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SUMMARY

Plasmodium gene functions in mosquito and liver
stages remain poorly characterized due to limitations
in the throughput of phenotyping at these stages.
To fill this gap, we followed more than 1,300 bar-
coded P. berghei mutants through the life cycle.
We discover 461 genes required for efficient parasite
transmission to mosquitoes through the liver stage
and back into the bloodstream of mice. We analyze
the screen in the context of genomic, transcriptomic,
and metabolomic data by building a thermodynamic
model of P. berghei liver-stage metabolism, which
shows a major reprogramming of parasite meta-
bolism to achieve rapid growth in the liver. We iden-
tify seven metabolic subsystems that become
essential at the liver stages compared with asexual
blood stages: type II fatty acid synthesis and elonga-
tion (FAE), tricarboxylic acid, amino sugar, heme,
lipoate, and shikimate metabolism. Selected predic-
tions from the model are individually validated in
single mutants to provide future targets for drug
development.

INTRODUCTION

Malaria, caused by parasites of the genus Plasmodium, re-

mains a disease of major significance to global public health.

Despite increased attention and funding, malaria still kills

about half a million people each year, and the combination

of drug and insecticide resistance slows down progress
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against this deadly disease (World Health Organization,

2018). Infection with Plasmodium parasites occurs through

the bite of infected Anopheles mosquitoes, which inject motile

sporozoites when feeding on blood. A proportion of them rea-

ches and successfully invades hepatocytes. Over the course

of two to five days, depending on the Plasmodium species,

the parasite increases dramatically in size and eventually

gives rise to thousands of daughter merozoites. With this

immense and rapid expansion, parasites need to be highly

metabolically active, despite their dependence on the host

cell for nutrient acquisition. The merozoites are released into

the bloodstream, where they invade red blood cells and

undergo repeated rounds of asexual replication, each round

culminating in the release of further invasive merozoites. It is

the blood phase of the parasite life cycle that leads to the

symptoms of malaria and, in the case of Plasmodium falcipa-

rum, can cause fatal disease (reviewed in Cowman et al.,

2016). Rather than undergo asexual replication, some mero-

zoites will instead differentiate into sexual stages of the

parasite, the male and female gametocytes. Upon uptake by

susceptible mosquitoes, these gametocytes are activated to

form gametes and following fertilization and escape from the

mosquito midgut, the parasite encysts between the epithelial

midgut wall and the basal lamina. Within the oocyst, thou-

sands of motile sporozoites are produced over the course of

7 to 10 days in a process known as sporogony. Motile sporo-

zoites are liberated into the haemocoel of the mosquito and

eventually accumulate in the salivary glands, where they await

injection into a new mammalian host.

For many years, the primary focus of malaria research has

been the pathogenic blood stages, and all but two of the

commercially available antimalarial drugs primarily target

blood-stage infection. While this has been an effective
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strategy, P. falciparum has repeatedly and rapidly developed

resistance to all available blood-stage drugs, including the

current frontline antimalarial, artemisinin (Blasco et al.,

2017). New drugs are urgently required. Targeting the pre-

erythrocytic stage of the parasite has the considerable advan-

tage that successful drug treatment would prevent any clinical

disease symptoms and could also be used to clear dormant

liver stages of the Plasmodium vivax parasite, which can re-

activate to establish blood-stage infection many years after

the original mosquito bite (Campo et al., 2015). A recent

screen has begun to identify dozens of candidate compounds

that target the liver stage, some with great specificity (Anto-

nova-Koch et al., 2018). However, difficult experimental

models and the limited nature of our understanding of liver

stage metabolism now pose major challenges for identifying

their modes of action. The high metabolic activity that enables

parasites to expand rapidly from a single sporozoite to tens

of thousands of daughter merozoites presents a major

vulnerability. Metabolic differences between pre-erythrocytic

Plasmodium and their human host cells are known to exist

(Shears et al., 2015) and could in theory be exploited for

drug development, but there are currently significant gaps in

our understanding of liver-stage metabolism.

Identifying genes with key roles in liver stage development that

are potential drug targets requires the scaling up of experimental

genetics and subsequent phenotyping during this poorly acces-

sible stage. In P. berghei, a resource of >2,900 individually

barcoded gene knockout vectors is now available (https://

plasmogem.sanger.ac.uk/). These vectors integrate efficiently

into the genome due to their long homology arms (Pfander

et al., 2011) and in our experience are notmaintained episomally,

such that detection of a barcode after drug selection is highly

indicative of the presence of a specific knockout mutant in the

selected parasite populations (Gomes et al., 2015). Using bar-

code counting on a next-generation sequencer (barseq), we pre-

viously determined growth-rate phenotypes for the generated

knockout mutants specifically during the asexual blood stages,

identifying >1,360 non-essential genes from more than 2,500

screened genes (Bushell et al., 2017).

In this study, we generated pools of these blood-stage-

viable knockout mutants and analyzed their phenotypes

throughout the entire parasite life cycle for the first time. Using

barcode sequencing, we measured changes in the relative

abundance of knockout mutants in midgut oocysts, salivary

gland sporozoites, and in mice following injection of sporozo-

ites, revealing stage-specific functions for 461 genes, including

transcription factors, structural proteins, and enzymes. We

combined the data of the genetic screen with a liver-stage

transcriptome (Caldelari et al., 2019) to generate a liver-stage

metabolic model for P. berghei (iPbe-liver). We used this

model to examine the reasons underlying the observed loss-

of-function phenotypes and provide new insights into liver-

stage physiology, systematically predicting thermodynamic

bottlenecks, genetic interactions, and growth-limiting nutri-

ents. To validate hypotheses generated from this model, we

produced and analyzed individual knockout mutants for 20

genes and compared their phenotypes with their model-

predicted essentiality.
RESULTS

Validating Barseq for Analysis of Gene Knockout
Mutants in Non-erythrocytic Stages
Only the asexual blood stages of Plasmodium parasites can be

propagated continuously to drug-select for knockout mutants,

meaning that only genes that are not required for blood-stage

development can be investigated at later stages of the cycle us-

ing barseq. Extending barseq phenotyping beyond blood stages

faces three potential obstacles: (1) population bottlenecks, (2)

changes in ploidy following gamete fusion in the midgut, and

(3) segregation of mutant alleles in the oocyst. In a pilot screen,

we first tested whether barcoded alleles could be transmitted

robustly through the population bottleneck posed by the only

approximately 400 oocysts that in our hands form on average

on each infected Anopheles stephensi midgut. Using knockout

vectors targeting 15 genes with known functions at the liver

stage and 19 control and test genes (shown in Table S1), a

pool of mutant parasites was generated by transfection and

used to infect three mice. Blood samples from each mouse

were collected to establish the starting composition of mutants

after drug selection (sample B1). 120–150 female mosquitoes

were then allowed to feed on each mouse, and midguts (MG)

from >30mosquitoes were dissected 15 days post-infection, fol-

lowed by salivary gland (SG) collection at day 22 post-infection

from at least 60 mosquitoes. Half of these SGs were used to pre-

pare a barseq library to establish the composition of the mutant

pool in SG; the other half were used to collect sporozoites to

infect another mouse. From this mouse, a blood sample (B2)

was taken 5 days after intravenous injection of sporozoites to

establish the composition of the mutant pool in B2, allowing

assessment of parasite development in the liver (Figure 1A).

The relative abundance of gene knockouts in the pilot dataset

(Table S1) showed at least a 5-fold drop in relative abundance

between SG and B2 specifically for genes known to have a crit-

ical role at the liver stage (more than 10-fold for PALM, UIS4,

aLipDH, B9, P36, P36P, FabB/F, FabZ, and TRAP; more than

5-fold drop for SLARP, PLP1, and LISP1). An 11-fold drop in rela-

tive abundance was additionally seen for one of the individually

selected genes in this pilot experiment, LipA, a gene not previ-

ously studied at the liver stage, revealing for the first time a

potential liver-stage role for this enzyme (Figure 1B; Table S1).

Having recapitulated published liver-stage phenotypes, we

expanded the screen to cover all PlasmoGEM-targetable genes

that are not essential at the asexual blood stage in what is here-

after referred to as the mosquito-stage liver-stage (M-L) screen.

To minimize random losses of barcodes through non-represen-

tative sampling, the pool size was limited to 60 mutants, and

each pool was studied in three independent transmission exper-

iments (Figure 1A). In the absence of suitable control genes

known to lack knockout phenotypes at all developmental stages,

we normalized the stage-specific conversion efficiency of each

mutant to the quartile of most effectively converting mutants in

each set. We additionally corrected SG-B2 conversion rates us-

ing the known blood-stage growth rate of each mutant (Bushell

et al., 2017) to detect pre-erythrocytic phenotypes more specif-

ically. In total, the screen involved 1,379 vectors, transfected in
Cell 179, 1112–1128, November 14, 2019 1113
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Figure 1. Barseq Identifies Pre-erythrocytic Phenotypes

(A) Schematic showing the gene knockout (KO) screen to identify mosquito-liver stage (M-L) phenotypes. P. berghei schizonts were transfected with pools of

barcoded PlasmoGEM knockout vectors and parasites selected by drug-treatment in mice. Infected mice, from which blood was sampled for barcode

sequencing (B1), were used to infect mosquitoes. Midguts (MG) and salivary glands (SG) of infected mosquitoes were then sampled, and salivary gland spo-

rozoites were collected from mosquitoes to infect mice by i.v. injection. Blood from sporozoite-infected mice (B2) was also collected for barcode sequencing.

Barcode counts determined by sequencing PCR amplicons were used to determine the relative abundance of each gene knockout parasite at the life-cycle

transitions shown.

(B) Abundance of gene KOs at different life-cycle stages in a pilot screen, shown relative to their initial abundance at B1. Genes included in the pilot screen are

shown in Table S1. Error bars represent standard deviations.
27 pools (Table S2). It required dissection of >7,000 mosquitoes

and barseq of more than 600 PCR amplicons.

Screening in Pools Rescues Known Mosquito
Stage Phenotypes and Reveals Later Defects in
Pre-erythrocytic Development
To interpret the data from a transmission screen, we considered

how changes in ploidy following gamete fusion in the midgut and

segregation of mutant alleles in the oocyst (Figure 2A) would

affect how knockout alleles are transmitted. Mutants of the tran-

scriptional regulators AP2-G and AP2-G2, are known to lack

fertile gametocytes of both sexes (Sinha et al., 2014) and in the

screen were therefore only poorly transmitted to oocysts (Fig-

ure 2B). The same was true for GEST, the gametocyte egress

and sporozoite traversal gene (Talman et al., 2011), which

showed both a B1-MG and a SG-B2 phenotype, consistent

with its published functions (Figure 2B). In contrast, cross-fertil-

ization between different mutants in the bloodmeal limited the

power of the screen to reveal gene functions during the subse-

quent diploid and polyploid stages (i.e., zygotes, ookinetes,

and oocysts). For instance, knockout mutants in which only

one sex is sterile (Ning et al., 2013; Bennink et al., 2016) can

transmit their barcodes to the oocyst by inheritance through

the fertile sex (Figure 2C). As a result, reductions in barcode

abundance for these sex-specific knockout mutants often did

not reach significance at the B1-MG conversion.

Known gene functions in the polyploid ookinete were also

generally not recapitulated in the screen, presumably due to het-

erozygous rescue (Figure 2D).While these observations highlight

the need for future screens to be designed specifically to reveal

sexual and mosquito-stage phenotypes, they also rationalize
1114 Cell 179, 1112–1128, November 14, 2019
how knockout alleles of genes functioning in fertility or ookinete

and oocyst development can be transmitted to salivary gland

sporozoites to reveal additional gene functions after sporozoite

transmission to the vertebrate host. This is illustrated by AP2-

O4, a putative transcriptional regulator of oocyst maturation

(Modrzynska et al., 2017) whose phenotype is rescued in the

polyploid oocyst until the SG stage, but then, the haploid

knockout sporozoites show an�3,000-fold loss during transmis-

sion back to mice, revealing a new function for AP2-O4, possibly

at the liver stage (Figure 2D; Table S2).

Since inPlasmodiumall productsofmeiosis arepropagated into

the oocyst, which remains functionally heterozygous until alleles

segregate at the point of sporogony, it is likely that sporozoites

lacking an essential gene can inherit sufficient protein from the

oocyst to survive. TRAP (thrombospondin-related adhesive pro-

tein), which is required for sporozoite gliding, entry into salivary

glands and hepatocyte invasion (Sultan et al, 1997) might be an

example of protein inheritance fromheterozygous oocysts to spo-

rozoites.An�4-fold reduction inSGsporozoites inour screen (Fig-

ure 1B; Table S1) contrasts with a 34-fold reduction in sporozoite

numbers of the TRAP gene knockout clone in the previous study,

possibly because TRAP protein obtained by the sporozoite from

heterozygous oocysts alleviates the phenotype of the knockout.

