zebrafish: Tg(�4.9sox10:egfp)ba2 (Carney et al., 2006) ZDB-ALT-050913-4

Zebrafish: Tg(sox10:CreERT2,myl7:GFP)t007 (Mongera et al., 2013) ZDB-ALT-130322-3

Zebrafish: Tg(-3.5ubi:loxP-EGFP-loxP-mCherry)cz1701 (Mosimann et al., 2011) ZDB-TGCONSTRCT-110124-1

Zebrafish: Tg(actb2:loxP-mCherry-loxP-DipTox)pd36 (Wang et al., 2011) ZDB-ALT-110914-1

Zebrafish: Tg(vmhcl:loxP-myctagBFP-STOP-loxP-

NTR-mCherry)cn5
(Sánchez-Iranzo et al., 2018) ZDB-ALT-170711-2

Zebrafish: Tg(sox10:CreERT2)cn17 This manuscript n/a
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Nadia

Mercader (nadia.mercader@ana.unibe.ch).

All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Experiments were conducted with zebrafish embryos, juveniles and adults aged 6–18 months, raised at maximal 5 fish/l and main-

tained under the same environmental conditions: 27.5-28�C, 650-700ms/cm, pH 7.5, the lighting conditions were 14:10 hours (light:

dark) and 10% of water exchange a day. Experiments were approved by the Community of Madrid ‘‘Dirección General de Medio

Ambiente’’ in Spain, the Landesamt f€ur Verbraucherschutz Th€uringen, Germany and the ‘‘Amt f€ur Landwirtschaft und Natur’’ from

the Canton of Bern, Switzerland. All animal procedures conformed to EU Directive 86/609/EEC and Recommendation 2007/526/

EC regarding the protection of animals used for experimental and other scientific purposes, enforced in Spanish law under Real De-

creto 1201/2005. Experiments in Switzerland were conducted under the licenses BE95/15 and BE64/18. For longitudinal experi-

ments, the selected animals were grown together with Casper (White et al., 2008) zebrafish until heart collection at the density as

explained above.

METHOD DETAILS

Generation of Tg(sox10:CreERT2)cn17
In order to remove the reporter myl7:GFP from the line Tg(sox10:CreERT2,myl7:GFP)t007 (Mongera et al., 2013) we injected the

guide RNA sgRNA eGFP1 GGCGAGGGCGATGCCACCTA targeting GFP (Auer et al., 2014) together with Cas9 protein into 1-cell

stage embryos and raised offspring without GFP expression in the heart. Germline transmission was evaluated by crossing F0

into ubi:Switch and inducing recombination with 4-OHT administration. This line was used for the experiments shown in Figures

5, 6, and 7.

4-Hydroxytamoxifen administration
4-hydroxytamoxifen (4-OHT; Sigma H7904) was administered at the indicated times and treatments were performed overnight. Prior

to administration, the 10 mM stock (dissolved in 99.8% ethanol) was heated for 10 minutes at 65�C (Felker et al., 2016). For genetic

labeling in Tg(sox10:CreERT2; ubb:Switch) embryos, 4-OHT was administered at 5-10 mM from 12 to 48 hours post-fertilization (hpf).

For lineage tracing studies in adult fish, 4-OHT was administered at 10 mM overnight.

Cryoinjury and analysis of the injured area
Cryoinjury was performed as previously described (González-Rosa and Mercader, 2012). Adult fish were anesthetized with 0.032%

tricaine (Sigma, St Louis, MO, USA) and their pericardial cavity opened with microdissection scissors to expose the heart. A copper

filament cooled in liquid nitrogen was placed on the ventricular surface of the heart until thawing. After surgery, animals were revived

by gently directing water to their gills using a plastic Pasteur pipette.

For analysis of regeneration, animals were euthanized at different times post-injury by immersion in 0.16% Tricaine (Sigma, St

Louis, MO, USA), and hearts were dissected in media containing 2 U/ml heparin and 0.1 M KCl. For quantification of injured area

on paraffin sections as shown in Figures 1F and 1G, color deconvolution tool and color threshold tool (ImageJ Software) were

used to segment and measure the injured and uninjured myocardium in mm2.

Metronidazole administration
For genetic ablation using Metronidazole (Mtz; Sigma, M3761), Mtz was diluted in fish water at 10 mM with DMSO at 0.2% and

administered overnight.