The same phenomenon is unlikely to extend to all sporozoite

expressed genes, because once inside the salivary glands, spo-

rozoites reprogram transcription from their now once more

haploid genome in preparation for transmission back to the

vertebrate host (Mikolajczak et al., 2008). At this phase of the

life cycle, the ability of the screen to reveal phenotypes was

therefore predicted to increase, which is confirmed by a compar-

ison of ranked effect sizes, which aremuch greater for the SG-B2



A

B

C

D

Figure 2. Impact of Sexual Reproduction and Ploidy on the Transmission of KO Alleles

(A) Schematic illustrating ploidy changes during sexual and mosquito stages (adapted with permission from Lee et al., 2014).

(B) Illustration of inheritance where KO of gene a leads to a strong reduction in fertility in both sexes. Reduced transmission (red) of a- from less fertile gametes is

not rescued (dotted arrows) by cross-fertilization with a+ parasites (solid arrows), leading to much reduced inheritance of the a- allele. The line graph displays

screen data from known fertility genes showing strong reductions of the corresponding barcode (strongly negative log2FC) among midgut (MG) oocysts.

(C) As in (B), but assuming a sex specific fertility phenotype for gene b, allowing the b- alleles to be transmitted effectively by the fertile sex. The line graph shows

real data for genes with known functions, illustrating how the expected log2FC or �1 is barely noticeable.

(D) Similar illustration for a hypothetical gene c with known function in ookinete or oocyst development. Inheritance of c- allele may be almost unhindered due to

heterozygous rescue. Real data are plotted for genes whose homozygous disruption is known to block ookinete development or infectivity. Error bars in the line

graphs shown in (B), (C), and (D) show standard deviations from three replicate transmissions of the same mutant pool.
transition as compared to the MG-SG conversion (Figure 3A).

By first approximation, we will assume losses of mutants at the

SG-B2 transition to reflect gene functions at the liver stage in

the broadest sense, i.e., starting with sporozoite transmigration

and invasion of hepatocytes and culminating in the release of

merozoites into the bloodstream. A more precise elucidation of

gene functions will require analysis of single knockout mutants

(see below).
Liver-Stage Phenotypes Are Enriched for Genes with
Metabolic Functions
Taking a conservative approach to calling phenotypes that takes

into account both the effect size and the variance across biolog-

ical triplicates as illustrated in Figure S1, we find that at each

transition, only a small proportion of mutants (9%–18%) are

significantly depleted, while for the majority of genes, we can

either be confident that they are ‘‘not reduced’’ or the statistical
Cell 179, 1112–1128, November 14, 2019 1115
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Figure 3. M-L Screen Gene Knockout Phenotypes at the Liver Stage Show a Bias toward Genes with Predicted Metabolic Function

(A) Ranked, normalized log2FC values at each stage transition and for all genes with data. SG-B2 data were corrected for blood stage fitness, and an apparent

increase in some mutants (right end of distribution) results from some overcompensation for slow growth. Error bars show standard deviations.

(B) Pie charts show the distribution of phenotypes (see C for legend).

(C) SG-B2 phenotypes shown separately for genes that at the blood stage (Bushell et al., 2017) grow slowly (yellow) or are indistinguishable fromwild type (green).

(D) Plots showing the blood-stage (inner ring) and liver-stage (SG-B2, outer ring) phenotypes for genes pertaining to specificmetabolic subsystems (upper row) or

GO biological processes (lower row). Liver-stage phenotypes for genes are clustered according to their corresponding blood-stage phenotype. The association

of genes to metabolic subsystems is based on iPbe. GO biological process data, where available, are displayed in Table S2.

1116 Cell 179, 1112–1128, November 14, 2019



power is considered insufficient to make a clear call (Figure 3B).

Of the 1,359 mutants for which data was obtained, 898 showed

no significant reduction at any transition. At the B1-MG, MG-SG,

and SG-B2 transitions, 251, 129, and 185 mutants, respectively,

showed reduced stage conversion (Figure 3B). Statistically

robust transmission phenotypes were revealed, regardless of

whether mutants were previously found to have normal or slow

growth at the asexual blood stage (Figure 3C). The latter does

not, therefore, appear to be a major confounder of our ability

to detect phenotypes during the rest of the life cycle.

Mutants that were reduced strongly (>100-fold) at the SG-B2

transition showed a remarkable enrichment (p < 0.01) for meta-

bolic genes (15 of 31 genes in this category encoded enzymes

versus only 4 expected; Table S2). Some of the pathways

represented by lost mutants are consistent with the known

importance of heme and fatty acid biosynthesis at the liver stage

(Shears et al., 2015; Goldberg and Sigala, 2017); others implicate

more unexpected roles for fatty acid elongation, amino sugar

metabolism, and the electron transport chain (Table S2; Fig-

ure 3D). By comparison, we did not see liver-stage-specific

essentiality for genes with functions in DNA repair, DNA replica-

tion, or proteolysis (Figure 3D).

Stage-Specific Genome-Scale Metabolic Models for
P. berghei

With metabolism emerging as a defining feature of the SG-B2

transition, we decided to construct a genome-scale model of

P. berghei metabolism to evaluate the screen results systemati-

cally in the context of current knowledge. As with our previous

general P. falciparum model (iPfa) (Chiappino-Pepe et al.,

2017a), we based the in silico P. berghei (iPbe) model on a set

of metabolic tasks (Table S3) and on annotated metabolic

gene functions (Table S4). We build upon this computational

framework through a process we call PhenoMapping (STAR

Methods). In a unique decomposition approach, we consider

separately different layers of information, such as nutrient avail-

ability, gene expression, and gene knockout phenotypes in

order to refine the model, for instance, by adding missing enzy-

matic or transport capabilities (Figure S2A). We initially used

asexual blood-stage growth rates of Bushell et al. (2017) and

subsequently incorporated the phenotypes from the SG-B2 tran-

sition of the current screen (STAR Methods). The iPbe model

integrates 428 genes and 1,318 reactions (transport and enzy-

matic reactions; Figures S2B and S2C) that reflect available

knowledge and new postulates on the metabolism of the para-

site based on our PhenoMapping analysis. We used the iPbe

model to analyze essential metabolic capabilities in a stage-spe-

cific manner (Figure 4A), working under the assumption that

most metabolic phenotypes at the SG-B2 transition reflect

gene functions during liver-stage development, a prediction we

will validate experimentally below.

To evaluate computationally the essentiality of the 428 genes

in iPbe by PhenoMapping, we initially assumed unlimited trans-

port capabilities, but we worked with the known range of metab-

olite concentrations and gene expression levels (Caldelari et al.,

2019; Otto et al., 2010; Teng et al., 2009, 2014; Vo Duy et al.,

2012), and we considered the potential for dynamic regulation

of gene expression between isoenzymes (Figure 4A; STAR
Methods). A stage agnostic model initially predicted 155 of the

428 genes as essential in at least one condition (Table S3).

To create blood- and liver-stage-specific models, we used exist-

ing knowledge of host metabolite availability as constraints to

identify the combinations of nutrients the parasite would need

to access to maximize agreement with the phenotypes of the

respective knockout screens. We allowed iPbe to uptake 90me-

tabolites from the surroundings (i.e., the hepatocyte), and we in-

tegrated thermodynamic data (pH of intracellular compartments

and membrane potential), as well as liver stage transcriptome

data (Caldelari et al., 2019), to generate a liver-stage-specific

metabolic model, iPbe-liver. Analogously, an optimized thermo-

dynamic blood-stage model, iPbe-blood, assumes uptake of 94

metabolites from the reticulocyte and integrates blood-stage

metabolomic and transcriptomic data (Otto et al., 2014; Teng

et al., 2009, 2014; VoDuy et al., 2012) (STARMethods; Table S4).

To generate insights into the stage-specific metabolism from

the data-optimizedmodels, we first simulated in silico knockouts

of all genes individually (Table S3), predicting lethality where the

KO would lead to the absence of an essential metabolic building

block. Of the 428 genes in iPbe, 178 are predicted as essential in

silico for growth in iPbe-liver (Table S3). While 151 genes were

essential in both stage-specificmodels, a subset of 27 genes be-

comes essential specifically at the liver stage (Figure S2D).

These represent sevenmetabolic subsystems: fatty acid synthe-

sis (FASII) and elongation (FAE), tricarboxylic acid (TCA), amino

acid, heme, lipoate, and shikimate metabolism. To estimate

the overall accuracy of essentiality predictions in iPbe-liver, we

compared with the experimentally obtained phenotypes at the

SG-B2 transition, which are available for 157 out of 428 genes

in iPbe (Table S4; the remaining 271 genes being either blood-

stage essential or not covered by the PlasmoGEM resource).

iPbe-liver predicts essentiality with 85% accuracy and a

Matthew Correlation Coefficient (MCC) of 0.51, the latter

providing a more appropriate measure considering the different

number of dispensable and essential SG-B2 phenotypes (116

and 16 respectively). Similarly, iPbe-blood is 84% accurate at

an MCC of 0.7 (95 dispensable and 133 essential blood-stage

phenotypes; Bushell et al., 2017). Accuracy and MCC for each

stage-optimized model were higher than for a stage agnostic

model (Figure S2 and STAR Methods), and MCC values were

comparable to those obtained with well-studied model organ-

isms Escherichia coli (Monk et al., 2017) and Saccharomyces

cerevisiae (Heavner and Price, 2015). iPbe-liver predicted exper-

imental knockout phenotypes accurately for over 70% of meta-

bolic subsystems (degree of agreement > 0.7) including those for

fatty acid, amino sugar, and folate metabolism (Figure 4B).

All Enzymes in the FASII Pathway Are Crucial for the
P. berghei Liver Stage
Malaria parasites harbor a type II apicoplast-localized fatty acid

biosynthesis (Fab) pathway (FASII, Figure 5A; Table S4) and are

also able to scavenge fatty acids from the host (Mi-Ichi et al.,

2006). The lack of gene homologs in human cells had flagged

the FASII pathway as a potential target for antimalarial drugs,

but it was found to be non-essential for erythrocytic asexual

replication (Bushell et al., 2017; Shears et al., 2015). The marked

loss of FASII mutants at the SG-B2 transition (Figure 3D)
Cell 179, 1112–1128, November 14, 2019 1117
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Figure 4. The PhenoMapping Workflow and Degree of Agreement for Metabolic Subsystems in iPbe-Liver with the M-L Screen

(A) Illustration of the PhenoMapping workflow for the integration of organism- and context-specific information into the genome-scale iPbe metabolic models.

Context-specific information denotes life-cycle stage-specific processes, such as gene expression, as well as environmentally specific factors, such as substrate

availability. Metabolic tasks are at the interface between organism- and context-specific information. The production of molecules, such as amino acids, fatty

acids, nucleotides, etc., is required for growth independent of the context, but the ratios in which they are required might change with the growing conditions or

life stage. See STAR Methods and Table S4 for a detailed description of iPbe.

(B) Degree of agreement (DoA) between the gene essentiality predictions in iPbe-liver and the experimental phenotypes at the SG-B2 transition. Metabolic

subsystems are ranked by level of agreement. Numbers show genes with screen data per subsystem (needs to be >1 for inclusion).
confirmed previously published liver-stage phenotypes of single

knockout mutants DFabZ and DFabB/F (Vaughan et al., 2009;

Yu et al., 2008), but it also showed for the first time that the genes

coding for FabD, FabG, and FabH are equally important with

log2-fold reductions of �11.2, �9.2, and �9.6, respectively (Fig-

ure 5A; Table S5). Our screen predicts that genes of the E2 com-

plex (log2-fold reduction of �9.0) and LipA also have liver-stage

phenotypes (log2-fold reduction of�5.2; Figure 5A; Table S5). To

verify barseq data, single knockout parasite lines were gener-

ated for PDH-E2, HCS1, FabD, FabG, FabH, and LipA (Figures

S3 and 5B; Table S6). All mutants showed normal numbers of

oocysts and produced salivary gland sporozoites (Figure S4A).

Only FabG knockout mutants showed a significant difference

in the size of in vitro exo-erythrocytic parasites at 48 h post-infec-

tion (hpi; Figure 5C). Aside from the line DPDH-E2, all mutants

showed defects later in liver-stage development. DHCS1 para-

sites showed a 50% reduction in the formation of detached cells,

a measure of the completion of in vitro liver-stage development,

while DFabD, DFabG, DFabH, and DLipA mutants all showed

even more pronounced phenotypes in detached cell formation
1118 Cell 179, 1112–1128, November 14, 2019
(Figure 5D). The differences in the success of in vitro develop-

ment were reflected by differences in phenotypes seen in vivo.

While all mutants showed a clear delay in the pre-patent period

following injection of sporozoites, this delay was stronger for

DFabD, DFabG, DFabH, and DLipA mutants than for DPDH-E2

andDHCS1mutants (Figures 5E andS4B). The in vitro and in vivo

liver-stage phenotypes obtained for the FASII pathway single

knockout mutants confirm the findings of the screen and the

function of FASII in iPbe-liver, and they serve as a further valida-

tion that the screen is successful in revealing genes with liver-

stage importance.

PhenoMapping with iPbe suggests that the knockout of FASII

can lead to loss of fitness in three different physiological sce-

narios (Table S3). In the first, there are not enough fatty acids

in the host cell to satisfy the requirements for parasite growth,

and hence, the parasite must synthesize them (Figure 5A; Table

S3). In the second, the parasites require a lipoylated PDH in the

apicoplast and must synthesize lipoyl-ACP in this organelle

through FASII. In the third scenario, FASII is required to consume

excessive amounts of pyruvate produced in the apicoplast by



A

B

C D

E

(legend on next page)

Cell 179, 1112–1128, November 14, 2019 1119



pyruvate kinase in the process of ATP generation to fuel the pro-

tein synthesis machinery.

Key Roles for Fatty Acid Elongation (FAE) in Mosquito
and Liver Stages
Short- andmedium-chain fatty acids, either synthesized de novo

or taken up from the host cell, can undergo cyclical elongation

and desaturation before being integrated into phosphoglyceroli-

pids and cellular structures. Little work has been performed

on FAE in malaria parasites, which harbor a pathway in the endo-

plasmic reticulum (ER) that comprises three elongases (ELO-A,

ELO-B and ELO-C), a ketoacyl-CoA reductase (KCR), a hydrox-

yacyl-CoA dehydratase (DEH), and an enoyl-CoA reductase

(ECR), required for the final elongation step (Ramakrishnan

et al., 2012, 2013; Table S4). The gene encoding ECR has

resisted deletion at the blood stage (Bushell et al., 2017), but

genes encoding ELO-A, KCR, and DEH were covered in the

current screen, and all are among the 11 genes with strongest

reduction at the SG-B2 transition (>1,000-fold, Figure 6A;

Table S5).

We examined the specific role of FAE at the SG-B2 transition

using single knockout mutants (Figures S3 and 6B; Table S6).

DELO-A parasites were characterized by normal mosquito

development (Figure S5B), but liver stages showed a drastically

reduced size at 48 hpi in vitro and failed to mature to the point of

host cell detachment (Figures 6C and 6D). In vivo, only two of the

six mice injected with 5,000 DELO-A sporozoites became in-

fected, and those that did had a pre-patent period extended

by 7 days (Figures 6E and S5E). While these data demonstrate

the importance of FAE for liver-stage maturation, other FAE

genes have essential roles during mosquito-stage development.

DEH of P. berghei is important for mosquito-stage development

(Guttery et al., 2014), and two DKCR mutants generated here

(DKCRV1, DKCRV2) also showed a complete growth arrest in

the mosquito. Ookinetes and oocysts were produced in normal

numbers (Figures S5B and S5D), but oocysts gradually disap-

peared over the course of development and failed to give rise

to sporozoites (Figures S5B and S5C). We successfully crossed

DKCRV2 with wild-type parasites to study DKCRV2 sporozoites

emerging from a heterozygous oocyst (Figure S5B) and found

that DKCRV2 produced significantly smaller liver stages at

48 hpi in vitro (Figure 6C), which failed to fully mature (Figure 6D).

In vivo, only 4 of 9 mice injected with DKCRV2 sporozoites

became infected, with a delay in pre-patency of 6.7 days (Figures

6E and S5E), confirming the strong drop for KCR in the screen.
Figure 5. Mutations FASII, Lipoate Synthesis, and Biotin Metabolic Pa

(A) Pathway maps for FAS II, lipoate metabolism, and biotin metabolism in the P

actions. Pep, phosphoenolpyruvate; Pyr, pyruvate; Ac-CoA, acetyl-CoA; Mal-C

Octanoyl-ACP, octanoyl-[acp]; Octanoyl-E2, protein N6-(octanoyl)lysine; Lipoyl-

(B) Schematic representation of phenotypes of single knockout (KO) mutants. G

phenotype significantly different (>2-day delay in pre-patent period).

(C) Size of 250 cultured EEFs (48 hpi) per mutant; median and interquartile range

(D) Relative maturation of EEFs measured as conversion of infected host cells to d

replicates (for PDH-E2) or 3 biological replicates (all other mutants). The results w

Dunnet’s multiple comparisons (**p % 0.01; ***p % 0.001).

(E) The number of mice that developed blood-stage infections after injection of 5,0

mice infected with WT sporozoites. *, gene KO mutants with a significantly ‘‘slow

showing the course of blood stage infections after sporozoite injection.
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PhenoMapping with the iPbe model suggests that FAE genes

become essential when long-chain fatty acids (such as [9Z]-oc-

tadecenoic acid) and unsaturated fatty acids (such as linoleate)

cannot be scavenged at a sufficient rate. Long-chain fatty acids

have diverse roles in protein trafficking, synthesis of cellular

structures, and signaling. Some of these functions are also likely

important in blood stages, which we hypothesize obtain suffi-

cient long-chain fatty acids from the host red blood cell or serum

(Mi-Ichi et al., 2006).

The ER also accommodates an acyl-CoA desaturase (SCD;

Gratraud et al., 2009) to generate unsaturated fatty acids and a

pathway to incorporate them into glycerophospholipids (Fig-

ure 6A; Table S4) (Ramakrishnan et al., 2013). SCD consumes

ferrocytochrome b5, which needs to be recycled. The iPbe

model includes a putative cytochrome-b5 oxidoreductase

(CBR) as candidate for this function (Figure 6A). CBR is >400-

fold depleted at the SG-B2 transition, and an individual DCBR

mutant is characterized by smaller liver stages at 48 hpi in vitro

(Figure 6C), a 50% reduction in detached cell formation (Fig-

ure 6D), and a delay in pre-patent period by 2.7 days after sporo-

zoite injection (Figure 6E), corresponding to a liver-stage load

that is reduced by more than 90%. iPbe-liver suggests that the

functions of SCD and CBR in the ER are coupled, and hence

SCD, which was not covered in the screen, might also be essen-

tial in the liver stages of Plasmodium infection. In other eukary-

otic cells, SCD is part of a multiprotein complex, along with

cytochrome b5 and CBR (Mi-Ichi et al., 2006), a feature that

we hypothesize extends to P. berghei. Taken together, our

screen, iPbe-liver, and the analyses of DELO-A, DKCR, and

DCBR mutants show for the first time the strong dependence

of the Plasmodium liver-stage parasite on FAE.

Amino Sugar Biosynthesis Is Important for Both
Mosquito- and Liver-Stage Development
Plasmodium parasites use a canonical metabolic pathway to

activate sugars such as glucose, mannose, galactose, fructose,

fucose, and glucosamine (Figure 7A; Table S4), and these nucle-

otide sugars serve to produce glycoconjugates like glycosyl-

phosphatidylinositol (GPI)-ancho red proteins, which are the

primary form of cell-surface proteins in protozoa. In pathogens

like Trypanosoma brucei and Plasmodium spp., GPI-anchored

proteins play a role in invasion (Sanders et al., 2006), signaling

(Gazzinelli et al., 2014), and endocytosis (Overath and Engs-

tler, 2004). While the biosynthesis of nucleotide sugars in

P. berghei blood stages was shown to be dispensable, the
thways Affect Liver-Stage Development

lasmodium apicoplast. See Table S4 for gene IDs, enzyme functions, and re-

oA, malonyl-CoA; Mal-ACP, malonyl-[acp]; Acetoac-ACP, acetoacetyl-[acp];

E2, protein N6-(lipoyl)lysine.

reen, phenotype not significantly different from wild type (WT) parasites. Red,

s are shown in red. * = p < 0.05 by Kruskal-Wallis test.

etached cells at 48 hpi. Error bars show standard deviations from 8 biological

ere statistically evaluated by a one-way analysis of variance (ANOVA) test with

00mutant sporozoites and themean delay (range) in pre-patency compared to

fitness’’ blood stage phenotype (Bushell et al., 2017). See Figure S4B for plots
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Figure 6. Mutations in Fatty Acid Elongation Disrupt Mosquito- and Liver-Stage Development

(A) Pathwaymap for elongation of fatty acids (FAE) in thePlasmodium endoplasmic reticulum. See Table S4 for gene IDs, enzyme functions, and reactions. Blood-

stage screen data suggested KCR to be essential, but we here correct the phenotype to dispensable, since a genotyped DKCR parasite shows comparable

blood-stage growth to control parasites (Figure S5A).

(B) Schematic representation of developmental blocks for single KOs and DKCR sporozoites derived from a DKCR 3 WT genetic cross. Green, phenotype not

significantly different fromWT. Red, block in life-cycle progression, except for liver stage, where red indicates phenotype significantly different fromWT (>2-day

delay in pre-patent period).

(C) Size of cultured liver stages (48 hpi) of 250 EEFs. Median and interquartile ranges in red. *p < 0.05 by Kruskal-Wallis test.

(legend continued on next page)
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parasite critically relies on the production of GPI anchors

(Bushell et al., 2017). We hence wondered what could be an

alternative source of nucleotide sugars to the Plasmodium

parasites.

The screen revealed strong and surprising SG-B2 phenotypes

within the network of pathways that lead to activation of sugars

(Figure 7A; Table S5). Genes encoding enzymes involved in the

biosynthesis of UDP-N-acetyl glucosamine, PGM3, and UAP

showed log2-fold reductions of �7.8 and �8.1, respectively.

To investigate the role of enzymes involved in the biosynthesis

of UDP-N-acetyl glucosamine, we generated the single

knockout mutants DPGM3 and DUAP (Figures S3 and 7B; Table

S6). Both mutants had a strong mosquito-stage phenotype, with

DUAP parasites failing to produce oocysts (Figure S6A) and

DPGM3 parasites producing a relatively high percentage of

ookinetes with an aberrant morphology (Figure S6B) and

reduced number of oocysts compared to wild type parasites;

no sporozoites were observed (Figures 7B and S6A). DUAP par-

asites were crossed with WT parasites during blood-stage

development, and using these sporozoites, a strong liver-stage

phenotype was observed both in vitro and in vivo. Although the

size of liver stages in vitro at 48 h was similar to that of wild-

type parasites, only very few detached cells were formed (Fig-

ures 7C and 7D), and in vivo the pre-patent periodwas prolonged

by 6 days (Figures 7E and S6C). These observations confirmed

the phenotype seen for UAP in the screen, and PhenoMapping

of iPbe revealed the biosynthesis of N-acetyl-glucosamine to

be of key importance in liver-stage parasite development.

Other genes involved in sugar activation showed only mild or

no SG-B2 screen phenotypes; USP and GFPT showed no

significance at the SG-B2 transition, and PMM showed only a

mild SG-B2 phenotype (log2FC = �2.6). We produced single

knockout mutants for each of these genes (Figures S3 and 7B;

Table S6). DUSP parasites, lacking the USP enzyme involved

in production of UDP-Glc, showed no phenotype at any life-cycle

stage, including the liver stage (Figures 7B–7E, S6A, and S6C),

confirming the lack of phenotype seen in the screen. Two

DPMM mutants (DPMMV1 and DPMMV2), lacking the PPM

enzyme involved in the production of GDP-mannose, showed

strongly reduced oocyst numbers, despite normal levels of ooki-

nete formation, and these parasites failed to produce salivary

gland sporozoites (Figures S6A and S6B). When crossed with

wild-type parasites, DPMMV2 sporozoites showed only a slight

delay in pre-patent period when injected into mice (Figures 7E

and S6C) and showed only a mild defect during in vitro liver-

stage development (Figure 7D), in agreement with the mild

liver-stage phenotype observed in the screen and also with the

lack of a phenotype for the gene encoding GMPP, which cata-

lyzes a different step in the same pathway toward the production

of GDP-mannose. The activation of glucosamine and fructose is

linked through glutamine—fructose-6-phosphate aminotrans-
(D) Relative maturation of EEFs measured as conversion of infected host cells to d

replicates (for ELO-A) or 8 biological replicates (all other mutants). The results we

Dunnet’s multiple comparisons (***p % 0.001).

(E) The number of mice with blood infection after injection of 5,000 sporozoites a

sporozoites. *, gene KO parasites with a significantly ‘‘slow’’ blood-stage phenoty

stage infections after sporozoite injection.
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ferase (GFPT). DGFPT parasites showed a strong phenotype in

the formation of ookinetes (Figure S6B), with a large percentage

of ookinetes showing an aberrant morphology. DGFPT parasites

failed to produce oocysts (Figure S6A), preventing downstream

liver-stage analysis.