BrdU administration
Animals were injected intraperitoneally either at 6 dpi or at 7 dpi and 29 dpi with 30 ml of 2.5 mg/ml of 5-Bromo-2-deoxyuridine (BrdU,

B5002-1G, Sigma). Hearts were collected and processed for analysis at 7 dpi and 30 dpi. To calculate the proliferation index, cry-

osections were immunostained with anti-BrdU, anti-RFP, and anti-MHC antibodies as described below. At least 3 ventricular sec-

tions were imaged for each heart. MHC+/mCherry+/BrdU+ CMs compared to MHC+/mCherry-/BrdU+ CMs were counted manually

using ImageJ software.
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Histological staining
Hearts were fixed in 2 or 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) overnight at 4�C. Samples were then

washed in PBS, dehydrated through graded alcohols, washed in Xylol and embedded in paraffin wax. All histological staining

were performed on 7 mm paraffin sections cut on a microtome (Leica and Reichert-Jung), mounted on Superfrost slides (Fisher Sci-

entific), and dried overnight at 37�C. Sections were deparaffinized in xylol, rehydrated and washed in distilled water. Connective

tissue was stained using Acid Fuchsine Orange G (AFOG) (González-Rosa et al., 2014). ImageJ software was used to quantify cry-

oinjured area in uninjured and injured hearts.

Cardiac imaging by echocardiography
Animals were anaesthetized by immersion for approx. 5 min in a combined solution of 60 mM Tricaine/3 mM Isoflurane dissolved in

fish tankwater (González-Rosa et al., 2014). Individual fishwere placed ventral side up on a custom-made sponge in a Petri dish filled

with the anesthetic solution. Two-dimensional (2D) high-resolution real-time in vivo images were obtainedwith the Vevo2100 Imaging

System through a RMV708 (22-83 MHz) scanhead (VisualSonics, Toronto, Canada). Imaging and image analysis were performed as

described (González-Rosa et al., 2014).

Immunofluorescence on sections
Heart sections were deparaffinized, rehydrated and washed in distilled water. Epitope recovery was carried out by boiling in citrate

buffer (pH 6.0) for 20 min in a microwave at full power. Sections were permeabilized with Triton X-100 0.5% for 15 min. Non-specific

binding sites were saturated by incubation for 1 hour in blocking solution (5% BSA, 5% goat serum, 0.1% Tween-20). Endogenous

biotin was blockedwith the avidin-biotin blocking kit (Vector, Burlingame, CA, USA). For tyramides amplification, slides were blocked

in 3% H202-PBS for 20 minutes. Slides were incubated overnight with the following primary antibodies at 4�C: anti-myosin heavy

chain (MF20, DSHB; diluted 1:20), anti-tropomyosin (CH1, DSHB; diluted 1:20), anti-RFP (Abcam, diluted 1:150), anti-BrdU (BD

PharMingen diluted 1:100), anti-mCherry (16D47, Thermo Fisher Scientific, diluted 1:150), anti-Tyrosine Hydroxylase (Sigma, diluted

1:150), biotinylated anti-rabbit (Thermo Fisher Scientific, 1:150), HRP (DAKO, 1:250). Antibody signals were detected with strepta-

vidin- or Alexa (488, 568, 633)-conjugated secondary antibodies (Invitrogen; each diluted 1:250) and streptavidin-Cy3 (Molecular

Probes, SA1010) after incubation for 1 hour at room temperature. For tyramides amplification (Merck, TSA Plus Cyanine 3 System,

Cat# NEL744001KT), Cy3 was conjugated for 4 minutes. Nuclei were stained with 4’,6-Diamidino-2-phenylindole dihydrochloride

(DAPI) (1:1000, Merck) and slides were mounted in DAKO fluorescent mounting medium (DAKO). Images were analyzed and pro-

cessed using ImageJ.

Cryosections were prepared as above with the following modifications: heart sections were incubated for 30 min in PBS at 37�C to

remove the gelatin. They were washed two more times with PBS at room temperature and then immunofluorescence proceeded as

for paraffin sections.