PhenoMapping with iPbe liver and blood predicts that the

parasite can take up nucleotide sugars from the host cells

(both the erythrocytes and hepatocytes), and a difference be-

tween the uptake rate or availability of the different nucleotide

sugars from the host would explain the differences observed

between blood- and liver-stage phenotypes (Table S3). This

analysis indicates that UDP-N-acetyl-D-glucosamine is the

most limiting nucleotide sugar for liver-stage development, while

GDP-mannose and UDP-glucose are accessible in higher

amounts from the host cell.

All genes that had been shown to have a more than 100-fold

reduction in abundance in the screen showed a clear delay in

pre-patent period when sporozoites of single knockout mutants

were injected into mice (Figures S7, 5E, 6E, and 7E). Taken

together, the liver-stage phenotypes of single gene knockout

mutants matched well the phenotypes seen for the SG-B transi-

tion of the M-L screen (Figure S7).

DISCUSSION

To fill the critical knowledge gap of Plasmodium mosquito- and

liver-stage metabolic pathways, we performed the first sys-

tems-level analysis of Plasmodium pre-erythrocytic physiology

by combining large-scale genetic screening with metabolic

modeling. Barseq sequencing enabled us to analyze the pheno-

types of >1,300 gene knockout parasites at three developmental

transitions, namely (1) between blood stages and mosquitoes,

(2) between the mosquito midgut and the salivary glands, and

(3) as the parasites transitioned from the mosquito salivary gland

to establish and undergo development within the liver. Although

in the polyploid stages cross-fertilization leading to heterozygos-

ity imposes limits on the power of pooled screens, we find that

barcoded knockout alleles can be effectively transmitted

through population bottlenecks to the haploid sporozoite stage

in the salivary gland, allowing mutants to be screened for the first

time at a significant scale for gene functions during subsequent

development.

Our ability to predict the complement of liver-stage essential

genes from the screen is limited by three factors: (1) the current

genetic system for P. berghei, which does not allow blood-stage

essential genes to be screened at other life cycle stages, (2) the

coverage of the PlasmoGEM resource, which extends to only

around 60% of the core genome, and (3) the inherent error

rate of any genetic screen. To compensate for these challenges,

we developed an iPbe-liver metabolic model that integrates data

from the current screen with available genomic, transcriptomic,
etached cells at 48 hpi. Error bars show standard deviations from 3 biological

re statistically evaluated by a one-way analysis of variance (ANOVA) test with

nd the mean delay (range) in pre-patency compared to mice infected with WT

pe (Bushell et al., 2017). See Figure S5E for plots showing the course of blood-
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andmetabolomic data to predict with good accuracy the pheno-

types associated with a majority of the metabolic subsystems,

such as fatty acid and amino sugar biosynthesis. The overall

Matthew correlation coefficient of our blood- and liver-stage

models (0.51 and 0.70, respectively) is similar to MCC scores

of 0.6 achieved for model organisms E. coli (Monk et al., 2017)

and S. cerevisiae (Heavner and Price, 2015). These consider-

ations, together with our success in validating all attempted

phenotypes with cloned mutants, demonstrate that iPbe-liver

and iPbe-blood are valid platforms for the study of liver- and

blood-stage metabolic functions and therefore drug target

prioritization.

Our discoveries that amino sugar metabolism and FAE are

important for the Plasmodium liver stage illustrate how the com-

bined use of metabolic modeling and high-throughput gene

knockout screening can generate deep new insights into a

poorly tractable organism. iPbe-liver will guide the design of

future gene knockout experiments and analysis of metabolic ca-

pabilities in the liver stages for the 141 genes predicted to be

essential at this stage but for which single knockout parasites

have not been generated or phenotyped. Moreover, iPbe-liver

predicts liver-stage-specific essentiality for 27 genes that are

fully dispensable in iPbe-blood (Table S3). These genes belong

to seven metabolic subsystems related to fatty acid, TCA, amino

acid, heme, lipoate, and shikimate metabolism, and their meta-

bolic function might be associated with the antimalarial activity

of compounds acting in the pre-erythrocytic stages (Antonova-

Koch et al., 2018). Further validation and curation of the

iPbe-liver model will lead to an even deeper understanding of

liver-stage-specific Plasmodium metabolism. Possible avenues

include (1) further screens as the PlasmoGEM resource grows

to cover more of the remaining 32% of 428 genes in the model

that currently lack vectors, (2) screens for synthetic lethal inter-

actions predicted by the model, which are now possible in

P. berghei (Fang et al., 2018), or (3) scaling up conditional

knockout approaches to study at the liver stage the large number

of blood-stage-essential genes.

Validating the screen and model with individual mutants

confirmed the crucial role of the FASII pathway for liver stages

and further revealed the essentiality of the FAE pathway for

liver-stage parasites and its coupled enzymes, e.g., CBR in the
Figure 7. Mutations in Amino Sugar Metabolism Disrupt Liver-Stage D

(A) Activation of sugars in the Plasmodium cytosol based on iPbe. See Table

D-galactose 1-phosphate; UDP-Gal, UDP-d-galactose; Glc, D-glucose; Gl

UDP-glucose; Fru, D-fructose; Fru6P, D-fructose 6-phosphate; Man, D-mannos

Man, GDP-mannose; GDP-4-keto-6-deoxy-Man, GDP-4-dehydro-6-deoxy-d-m

L-fucose 1-phosphate; GlcN, D-glucosamine; GlcN6P, D-glucosamine 6-phosp

alpha-d-glucosamine 1-phosphate; UDP-GlcNAc, UDP-N-acetyl-d-glucosamine

(B) Schematic representation of developmental phenotypes of single KOs and mu

not significantly different from WT. Yellow, significantly reduced. Red, developm

different from WT (>2-day delay in pre-patent period).

(C) Size of 250 cultured EEFs 48 hpi; median and interquartile ranges in red. ***p

(D) Relative maturation of EEFs measured as conversion of infected host cells to d

replicates. The results were statistically evaluated by a one-way analysis of varia

(E) Overall transmission success given as the number of mice that became blood

pre-patency compared to mice infected withWT. *, gene KO parasites with a signi

plots showing the course of blood stage infections after sporozoite injection.
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ER, demonstrating a clear dependence of the liver stage on its

own fatty acid metabolism. Through modeling genomic data,

we showhere for the first time that not only short-chain fatty acids

but also long-chain and unsaturated fatty acids are insufficient to

support the rapid Plasmodium growth in the liver stages.

We have also demonstrated for the first time the critical role of

amino sugar biosynthesis in the mosquito and liver stages of

P. berghei. We hypothesize that the parasite has a differential

ability to take up from the host sufficient quantities of specific

amino sugars, with the uptake of N-acetyl-glucosamine appear-

ing to be significantly limited in the liver stage. This would to our

knowledge be the first indication of an intracellular pathogen tak-

ing up amino sugars from its host cell. Despite the biosynthesis

pathway of amino sugars being identical in P. falciparum and

P. berghei, the amino sugar metabolism of blood stages appears

to differ between thesemalaria parasites. Data fromphenotyping

of blood stages of knockout mutants (Bushell et al., 2017) for

genes encoding UAP or PGM3 show that the synthesis of

UDP-N-acetyl-glucosamine is not essential for blood stage

fitness of P. berghei. However, in P. falciparum, unsuccessful at-

tempts to knock out GNPNAT (Cova et al., 2018) and the under-

representation of transposon insertions into GNPNAT, PGM3,

andUAP genes (Zhang et al., 2018) indicate that the biosynthesis

of UDP-N-acetyl-glucosamine is essential for P. falciparum

blood-stage growth. We hypothesize that the difference in

blood-stage essentiality of amino sugar metabolism between

P. falciparum and P. berghei is related to the nutrient availability

from the host cells in which these parasites replicate during the

erythrocytic stage. P. berghei parasites preferentially replicate

in reticulocytes, which show a considerably higher level of

UDP-N-acetyl-glucosamine than normocytes, the host cell of

cultured blood-stage P. falciparum (Srivastava et al., 2016). We

suggest that the P. berghei blood-stage parasite does not rely

entirely on its own synthesis of UDP-N-acetyl-glucosamine,

as it can acquire sufficient quantities from the reticulocyte.

However, it seems that acquisition from the host environment

is insufficient in the mosquito and liver stages, rendering this

pathway essential at these stages. To date, USP is the only

known Plasmodium enzyme able to produce UDP-glucose and

UDP-galactose, and it is non-essential in both P. berghei and

P. falciparum at all stages investigated (Bushell et al., 2017;
evelopment

S4 for gene IDs, enzyme functions, and reactions. Gal, D-galactose; Gal1P,

c6P, D-glucose 6-phosphate; Glc1P, D-glucose 1-phosphate; UPD-Glc,

e; Man6P, D-mannose 6-phosphate; Man1P, D-mannose 1-phosphate; GDP-

annose; GDP-Fuc, GDP-L-fucose; Fuc, 6-deoxy-L-galactose/fucose; Fuc1P,

hate; GlcNAc6P, N-acetyl-d-glucosamine 6-phosphate; GlcNAc1P, N-acetyl-

.

tants from DPMM 3WT and DUAP 3WT genetic crosses. Green, phenotype

ental block, except for liver stage, where red indicates phenotype significantly

< 0.001; *p < 0.05 by Kruskal-Wallis test.

etached cells at 48 hpi. Error bars show standard deviations from 8 biological

nce (ANOVA) test with Dunnet’s multiple comparisons (***p % 0.001).

stage positive after injection of 5,000 sporozoites and the mean delay (range) in

ficantly ‘‘slow’’ blood stage phenotype (Bushell et al., 2017). See Figure S6C for



Zhang et al., 2018). However, UDP-glucose is required to pro-

duce glycans, suggesting uptake of extracellular UDP-glucose.

Alternative explanations for the dispensability of USP in all life-

cycle stages would be the presence of an as yet uncharacterized

isoenzyme of USP or promiscuity of UAP to catalyze the USP-

associated reactions.

Targeting Plasmodium liver-stage parasites selectively is

emerging as an attractive alternative strategy in the face of

emerging resistance to the latest frontline combination therapies

against blood stages of the parasite. Potent starting points for

developing a liver-stage-specific compound have recently been

discovered in screens using P. berghei (Antonova-Koch et al.,

2018). Identifying their targets is now an important next step to

enable target-led chemical optimization of candidate compounds

toward new prophylactic drugs. The combined experimental and

computational analysis of pre-erythrocytic development and

liver-stage metabolism has led us to identify seven additional

metabolic subsystems that become essential compared with

the blood stage, which provides a rational basis for the future

design of antimalarial therapies targeting metabolic proteins.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

Amaxa P3 Primary Cell 4D-Nucleofector X Kit S Lonza V4XP-3032

4D-Nucleofector Core Unit Lonza AAF-1002B

4D-Nucleofector X Unit Lonza AAF-1002X

MiSeq Reagent Kit v2 (300-cycles) Illumina MS-102-2002

MiSeq Sequencing System Illumina N/A

QuickExtract DNA Extraction Solution Lucigen QE09050

Cell Culture Lysis Reagent Promega E1531

Luciferase Assay Reagent Promega E1500

Deposited Data

P. berghei relative growth rate phenotypes in

blood stages

Bushell et al., 2017 https://doi.org/10.1016/j.cell.2017.06.030

P. berghei RNA-seq data in blood stages Otto et al., 2014 https://doi.org/10.1186/s12915-014-0086-0

P. berghei RNA-seq data in liver stages Caldelari et al., 2019 https://doi.org/10.1186/s12936-019-2968-7

Compiled metabolomics dataset from

P. falciparum

Chiappino-Pepe et al., 2017a https://doi.org/10.1371/journal.pcbi.1005397

P. berghei ANKA protein sequences (fasta file) PlasmoDB Release 26

K-orthology groups sequences for enzymatic

functional annotation

KEGG database 2015

Genome-scale metabolic model of

P. falciparum iPfa

Chiappino-Pepe et al., 2017a https://doi.org/10.1371/journal.pcbi.1005397

P. falciparum 3D7 protein sequences (fasta file) PlasmoDB Release 11.1

The ATLAS of Biochemistry https://lcsb-databases.epfl.ch/atlas/ 2018

Metabolic reactions in the malaria parasites MPMP database 2016-2018

Reactions producing iron sulfur clusters iJO1366 N/A

Experimental Models: Cell Lines

Arrayed library of E. coli TSA cells harboring

linear plasmids containing P. berghei gene

targeting vectors.

PlasmoGEM resource https://plasmogem.sanger.ac.uk/search

HeLa cells ECACC 93021013

Experimental Models: Organisms/Strains

Rat: RCC Han Wistar outbred (female) Envigo+++ RccHan:WIST

Mouse: BALB/c inbred (female) WTSI & Envigo & Janvier BALB/cOlaHsd

Mouse: C57BL/6JRj Janvier C57BL/6JRj

Mouse: OF1 mice Charles River OF1, 612

P. berghei: ANKA cl15cy1 wild-type parasites N/A cl15cy1

PbANKA-mCherryhsp70+Luceef1a (1868cl1) Prado et al., 2015 www.pberghei.eu (RMgm-1320)

PbmCherry Burda et al., 2015 www.pberghei.eu (RMgm-928)

E. coli: BigEasy-TSA Lucigen 60224

Anopheles stephensi mosquitoes, STE2 MR4, BEI resources MRA-128

Software and Algorithms

TEX-FBA www.github.com/EPFL-LCSB/texfba 1.0

matTFA www.github.com/EPFL-LCSB/matTFA 1.0

MATLAB Mathworks R2016a and R2017a

CPLEX IBM 12.71

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

COBRA Toolbox (used updated version

within matTFA)

https://opencobra.github.io/

cobratoolbox/stable/

2.0

RAVEN Toolbox https://github.com/SysBioChalmers/

RAVEN

1.08

The R Project for Statistical Computing https://www.r-project.org/ 3.5.0

Tidyverse https://www.tidyverse.org/ 1.2.1

TargetP http://www.cbs.dtu.dk/services/TargetP/ 1.1

MitoProtII https://ihg.gsf.de/ihg/mitoprot.html 1.101

ApicoAP https://bitbucket.org/wsu_bcb/apicoap/

src/master/

2.0
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Volker

Heussler (volker.heussler@izb.unibe.ch).

PlasmoGEM vectors are available from https://plasmogem.sanger.ac.uk. Plasmodium berghei parasite lines generated in this

study will be available from the Leiden Malaria Research Group at the LUMC; https://www.lumc.nl/org/parasitologie/research/

malaria/transgenics-mutants-berghei/.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Use of rodents at Wellcome Sanger Institute
All animal researchwas conducted under licenses from the UKHomeOffice, and protocols were approved by the AnimalWelfare and

Ethical ReviewBody of theWellcome Sanger Institute. Rodents were kept in specific-pathogen-free conditions and subjected to reg-

ular pathogen monitoring by sentinel screening. They were housed in individually ventilated cages furnished with autoclaved aspen

woodchip, fun tunnel and Nestlets at 21 ± 2�C under a 12:12 h light-dark cycle at a relative humidity of 55 ± 10%. They were fed a

commercially prepared autoclaved dry rodent diet and water, both available ad libitum. The health of animals was monitored by

routine daily visual health checks. The parasitemia of infected animals was determined by methanol fixed and Giemsa-stained

thin blood smears.

Female RCC Han Wistar outbred rats (Envigo, UK) aged eight to fourteen weeks were infected with P. berghei parasites by

intraperitoneal injection. Infected rats served as donors for ex vivo schizont cultures typically on day four to five of infection, at a para-

sitemia of 1%–5%. Rats were housed as two cage companions. Rats were terminally anaesthetized by vaporized isoflurane admin-

istered by inhalation prior to terminal bleed. Rats were used because they give rise to more schizonts with higher transfection effi-

ciency compared to mice. Transfection efficiency is critical when screening pools of vectors.

Mice were bred at theWellcome Sanger Institute or purchased from Envigo. Transfected parasites were injected intravenously into

the tail of female adult BALB/c inbredmice aged 8-22 weeks (median age 10 weeks). This animal model was chosen tominimize host

genetic variability and to obtain robust infections with a low incidence of cerebral pathology. Experimental groups consisted of three

mice housed together. Three internally controlled biological replicates per parasite pool proved adequate to identify phenotypes with

confidence.

Use of rodents at University of Bern
The work in Bern (Switzerland) was performed experiments in accordance with the guidelines of the Swiss Tierschutzgesetz (TSchG;

Animal Rights Laws) and approved by the ethical committee of the University of Bern (Permit Number: BE132/16). Mice were kept in

specific-pathogen-free conditions and subjected to regular pathogen monitoring by sentinel screening. They were housed in individ-

ually ventilated cages furnished with autoclaved aspen woodchip, a mouse house and paper tissue at 21 ± 2�C under a 12:12 h light-

dark cycle at a relative humidity of 55 ± 10%. They were fed a commercially prepared autoclaved dry rodent diet and water, both

available ad libitum. The health of animals was monitored by routine daily visual health checks. The parasitemia of infected animals

was determined by FACS analysis.

Female BALB/c mice (6-8 weeks; Janvier laboratories, France) were used to maintain transfected parasites and for feeding of

mosquitoes with parasites. Mice were injected via an intraperitoneal or intravenous route. When parasitemia reached 2%–5%,

mice were euthanized in a CO2 chamber and parasites isolated following exsanguination. For feeding of mosquitoes, upon reaching

a parasitemia of 7%–15%, mice were anaesthetized with a terminal dose of ketamine:xylazine and when no longer reacting to touch

stimulus were placed on a cage of approximately 150mosquitoes. For in vivo liver experiments, female C57BL/6JRj mice (6-8 weeks;
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Janvier laboratories, France) were injected with sporozoites and were euthanized when parasitemia reached 2% to prevent any

incidence of cerebal malaria.

Use of rodents at Leiden University Medical Centre
All experiments were approved by the Animal Experiments Committee of the Leiden University Medical Center (DEC 12042 and

14207). The Dutch Experiments on Animal Act is established under European guidelines (EU directive no. 86/609/EEC regarding

the Protection of Animals used for Experimental and Other Scientific Purposes). Mice were kept in specific-pathogen-free conditions

and subjected to regular pathogenmonitoring by sentinel screening. Mice were housed in individually ventilated cages furnishedwith

autoclaved aspen woodchip, fun tunnel, a wood chew block and Nestlets at 21 ± 2�C under a 12:12 h light-dark cycle at a relative

humidity of 55 ± 10%. They were fed a commercially prepared autoclaved dry rodent diet and water, both available ad libitum. The

health of animals was monitored by routine daily visual health checks. The parasitemia of infected animals was determined by

methanol fixed and Giemsa-stained thin blood smears. Transfection and phenotypic analysis were performed with female OF1

mice (6-7 weeks; Charles River Laboratories, France).

Use of mosquitoes at the University of Bern
Mosquitoes used at the University of Bern were of the strain Anopheles stephensi. They were bred in-house in conditions of 27�C,
80% humidity. Following infection with P. berghei parasites, mosquitoes were maintained at 20.5�C at 80% humidity. All mosquitoes

were supplied with 8% fructose solution (filter sterilized, supplemented with PABA) and for dissection were anaesthetized in chloro-

form vapor before submersion in 70% alcohol.

METHOD DETAILS

M-L screening using PlasmoGEM vectors
Generation of transgenic parasite pools

P. berghei (PbmCherry, Burda et al., 2015) schizonts for transfection of vector pools were produced in female Wistar Han rats

(150-200 g, Envigo, UK) to achieve maximal transfection efficiency. To generate pools of mutants for phenotyping by barcode count-

ing, equal amounts of 50-60 PlasmoGEM vectors were combined and the mixture digested with NotI to release the targeting vectors

from the bacterial vector backbone and purified by standard ethanol precipitation before resuspension in dH20. A total of 5-6 mg of the

digested vector mix in a volume of 10 mL dH20, typically containing 100 ng of DNA for each vector, was used per transfection. For

each vector pool, DNA was prepared in triplicate in a single digest, typically 15-18 mg DNA in 30 mL dH20. Experiments with single

vectors used 2 mg ofNotI-restricted DNA per transfection. PlasmoGEM identification numbers for vectors used in this study are listed

in Table S7. Transfections, at Wellcome Sanger Institute, were done by electroporation of purified rat schizonts as described (Janse

et al., 2006), with modifications for pooled transfection methodology (Bushell et al., 2017). Briefly, parasites for schizont culture were

obtained from femaleWistar Han rats to achieve maximal transfection efficiency and were cultured for 22-24 h before schizonts were

isolated on a 55% Nycodenz/PBS cushion. Isolated schizonts were washed in complete media and electroporated using the 4D

Nucleofector System (Lonza) in 16-well strips according to the pulse program FI-115. Transfected schizonts were injected intrave-

nously into three separate BALB/c mice. Resistant parasites were selected by pyrimethamine (70 mg/L in the drinking water). Infec-

tions were monitored daily using Giemsa-stained thin blood films.

Transmission of transgenic parasite pools

When parasitemia reached �1.0%–10%, typically day 6 post-transfection, parasites were harvested by heart puncture. Infected

blood was immediately shipped at 4�C to the University of Bern in complete schizont medium (Janse et al., 2006), where it was trans-

ferred to two phenylhydrazine-treated BALB/c mice by intravenous injection upon arrival. When the parasitemia of infected mice

reached at least 7%, a blood sample was taken and mice were anaesthetized and used to feed female A. stephensi mosquitoes.

At day 15 and day 22 post-infection, midguts and salivary glands, respectively, were removed from more than 30 mosquitoes. At

day 22 post-infection, sporozoites from 30-40 infected mosquitoes were intravenously injected into two mice and blood was a blood

sample was taken 5 days post-injection.

gDNA sampling and Illumina sequencing
The parasite genomic DNA (gDNA) isolation from blood was performed using phenol-chloroform extraction as described in (Gomes

et al., 2015). A total of 30 mL of infected blood was collected from the tail on days 7 post-transfection and diluted in 200 mL of phos-

phate-buffered saline. Total DNA was extracted from each sample and resuspended in 50 mL water. gDNA isolation from oocyst and

salivary gland sporozoites was performed by using the QuickExtract DNA Extraction Solution (QE) from Epicenter. Briefly, thirty mos-

quito midguts or homogenized salivary glands, in PBS or MEM respectively, were centrifuged at 500 g for 3 min and resuspended in

100 mL (midguts) or 50 mL (salivary glands) QE buffer. Tubes were transferred to 65�C (slow shaking) and incubated for 6 min and

transferred to 98�C for 2 min. The gDNA was then stored at 4�C for further analysis. For sampling from blood of sporozoite-injected

mice, 300 mL blood was taken five days post-sporozoite injection and processed as above.

To sequence the vector-specific barcodes, 0.1-10 mL of each DNA sample served as a template for a PCR reaction using Advan-

tage 2 Taq polymerase (Clontech) with primers arg444 and arg445 (13 95�C/5 min denaturation, 353 95�C/30 s, 55�C/20 s, 68�C/8
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s, 1 3 10 min at 68�C), which bind to constant annealing sites flanking each barcode. For sample-specific indexing, 5 mL of the first

amplicon served as template for a further ten amplification cycles (13 95�C/2min, 103 95�C/30 s, 68�C/15 s, 13 5min, 68�C) using
one generic oligonucleotide (PE1.0) and one of a set of 64 sample-specific indexing oligonucleotides (Table S7). A total of 100 ng

of each sequencing library was pooled and quality controlled by quantitative PCR for the presence of sequencing adaptors.

Libraries were sequenced using MiSeq Reagent Kit v2 (300 cycles) from Illumina (MS-102-2002). Due to their low complexity,

PCR amplicon libraries had to be diluted to 4 nM before loading the flow cell of a MiSeq instrument (Illumina) at low cluster density

(43 105 clusters/mm2) with 30%–50% of PhiX spike-in. Sequencing of 150 bp paired-ends yielded 1.0–1.53 105 reads on average

for each of the 32 samples. Using a Perl script, barcode sequences were extracted from sequencer output, counted, and the relative

abundance of each barcodewithin the pool determined. The quantitationwas considered reliable for barcodes accounting for at least

0.1% of all counts.

Generation of single KO parasite lines
Transfection to generate gene-deletion mutants

Single gene knockout P. berghei parasites were generated for a total of 20 genes using deletion plasmids obtained from PlasmoGEM

(Wellcome Sanger Institute, UK, http://plasmogem.sanger.ac.uk/ (Gomes et al., 2015; Schwach et al., 2015)). The parental P. berghei

ANKA parasite line to transfect 3xHA-hdhfr-yFCU vector was used: 1868cl1 (PbANKA-mCherryhsp70+Luceef1a; line RMgm-1320;

www.pberghei.eu; (Prado et al., 2015)) which contains the mcherry gene under control of the strong hsp70 promoter and luciferase

gene under control of the constitutive eef1a promoter integrated into the neutral 230p gene locus (PBANKA_0306000). The parental

P. berghei ANKA line used for transfection of GOMO-GFP-Cherry-FACS vectors was cl15cy1 (Janse et al., 1989). Parasites of these

lines do not contain a drug-selectable marker in their genome.