Whole mount heart imaging and image processing
Hearts were incubated with block solution (5%BSA, 5% got serum, 0.1% Tween-20) for two days and incubated in primary antibody

for three days at 4�C in rocking agitation. We washed hearts three times with PBS Tw 0.1% for 1 hour. Secondary and tertiary anti-

body incubations were performed for two days at 4�C in rocking agitation. Again, wewashed hearts three timeswith PBS Tw 0.1% for

1 hour. Then, hearts were fixed in 2% PFA overnight. We used CUBIC reagent (Susaki et al., 2015) for tissue clearing. Hearts were

incubated in CUBIC reagent 1 for three days at 37�C, washed in 0.1% PBS/Tween 20 three times for 20 minutes, whole mount

immunofluorescence was performed and samples were incubated afterward in CUBIC reagent 2 for three further days at room tem-

perature. Hearts were mounted on a glass bottom culture dish (MatTek Corporation) for confocal acquisition. Whole heart images

were obtained with Zeiss LSM 780, Zeiss LSM 880, and Leica TCS SP8 confocal microscopes with a 10 dry, 20 3 dry and 40x wa-

ter-dipping lenses. Images were recorded at 5123 512, 10243 1024 and 2048x 2048 resolution. Tile scan and z stack of each heart

was acquired. The proportion of mCherry+/MHC+ versus all MHC+ CMs was evaluated with Imaris software 8.2 (BITPLANE). A dis-

tance transformation algorithm (Imaris software 8.2) was used to study the distance of mCherry+/MHC+ CMs to the injured or apex

area. Adult zebrafish heart representing embryonic sox10-derived CMs in the Figures S2E and S2F .lsm raw data file was converted

to .ims (Imaris file extension) by Imaris software 8.2 (BITPLANE). The Imaris image was saved as TIFF, with a larger field of view than

the original file. This corresponds to the images shown in the panels.

Imaging of larvae in vivo

Double transgenic larvae Tg(sox10:CreERT2;ubb:Switch) were transferred to E3 medium containing 0.2 mg/ml tricaine and 0.0033%

PTU and immobilized using 0.7% agarose (Bio-Rad Low Melting agarose, #Cat 161-3111) in a glass bottom microwell-dish (MatTek

Corporation). Zebrafish hearts were scanned using bidirectionally acquisition with SP5 confocal microscope (Leica SP5) using a 20x

glycerol lens. Larvae were carefully removed from the agarose embedding and were grown to adults in fish tanks together with Cas-

per fish. Adult zebrafish hearts were collected, fixed in 2%PFA overnight and scannedwith LSM 700 Confocal microscope using 20x

dry lens (Zeiss). 3D reconstruction and analysis were done using Imaris Software 8.2.
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RNAscope 2.5HD Detection Reagent (RED) - Immunofluorescence method
All the hearts were fixed at room temperature (RT) for 24h in 10%Neutral Formalin Buffer (NFB). After fixation, samples were washed

3 times for 10minutes in 1x PBS. Dehydration process was performed using a standard ethanol series (10minutes each), followed by

two xylol washes (5 minutes each) and embedding of tissues was carry out.

Paraffin blocks were cut with microtome (Microm) at 6mm thickness per section, collected in the water bath with SuperFrost slides

and baked slides in a dry oven for one hour at 60�C. After that, slides were dewaxed by incubating 2 times for 5 minutes in xylol, 2

times for 2 minutes in 100% ethanol and dried in a dry oven for 5 minutes at 60�C. They were then, permeabilized with hydrogen

peroxide (ACD#322381) for 10 minutes at RT and washed 2 times for 1 minute in distilled water.

Target retrieval (ACD, #322000) was performed for 15 minutes at 100�C. Slides were then washed for 15 s in distilled water and

100% ethanol for 3 minutes and dried for 5 minutes at 60�C. Afterward PAP Pen (Vector, #H-4000) was used to create a hydrophobic

barrier for each section. After that, slides were incubated with protease Plus (ACD#322381) for 5 minutes at 40�C and washed in

distilled water twice.

Two probes were designed for the experiment (Dr-Sox10 and negative control probe-DapB). Hybridization was done by incubating

the sections with the the probes for 2 hours at 40�C, followed by 2 washes of 2 minutes in washing buffer (ACD, #310091).

Finally, signal detection was done by using the RNAscope 2.5 HD Detection Reagent-RED (ACD, #322360) as follows: incubation

with AMP1 for 30min at 40�C; washing with wash buffer AMP2 for 15min at 40�C, wash buffer AMP3 for 30min at 40�C, wash

buffer AMP4 for 15min at 40�C, wash buffer AMP5 for 30min at 40�C, wash buffer AMP6 for 15min at 40�C, wash buffer RED working

solution for 10min at RT, and wash in distilled water twice for 5 minutes.