For genes PDH-E2 (PBANKA_0505000), HCS1 (PBANKA_0511000), FabD (PBANKA_1410500), FabG (PBANKA_0823800), FabH

(PBANKA_0308200), LipA (PBANKA_1357500), ELO-A (PBANKA_0820900), KCR (PBANKA_0522400), CBR (PBANKA_1143400),

USP (PBANKA_1232300), PMM (PBANKA_0501700), PGM3 (PBANKA_0918200), GFPT (PBANKA_0509300), LPD1 (PBANKA_

1446900), IS-SDHA (PBANKA_1428800) and GCH1 (PBANKA_1438900), single knockout parasites were generated using a vector

with a ‘‘3xHA-hdhfr-yFCU’’ selection cassette, which contains a hdhfr::yfcu selectable marker (SM), under the control of the

P. berghei eef1a promoter region and 30 terminal sequence of pbdhfr. In the cases of KCR and PMM, these sKO lines are sometimes

referred to as version 1 (DKCRv1, DPMMv1).

For genes KCR (PBANKA_0522400), PMM (PBANKA_0501700) and UAP (PBANKA_1356600), single knockout parasite lines were

generated using a vector with a ‘‘GOMO-GFP-Cherry-FACS’’ selection cassette, which contains not only the hdhfr::yfcu selectable

marker (SM), under the control of the P. berghei eef1a promoter region and 30 terminal sequence of pbdhfr but additionally cassettes

for GFP and mCherry expression, controlled by the hsp70 and eef1a promoters respectively and terminated by the 30 terminal

sequence of pbdhfr. In the cases of KCR and PMM, these sKO lines are sometimes referred to as version 2 (DKCRv2, DPMMv2).

The GOMO cassette was adapted for use with PlasmoGEM vectors in collaboration with Olivier Silvie and adapted from (Manzoni

et al., 2014).

Before transfection, constructs were linearized by digesting with NotI. Parasites of line 1868cl1 or cl15cy1 were transfected with

the 3xHA-hdhdfr-yFCU or GOMO-GFP-Cherry-FACS constructs respectively using standard transfection technologies and trans-

formed parasites selected by positive selection with pyrimethamine (Janse et al., 2006).

Parasites harboring a 3xHA-hdhfr-yFCU cassette were cloned by limiting dilution. Parasites harboring a GOMO-GFP-Cherry-

FACS cassette were enriched by FACS sorting for red/green parasites, using a procedure based on that of (Manzoni et al., 2014);

once the parasitemia reached 0.1%–1%, a drop of blood was taken from the mouse tail and diluted with 500 mL of Serum-free/

Phenol-red free William’s E-Medium (WME) and passed through a 40 mm cell strainer (Falcon) to remove cell aggregates. Five thou-

sand GFP+mCherry+ pyrimethamine-resistant parasites were sorted by FACS (Moflo Astrios EQ, Beckman Coulter at FACS lab

University of Bern, Switzerland: 25psi, 100 mm nozzle, 488nm and 561nm Lasers, 620/29nm and 526/52nm Filters), collected in

500 mL WME with 10% fetal bovine serum. 1,000 parasites were immediately injected intravenously into a naive mouse.

Genotyping of gene-deletion mutants

For the 3xHA-hdhfr-yFCU parasite lines, correct integration of the constructs and deletion of the genes were verified by Southern

analyses of Pulsed Field Gel (PFG)-separated chromosomes and diagnostic PCR analysis (Janse et al., 2006). To show integration

of the PlasmoGEM constructs containing hdhfr::yfcu (SM), the PFG-separated chromosomes were hybridized with a mixture of two

probes: a probe of the hdhfr gene and a �800cbp fragment of the 50UTR of PBANKA_0508000 located on chromosome 5 (Salman

et al., 2015) for lines DFabH and DCBR or hybridized with a probe recognizing the 30-UTR of pbdhfr (Salman et al., 2015) for all other

lines. PCR primers used to confirm correct integration of the constructs are listed in Table S7.

Correct integration for GOMO-GFP-Cherry-FACS-based parasite lines and confirmation of the absence of targeted genes in all

single knockout lines was confirmed by diagnostic PCR (Figures S4, S5, and S6). Primers from the PBANKA_0514900 gene (P28)

were used to confirm the presence of gDNA for all single knockout lines (Figure S6) used for PCRs.

Genetic crossing of GOMO parasites

Genetic crosses were performed by infecting mice with equal parasite numbers of both WT (cl15cy1) and GOMO-GFP-mCherry-

FACS parasite lines (DKCRv2, DPMMv2, DUAP) and allowing female mosquitoes to feed directly on these mice (Ecker et al., 2008;

Rathnapala et al., 2017).
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Phenotypic analysis of single knockout parasite lines
Blood stage phenotyping

To assess relative development of blood stage parasitemia, 100,000 asexual blood stage parasites (DKCRV1 or 1868cl1) were intra-

venously injected into each of three naivemice. The parasite growth was routinely recorded from day 1 until 6 post-injection by FACS

(ACEA Novocyte machine).

Gametocyte production and ookinete formation assays

Gametocyte production of those lines showing reduced oocyst numbers was determined as described (Janse et al., 1985). The

gametocyte conversion rate is defined as the percentage of ring-forms that develop into gametocytes in standard synchronized

in vivo infections inmice. Ookinete formation assays were performed following publishedmethods using gametocyte-enriched blood

collected from mice treated with phenylhydrazine/NaCl (Beetsma et al., 1998). Briefly, infected blood containing gametocytes was

mixed in standard ookinete culturemedium in 24-well plates and cultures were incubated for 18-24 h at 21-22�C. Between 12-20min,

after activation of gametocytes, the number of exflagellating male gametocytes was determined by counting exflagellating males in a

Bürker cell chamber. The fertilization rate (ookinete conversion rate), defined as the percentage of female gametes that develop into

zygotes or ookinetes, was determined by counting female gametes and zygotes/ookinetes in Giemsa-stained blood smears at

18-24 h after in vitro induction of gamete formation. The different developmental stages (zygotes, developing ookinetes and mature

ookinetes) were counted in Giemsa-stained slides according to the classification in Janse et al., 1985.

Midgut oocyst counting

For mosquito transmission experiments, 100-150 A. stephensi mosquitoes were allowed to feed for 1 h on anaesthetized infected

mice whose asexual parasitemia had reached at least 7% determined by FACS and were carrying comparable numbers of game-

tocytes as determined on Giemsa stained blood films. Day 6-8 post feeding 10 mosquitoes were dissected in PBS1X and oocysts

on their midguts counted. Images were recorded using a 53 objective on a Leica DM 6000 Bmicroscope fitted with a Leica DFC 350

FX camera. Pictures of the 10 mosquito midguts were taken and the oocyst number per midgut was recorded by using the software

ImageJ (FIJI) for the 1868cl1 and themutant parasite lines. Red or green fluorescent oocysts were recorded for the 3xHA-hdhfr-yFCU

or GOMO-GFP-Cherry-FACS parasite lines respectively. The results were statistically evaluated using Prism (GraphPad) with a one-

way analysis of variance (ANOVA) test with Dunnet’smultiple comparisons. At day 18-22 post feeding, salivary glandswere dissected

from up to 50 blood-fed infected mosquitoes, homogenized and assessed for the presence or absence of sporozoites.

In vivo analysis of liver stage phenotype

To analyze in vivo liver stage parasite development, at Day 18-22 post feeding, 3-15 mosquitoes were dissected and their salivary

glands crushed with a homogenizer to release sporozoites, which were then quantified using a hemocytometer. Five thousand sali-

vary gland sporozoites were intravenously injected into three female C57BL/6JRj (6weeks old, from Janvier) for the 1868cl1 or the

mutant parasite line for each experiment. For the crossed parasites, sporozoites were counted using a 20x objective with green fluo-

rescence to discriminate between GFP+mCherry+ mutant and cl15cy1 sporozoites and six rather than three mice were injected.

Three of the mice injected with the crossed parasites were supplied with pyrimethamine pressure the day after injection to eliminate

cl15cy1 parasites within the blood.

For DPDH-E2, DKCR (xWT), DCBR, DUSP, DPMM (xWT) and DUAP (xWT) parasites, parasitemia was monitored daily by FACS

analysis of mouse tail blood (based on mCherry fluorescence for standard KO experiments and based on mCherry+GFP+ parasites

for crossed knockout parasites. For DHCS1, DFabD, DFabG, DFabH, DLipA and DELO-A, relative blood stage parasitemia was

determined by luciferase assay, taking advantage of the constitutive luciferase expression of the background 1868cl1 parasite strain.

For this, 2 ml tail blood was added to 20 ml 1x Cell Culture Lysis reagent (Promega). Following incubation on ice for 1min and vortexing

for 10-15 s, the sample was centrifuged at 12,000 rpm for 15 s and the supernatant was stored at �20�C. 20 ml of this lysate was

mixed with 100 ml Luciferase Assay Reagent (Promega) and relative light units were measured immediately using a Spectramax L

Microplate Reader (Molecular Devices). A sample of uninfected blood was used as a control and relative light units for this sample

were subtracted from those of experimental samples. In all cases, mice were allowed to reach a parasitemia of 2%.

In vitro analysis of liver stage phenotype

HeLa cells were seeded in a 96-well plate at high density the day before infection andwere infectedwith�20,000P. berghei parasites

for 2 h. Infections were performed in triplicate. The infected cells were then detached using accutase (Innovative Cell Technology) and

seeded a lower density. At 48 hpi, cells of one plate were fixed with 4%PFA/PBS for 10 min. Parasite size and number were deter-

mined by automated microscopy (IN Cell analyzer, GE lifesciences; Microscopy Imaging Center, University of Bern, Switzerland)

monitoring the mCherry signal in the case of KO parasites generated with 3xHA-hdhfr-yFCU-based vectors and GFP in the case

of KO parasites generated with GOMO-GFP-Cherry-FACS-based vectors. At 65 hpi the detached cells in the medium of infected

cells were quantified by fluorescencemicroscopy (Olympus CKX41). The detached cell formation rate was calculated as the percent-

age of parasites at 48 hpi that form detached cells. The results were statistically evaluated using Prism (GraphPad) with a one-way

analysis of variance (ANOVA) test with Dunnet’s multiple comparisons.

Generation of a P. berghei metabolic model
We generated the genome-scale metabolic model iPbe to integrate metabolic tasks (Table S3), genes, and the latest description of

Plasmodium genes and metabolic reactions based on the PlasmoDB (Bahl et al., 2003), KEGG database (Kanehisa and Goto, 2000),

ATLAS of Biochemistry (Hadadi et al., 2016), Malaria Parasites Methabolic Pathway (MPMP) database (Ginsburg and Tilley, 2011),
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and genome-scale model of Escherichia coli iJO1366 (Orth et al., 2011). We constructed iPbe with the RAVEN Toolbox (Agren et al.,

2013) and curated iPbe thermodynamically within thematTFA toolbox (Salvy et al., 2019) (as done before for the genome-scale meta-

bolic model of P. falciparum iPfa (Chiappino-Pepe et al., 2017a)) and following the newly generated PhenoMapping workflow. Here,

we summarize themain steps followed in the reconstruction of iPbe. All references and details related to the previously available data

and software used can be found in the key resources table.

Generation of a draft metabolic network

A draft metabolic network of an organism involves a set of enzymes (and its associated reactions andmetabolites) based on the func-

tional metabolic annotation of the organism’s genome. One could annotate the metabolic functions to the genome of an organism of

interest using various sources of information: available experimental evidence, annotated genomes of closely related organisms, or

blasting against previously characterized proteins, which are proteins with an annotated metabolic function.

We generated two draft metabolic networks of iPbe; a draft network that we annotated based on iPfa (with strictness value 2 and

the default values of the parameters defined in the getModelFromHomology function in RAVEN), and a draft network that we newly

annotated based on KEGG (with cut-off value of 10�15, minimal score ratio of 0.8, and minimal score ratio for a knocked-out gene of

0.3 as input for the function getKEGGModelForOrganism in RAVEN). We then merged the two draft metabolic networks to incorpo-

rate all annotated metabolic functions, using as reference the network obtained from iPfa. We included 63 genes that had been

annotated based on KEGG and were not part of the draft metabolic network generated from iPfa.

Compartmentalization of the metabolic network or localization of enzymes

Eukaryotic cells have intracellular compartments where its proteins are localized. The localization of proteins in an organismmight be

determined through experimental localization, localization of proteins in closely related organisms, or identification of signal peptides

in the protein sequence.

We assumed the localization of proteins inP. berghei is the same as inP. falciparum. Hence, we kept the localization from iPfa for all

orthologous proteins. We localized the enzymes of the 63 new genes based on localization scores from TargetP (Emanuelsson et al.,

2007), MitoProtII (Claros, 1995), and ApicoAP (Cilingir et al., 2012) software.

Definition of molecules required for growth or biomass building blocks

Genome-scale models define molecules that are cellular components or biomass building blocks. The production of all biomass

building blocks is required for in silico growth.

We updated the biomass definition of iPfa by substituting ten biomass building blockswith twenty-one newdownstreammolecules

based on the PhenoMapping analyses (see PhenoMapping workflow). Removed building blocks are: C00043_c (UDP-N-acetyl-D-

glucosamine), C00096_c (GDP-mannose), C00143_c (5,10-Methylenetetrahydrofolate), C00325_c (GDP-L-fucose), C16237_a (Pro-

tein N6- (lipoyl)lysine), C17569_m (Ubiquinone-8), C00550_c (Sphingomyelin), C00120_c (Biotin), C00029_c (UDP-glucose),

C00052_c (UDP-D-galactose). Added building blocks are: C00004_c (NADH), C00005_c (NADPH), C00415_c (Dihydrofolate),

C04549_c (1-Phosphatidyl-1D-myo-inositol 3-phosphate), C19085_c (tRNA with a 3 CCA end), C04419_a (Carboxybiotin-

carboxyl-carrier protein), G13044_r (Glycosylphosphatidylinositol (GPI)-anchor protein), G13052_r (Fucosylated protein),

C00143_m (5,10-Methylenetetrahydrofolate), C15672_m (HemeO), C00126_m (Ferrocytochrome c), C20120_c (S-Farnesyl protein),

C00550_r (Sphingomyelin), G00009_r (N-Glycan), C00344_r (Phosphatidylglycerol), quinone_m (Quinone), 2Fe2S_a ([2Fe-2S] iron-

sulfur cluster), 2Fe2S_m ([2Fe-2S] iron-sulfur cluster), 4Fe4S_a ([4Fe-4S] iron-sulfur cluster), 4Fe4S_m ([4Fe-4S] iron-sulfur cluster),

C00268_c (Dihydrobiopterin). We recalculated the stoichiometric requirements for the biomass building blocks following the proced-

ure described for iPfa (detailed calculations in Table S3). Overall, iPbe includes 84 biomass building blocks (Table S3).

Definition of metabolite transportability

It is highly unknown what metabolites the malaria parasites can take up, secrete and transport inside the cell. In the absence of a

specific transport mechanism, metabolites might diffuse through cell membranes. However, not all metabolites can be easily trans-

ported through cell membranes.

As done before in iPfa, we allow the transport of all cytosolic substrates that do not contain a phosphate, acyl-carrier protein, or

CoA group. We also prevent the transport of big molecules like proteins. Themedium of iPbe comprises 248 substrates that iPbe can

take up and secrete, including substrates that the parasite shares with its host cells (erythrocyte and hepatocyte) based on previous

mice genome-scale models (Sigurdsson et al., 2010) and metabolomics studies (Desai, 2013; Krebs, 1950). We followed the same

transportability principles to allow the transport of metabolites between compartments within the parasite itself (Table S4).

Metabolic tasks and gap-filling

It is normal that draft metabolic networks cannot produce all biomass building blocks from the available substrates. This happens

because we have an incomplete annotation of genomes. One should integrate into the draft network a set of hypothetical reactions

also called gap-filling reactions to properly connect the metabolites within the metabolic network and allow the production of

biomass. One can look for gap-filling reactions in available databases. The hypothetical metabolic capabilities in genome-scale

models might be later characterized experimentally.

We first integrated into iPbe reactions that allowed the production of biomass building blocks using iPfa as a reference. Next, we

gap-filled the network to achieve a set of metabolic tasks associated or not with growth (Table S3).We used the genome-scalemodel

of Escherichia coli iJO1366 to identify reactions that produce iron-sulfur clusters. We used the KEGG database and the ATLAS of

Biochemistry to integrate reactions that produce proteins, glycan, and linolate. We also defined manually the synthesis of a generic

protein from the Aminoacyls-tRNA; we assumed the generic protein is formed of 200 amino acids based, which is the average protein
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length defined in the first sequence of P. falciparum genome (Gardner et al., 2002). The generic protein served as a substrate to pro-

duce biomass precursors containing proteins and allowed connecting the Aminoacyls-tRNA to the biomass production. We used the

MPMP database and PlasmoDB to verify that all knownmetabolic capabilities andmetabolic genes in themalaria parasite are part of

iPbe. We mapped 67 genes to the gap-filling reactions based on the putative annotations suggested in PlasmoDB. These genes are

marked in iPbe with the tag ‘‘putative_’’ before the gene ID and might require reannotation or validation in the future.

PhenoMapping to curate the metabolic network

Metabolic models should allow the generation of qualitative and quantitative predictions of themetabolic function. Despite the efforts

in constructing high-quality metabolic models (Thiele and Palsson, 2010), the results from their computational analysis do not always

match with the available data. Semi-automatic and iterative curation processes are needed to reduce the knowledge gaps and

thereby increase the agreement between in silico and experimental observations. The curation process of a metabolic model can

provide valuable insights into the metabolic processes and the biochemistry of an organism that are partially characterized in the

literature and the metabolic model.

We applied the PhenoMapping workflow (Figure S8, description in PhenoMapping workflow section) to redefine metabolic tasks

(biomass building blocks) and gene-protein-reaction associations, and integrate new alternative biochemistry and uptakes or secre-

tions. We used blood- (Bushell et al., 2017) and liver- (this study) stage specific growth phenotypes to refine the reconstructed meta-

bolic network and avoid the prediction of essential genes that are observed as dispensable in any of the life stages (false negatives,

Table S3). In this way, we generated a generic and life-stage agnostic metabolic network of P. berghei that we call iPbe.

Thermodynamic curation of iPbe

The directionality of reactions in a metabolic network determines what metabolic pathways can be used for growth. The thermody-

namic curation of a genome-scale model enables the calculation of the thermodynamically feasible directionality of its metabolic re-

actions at some experimentally determined intracellular conditions.

We integrated into iPbe available experimental information of the intracellular conditions in P. berghei, namely pH, ionic strength,

membrane potential of intracellular compartments (primarily obtained from (Mohring et al., 2017), see Table S3), and intracellular con-

centration ranges of metabolites. We calculated the thermodynamic properties of metabolites and reactions in iPbe and integrated

them in the form of thermodynamic constraints following the systematic approach defined within the framework of thermodynamics-

based flux analysis (TFA) in the matTFA toolbox. We generated two thermodynamically curated versions of iPbe: one for the analysis

of the blood stages (iPbe-for-blood) and one for the analysis of the liver stages (iPbe-for-liver). These versions differ in the pH value of

the parasitophorous vacuole, the upper bound of the extracellular (outside the parasite) metabolite concentration, and the possibility

of taking up oxyhemoglobin only in the blood stages. We assumed that the pH of the parasitophorous vacuole in the liver stages was

the same as the pH of the hepatocyte’s cytosol (Table S3). In both versions, we allowed the concentration of every intracellular

metabolite to vary between 1 mM and 50 mM, which covers the intracellular concentrations of a wide range of metabolites in various

cells and conditions (Bennett et al., 2009; Ishii et al., 2007; Teng et al., 2009, 2014; Vo Duy et al., 2012). We assumed that the con-

centrations ofmetabolites outside the parasite (host cell and blood serum) aremore flexible to vary than inside the parasite cell. In this

way, the concentrations of metabolites outside the parasite cell were allowed to vary between 0.01 mM and 100 mM in the blood

stages and between 0.01 mM and 80 mM in the liver stages.

PhenoMapping workflow
We propose the PhenoMapping workflow (Figure S8) to (i) generate highly curated non-context specific and context specific meta-

bolic models, (ii) identify unconditional and conditional essentiality, and (iii) suggest mechanistic origin of phenotypes. This workflow

integrates previously suggested concepts (Barua et al., 2010; Benedict et al., 2014; Hartleb et al., 2016; Kumar and Maranas, 2009;

Satish Kumar et al., 2007; O’Brien et al., 2015; Sohn et al., 2012; Tervo and Reed, 2013), and new concepts and analysis developed in

this study (see next subsections) into a semi-automatic framework. Inputs to this workflow are: a metabolic model and (at least) one

phenotypic dataset. In this study, we used growth/non-growth phenotypes.

The workflow involves three sets of analyses (Figure S8). We perform essentiality studies using the metabolic model and compare

the essentiality predictions with available phenotypic data. The comparison points out disagreements: False Negatives (FN) when

there is growth in vivo but the model predicts no growth, and False Positives (FP) when there is no growth in vivo but the model

predicts growth.

We first suggest a reconciliation of FNs to correct or addmissing information in themodel. We sequentially evaluate the redefinition

of metabolic tasks and GPRs, and the integration of missing alternative biochemistry and uptakes or secretions into the metabolic

model. We study the metabolic tasks impacted upon knockout of the FN gene. Such studies identify the biomass precursors whose

production requires the function of the FN gene. One might identify a molecule whose production is only required in one context of

study and hence should not be defined as a biomass precursor in a generic model. For example, in a previous version of iPbe, the

requirement of lipoate production in the apicoplast organelle was responsible for the incorrect essentiality prediction of the fatty acid

synthesis (FAS) II in the blood stages (Bushell et al., 2017; Shears et al., 2015). The FAS II in the malaria parasites is known to be

essential in the liver stages but not in the blood stages (Shears et al., 2015). We eliminated the requirement of lipoate production

in the apicoplast in iPbe to model themetabolism of the parasites. A lack of genes or reactions in the metabolic model is also respon-

sible for the observation of FNs (Orth and Palsson, 2010; Thiele and Palsson, 2010). For example, we might identify in silico a gene as

essential because the metabolic model lacks information regarding another protein carrying out the same function (an isoenzyme).
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Therefore, we looked for missing genes, intracellular reactions, or transports/uptakes/secretions in the metabolic model following a

gap-filling approach. This information is missing in the metabolic model due to uncertainty in the functional annotation of the genes,

the uncertainty in the transportability of metabolites across membranes, and the limited knowledge concerning the (lack of) speci-

ficity of enzymes. We can reconcile such cases through the integration of genes with higher uncertainty in the annotation. We inte-

grated into iPbe 67 genes with putative annotation based on PlasmoDB that were not part of the initial iPbe.

Next, we suggest a reconciliation of FPs (green) to first add missing biomass precursors and then constraints that describe a

context-specific behavior. If the FPs are not blocked based on a flux variability analysis, we perform a PhenoMapping analysis to

identify the conditions in which the FPs become essential. If the FPs are blocked or inactive, we perform gap-filling to connect

the FP genes and reactions to themetabolic network and send the model to a second iteration through the PhenoMapping workflow.

For example, in iPbe, we defined the GPI-anchored proteins (downstream metabolite) instead of the nucleotide sugars (upstream

metabolite) as biomass precursors to account for the essentiality of GPI-anchor biosynthesis. In addition, we performed gap-filling

(i.e., definition of transporters for nucleotide sugars between cytosol and endoplasmic reticulum) to allow the production of the

GPI-anchored proteins in the endoplasmic reticulum.

Essentiality prediction with iPbe
We sought for the essential genes and reactions for liver and blood development in iPbe-liver and iPbe-blood, respectively. We per-

formed in silico analysis of essential genes and reactions on iPbe, iPbe-liver and iPbe-blood using the Fast-SL approach (Pratapa

et al., 2015) within FBA (Varma and Palsson, 1994; Orth et al., 2010) in the COBRA (Heirendt et al., 2007; Schellenberger et al.,

2011) and matTFA (Salvy et al., 2019; Henry et al., 2006; Henry et al., 2007) Toolbox. In the Fast-SL approach, a set of genes and

reactions that are not required for optimal growth (here defined as the objective function) based on a parsimonious FBA, pFBA (Lewis

et al., 2010) are discarded. The remaining set of genes or reactions are exhaustively knocked out and growth is tested. We defined

three classes of in silico phenotypes based on the ranges of relative growth (KO/WT) predicted: between (1 and 0.9); (0.9 and 0.1); and

(0.1 and 0) determined a dispensable, slow and essential in silico phenotype, respectively. The predictions of essential genes with

iPbe, iPbe-blood and iPbe-liver are available in Table S3.