Disaggregation of zebrafish hearts, cardiomyocytes sorting and RNA-Seq library production
Uninjured and injured recombined adult zebrafish sox10:CreERT2;vmhcl:loxP-tagBFP-loxP-mCherry-NTR hearts were collected

12 days after the final 4-OHT pulse or 7 dpi respectively, and processed according to previous protocols (Sánchez-Iranzo et al.,

2018; Tessadori et al., 2012). Atrium and bulbus arteriosus were removed to obtain only the ventricle. A total of 15 uninjured and

18 injured hearts were used to create 5 pools (comprised of 3 hearts each) of uninjured hearts and 6 pools (each again comprised

of 3 hearts) for injured hearts. From each pool 20 CMs were FAC-sorted.

mCherry+, mCherry;BFP+ and BFP- CMs were sorted in 0.2 mL tubes in lysis buffer using Synergy 4L Cell Sorter and immediately

frozen at�80�C. Smart-Seq2 RNA library preparation was performed according to previous protocols (Picelli et al., 2014). An Agilent

Bioanalyzer was used to measure quality of library preparation. Library concentration was measured using the Qubit fluorometer

(ThermoFisher Scientific). Final libraries concentration was 10 nM. Libraries were sequenced using Illumina NextSeq 500.

Bioinformatics analysis
BCL files were converted to FastQ files, using bcl2fastq2 (v2.20.0.422 – Illumina). Reads were mapped to the reference genome

(Ensembl build 11, release 94) using Hisat2, version 2.1.0 (Kim et al., 2015) and counting was performed using featureCounts, version

1.6.0 (Liao et al., 2014). Multiple quality control features were measured and observed using both FastQC, version 0.11.5 (Andrews,

2010) and RseQC, version 2.6.4 (Wang et al., 2012). From 44 sequenced samples 18 were discarded as they did not pass the quality

control. For bioinformatics analysis, we compared mCherry+ (mCherry+, mCherry+BFP+) with mCherry- (BFP+) pools. The compar-

ison was performed for samples extracted from uninjured and 7 dpi hearts. Downstream analysis was performed in R, version 3.5.1

(R Core Team, 2018).

Counts were normalized and differential expression between design groups was tested using package DESeq2 v.1.20.00 with no

log2 fold change shrinkage (default betaPrior option for the latest versions of the tool). Principal component analysis (PCA) plots, vol-

cano plots and heatmaps were generated using the ggplot2 package, version 3.0.0 (H. Wickham. ggplot2: Elegant Graphics for Data

Analysis. Springer-Verlag New York, 2016.).

Further analyses were performed with DESeq2 results. For the enrichment we selected all the Gene Stable IDs and translated to

Mus musculusGene Stable IDs and obtained the ENTREZIDs and SYMBOLs using biomaRt package (Durinck et al., 2005). With the

genes translated, the top differentially expressed genes (DEG) that passed FDR < 0.05 for Gene Ontology (GO) (Ashburner et al.,

2000) over representation analysis (ORA) using clusterProfiler package (Yu et al., 2012).

Afterwards, we performed deeper analysis for overall gene expression with gene set enrichment analysis (GSEA). The differential

gene expression results from DESeq2 were sorted by Log2FoldChange value. Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Kanehisa and Goto, 2000) and Molecular Signature Database (MsigDB) (Liberzon et al., 2015) using the Hallmarks collection were

used for biological insight. For the GSEA analyses clusterProfiler and FGSEA packages (Sergushichev, 2016) were used with KEGG

and MsigDB Hallmarks gene set respectively. For data representation only those with adjusted p value < 0.05 were considered sig-

nificant of the results obtained.

Ingenuity pathway analysis core analysis (IPA, QIAGEN Inc., https://www.qiagenbioinformatics.com/products/ingenuity-

pathway-analysis) was used to identify canonical pathways, functions and diseases related to our differentially expressed genes

in uninjured and injured conditions.
e4 Cell Reports 29, 1041–1054.e1–e5, October 22, 2019

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis


QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using GraphPad. Shown are means and error bars represent SD in all graphs. The specific test

used, exact value of n, explanation of what n represents, definition of center, dispersion and precision measures are indicated in

each figure legend or citation in the main text. Normal distribution was tested to decide if a parametric or non-parametric test needed

to be applied.

DATA AND CODE AVAILABILITY

RNA-seq data were deposited at Gene OmnibusDatabase: Gene Omnibus Database with reference GSE 133571. Raw data of im-

ages as well as statistical analysis has been uploaded at Mendeley Database: https://doi.org/10.17632/5h7z68ck98.2
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