Evaluation of gene essentiality predictions
The essentiality predictions in iPbe-liver with TFAwere compared with the liver phenotypes obtained in this study. The comparison of

in vitro and in vivo observations provided ameasure of the genome-scale model’s accuracy to describe the metabolic function at the

life stage in which the phenotypes were obtained, i.e., liver stages of thePlasmodium infection. The accuracy score was calculated as

(TP+TN)/(TP+TN+FP+FN), where TP (true positive) and TN (true negative) define predictions that correctly simulate growth and non-

growth, respectively, based on the available experimental data. While FP (false positive) and FN (false negative) describe predictions

that incorrectly simulate growth and non-growth, respectively.We also calculated theMatthewCorrelation Coefficient (MCC) as (TP x

TN – FP x FN)/((TP+FP) x (TP+FN) x (TN+FP) x (TN+FN))0.5. In iPbe-liver, an accuracy score of 85% and a MCC of 0.51 are obtained

based on the liver phenotypes of this study (STAR Methods).Mild liver phenotypes (2-100 fold reduction) and genes blocked in iPbe

(the metabolic model before integration of context-specific data) were not considered in the calculation of the accuracy score and

MCC. Moreover, we evaluated the predictions per metabolic subsystem with the liver phenotypes from this study. We calculated a

measure for agreement per metabolic subsystem as (TP+TN+0.5*MP)subsystem i / (FP+FN+TP+TN+MP)subsystem i, where MP defines

the number ofmild phenotypes that are part of the subsystem.We called this measure degree of agreement (DoA) and the results are

presented in Figure 4B. The analysis was done for all genes with a liver phenotype. Overall, there are liver phenotypes available for

157 genes out of the total 428 genes in iPbe-liver (Table S3).

PhenoMapping analysis
Classification of information/cellular processes integrated into a genome-scale model

Genome-scale models are powerful platforms for the study of metabolism. Predictions on the metabolic function of an organism ob-

tained from a genome-scale model are the product of some biological information or assumptions integrated into the model like the

association of genes and enzymes, biochemistry defined in themetabolic network, or other types of data specified in themodel in the

form of constraints. A classification of the information integrated into a genome-scale model and mapping of this information to

cellular processes will help us understand what cellular processes underlie predicted phenotypes.

We classify the information integrated into a genome-scale model in organism-specific and context-specific information (Figure 4)

and map this information to a set of cellular processes. Organism-specific information refers here to static characteristics in meta-

bolic models that do not vary with the context, condition, or life-stage. For example, we define as organism-specific information the

metabolic functions annotated to the genome of the organism, the irreversibility and localization of the metabolic enzymes, and the

transportability of metabolites across cellular membranes. Such information represents in metabolic models a static scaffold

for further integration of context-specific data in the form of constraints. Context-specific information refers to the metabolic char-

acteristics that are specific to a context/condition/life-stage of study. For example, we define as context-specific information the

availability of a set of substrates, the possibility of metabolite secretion, the metabolite concentrations and associated thermody-

namic feasibility of metabolic reactions and transports, the gene expression, and the regulation of gene expression. Genome-scale
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models integrate context-specific information to describe a cellular state. We describe below the details of the PhenoMapping

analysis. All references and details on the data and software used can be found in the key resources table.

Classification of genes as unconditionally and conditionally essential

It is known that growing conditions/contexts/life-stages determine what genes are essential for growth in an organism. It is possible

that a gene is essential in all growing conditions or it is only essential in a specific condition. Understanding what genes are essential

for growth in all growing conditions andwhat genes arise as essential in specific conditions will help in the understanding of themeta-

bolic function and design of drug targeting strategies.

We classify the essential genes and reactions into two types: unconditionally essential and conditionally essential. The classifica-

tion is based on the type of information integrated into the metabolic model that leads to the essentiality. The static or organism-

specific information of the model explains unconditional essentiality, since those genes are essential for a phenotype like growth

in all contexts of study. We define a unique set of unconditionally essential genes when no context-specific data is integrated into

the metabolic model of study. The context-specific information integrated into the metabolic model is responsible for the conditional

essentiality, since those genes are only essential in some contexts of study. We identify conditional essential genes following the

analyses described next.

Analysis of in silico minimal media (IMM)

Some organisms such as Escherichia coli and Saccharomyces cerevisiae can grow on glucose and some inorganics as the only

extracellular compounds. However, parasites such as Plasmodium berghei rely on the uptake of additional compounds. The depen-

dency of the malaria parasites on the host cell (regarding nutritional requirements) is not yet fully understood. The aim of the analysis

of in silico minimal media (IMM) is to identify the minimum number of substrates that the cell needs for growth and if applicable the

number of alternative sets of IMMs.

As applied before in iPfa (Chiappino-Pepe et al., 2017a), the IMM algorithm identifies theminimal number of substrates that the cell

needs for a cellular phenotype, such as biomass production. The IMM involves a Mixed Integer Linear Programming (MILP) formu-

lation (optimization problem, OP, 1),

min
XM

i = 1

yi

s:t:Sij , vj = 0i; vmin;j%vj%vmax;j

vj = vf ;j � vr;j; vf;j; vr;jR0

vmin;biomass = pOGR,vopt;biomass (OP 1)

vr;i + Fmax,yi%Fmax

vr;i + yiRFmin

yi˛f0;1g
whereM is the total set of transport reactions between the extrac
ellular environment and cytosol. Here, the net flux through a trans-

port reaction i is given by the exclusive use of its forward flux vf,i (secretion) or its reverse flux vr,i (uptake), which are always positive. In

the OP 1, an integer variable yi indicates whether an uptake reaction vr,i within the set of transport reactions M is inactive (yi = 1) or

active (yi = 0). An uptake reaction i is inactive (yi = 1) when the reverse flux vr is blocked (vr,i = 0). Otherwise, an uptake reaction i is

active (yi = 0) when it carries a minimal flux Fmin, which is defined here as 10�7 mmol/g-DW/h (vr,i > 10�7). We also define a capacity

constraint with the maximal flux that a reaction can carry Fmax, which is 50 mmol/g-DW/h. The resolution of the OP 1 identifies the

maximum number of uptake reactions that can be blocked and allow aminimum growth requirement. We defined the growth require-

ment by setting the lower bound of the biomass function at a 10%, pOGR, of the optimal growth yield, vopt,biomass. The uptake reactions

that are active after the optimization of the OP 1 constitute an IMM.We identify alternative IMMs by integrating integer cut constraints

after generating each solution iteratively (Lee et al., 2000) (Equation 1),

XM

k

yMk
> 0 (eq. 1)
whereM is the set of transport reactions between the extracellula
r environment and cytosol (same as OP 1). The setMk is the subset

of the transport reactions inM that have inactive integers (yM,k = 0) in a solution k of the OP 1. The cut constraint enforces that the next

solution k+1 has at least one integer of the set Mk different.

Analysis of in silico minimal secretion (IMS)

All cells secrete metabolites that are byproducts of growth andmaintenance of the cell function. In parasites like Plasmodium berghei

the secretion of such metabolites might affect the metabolism of the host cell. It is unknown what metabolites the malaria parasites
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need to secrete during infection in the blood and liver stages. The aim of the analysis of in silicominimal secretion (IMS) is to identify

the minimum number of substrates that the cell needs to secrete to sustain a phenotype like growth and if applicable the number of

alternative sets of IMSs.

An analogous OP to OP 1 allows the study of IMS. In an IMS formulation the integer variable of a reaction i controls its forward flux

vf,i instead of its backward flux vr,i.

Analysis of essential genes per IMM and IMS

The composition of the extracellular medium might have an effect on gene essentiality. The analysis of essential genes per IMM and

IMS aims to identify what genes can become essential due to substrate inaccessibility and due to impossibility of metabolite secre-

tion, respectively.

As done before for iPfa (Chiappino-Pepe et al., 2017a), we define each IMM in iPbe and we perform gene essentiality at each IMM.

We then identify genes that are essential at the IMMs and not at the in silico rich medium of 248 substrates. Analogously, we also

define the IMSs in iPbe and perform gene essentiality at each IMS. We identify the genes that are essential in the IMSs and not in

the in silico rich medium.

Identification of bottleneck substrates or secretions

The analysis of bottleneck substrates finds the substrates that one should add to an IMM to render non-essential a gene that is essen-

tial in such IMM. This method requires the prior identification of all alternative IMM compositions and the essential genes in the IMMs,

as explained above. For an IMM and upon knockout of a gene that is essential in this IMM and not in the rich medium, the analysis of

bottleneck substrates identifies alternative sets of substrates to add to the IMM and rescue the phenotype, in this case growth. This

method uses a mixed-integer linear programming (MILP) formulation (OP 1). We apply the OP 1 when the gene of study is knocked

out and when the composition of the IMM at which the gene becomes essential is excluded from the setM of uptake reactions. The

exclusion of the IMM substrates from the set M of uptake reactions assures that the IMM substrates are available to the cell, and

enables the identification of a set of substrates that one should add to the IMM to rescue growth. We identify alternative sets of sub-

strates by integrating integer cut constraints (Equation 1) after generating each solution iteratively. We follow the same approach to

identify secretions responsible for gene essentiality in the IMS formulation.

Integration of metabolomics data

Intracellular metabolite concentrations have an effect on the thermodynamic properties of the metabolic reactions and reaction

directionality. The logarithm (ln) of the metabolite concentration (mol/Lcell) ranges were integrated within the TFA framework. The

lowest and highest values correspond to the lower and upper bounds of the concentration variable in TFA, respectively. The con-

strained range of concentration limits the allowable DrG’ range of the reactions in which the metabolites participate and with it the

flux ranges of the neighboring reactions. The physiological or generic range of concentration of 1 mM and 50 mM was considered

for a metabolite if no data was available (Teng et al., 2009, 2014; Vo Duy et al., 2012). For the metabolites present in more

than one intracellular compartment, the same concentration range was defined in all of these compartments. Upon integration of

metabolomics data, we performed a standard TFA to account for the new metabolomic constraints.

Identification of bottleneck metabolites

Genes and reactions might become essential in a metabolic model when we account for thermodynamic constraints and metabo-

lomics data. In such cases, we consider that a thermodynamic bottleneck originates the essentiality of the gene. The goal of the anal-

ysis of bottleneck metabolites is to identify the metabolites whose concentrations or concentration ratios are responsible for the

essential function of a gene. The allowable concentration range of the bottleneck metabolites should increase to relax the direction-

ality of a set of reactions (i.e., reactions that are unidirectional or blocked become bidirectional or unblocked), and thereby a gene that

is essential becomes non-essential.

As presented before for iPfa (Chiappino-Pepe et al., 2017a), the analysis of bottleneck metabolites identifies the metabolites

responsible for the thermodynamic bottlenecks. Bottleneck metabolites determine the directionality of a set of reactions and allow

the identification of new essential genes. We knock out the new essential genes in iPbe one-by-one/separately. With these genes

knocked out and metabolomics data integrated (Teng et al., 2009, 2014; Vo Duy et al., 2012), iPbe growth is feasible with FBA

but not with TFA. An MILP formulation (OP 2) was defined to search for the minimal number of metabolites whose concentration

ranges cannot be integrated or should be relaxed (increased) to make the model feasible in TFA,

min
XM

i = 1

zi

s:t:Sij , vj = 0i; vmin;j%vj%vmax;j

s:t:ðTFA constraintsÞ

vmin;biomass = pOGR,vopt;biomass (OP 2)

lnCi + ðlnCEXPmin;i � lnCmin;iÞ,zi > lnCEXPmin;i
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lnCi + ðlnCEXPmax;i � lnCmax;iÞ,zi < lnCEXPmax;i

vKO = 0

zi˛f0; 1g
where an integer variable zi is associated to each metabolite conc
entration range in the setM of metabolites for which experimental

concentration data is available. The variable zi is inactive (zi = 0) when ametabolite i can keep its experimental concentration range,Ci

∈ (CEXPmin,i,CEXPmax,i). We define the experimental concentration range of ametabolite iwith an upper concentration value,CEXPmax,i,

and a lower concentration value, CEXPmin,i, based on the standard deviation from the average measurement reported in the metab-

olomics study. We work with concentration values in mol per unit of volume in liters of cell.

The variable zi is active (zi = 1) when the concentration range of a metabolite i should be relaxed (increased), Ci ∈ (Cmin,i, Cmax,i),

compared with its experimental concentration range. In this way, the new minimal concentration Cmin,i is lower than the minimal

experimental concentrationCEXPmin,i (Cmin,i <CEXPmin,i), and the newmaximal concentrationCmax,i is greater than the maximal exper-

imental concentration CEXPmax,i (CEXPmax,i < Cmax,i).

The experimental (if zi = 0) or the relaxed (if zi = 1) concentration ranges determine the bounds of the logarithm (ln) of the metabolite

concentrationCi, which is a variable in the TFA framework. The logarithm of themetabolite concentration (ln(Ci)) will serve to calculate

the Gibbs free energy of the reaction (DrG’).

Here, a gene becomes essential when we account for thermodynamic constraints and some metabolite concentrations belong to

the experimental concentration range Ci ∈ (CEXPmin,i, CEXPmax,i). We consider a gene is essential when its knockout leads to a reduc-

tion in optimal wild-type growth of 90% ormore. Hence, we defined the growth requirement of the OP 2 by setting the lower bound of

the biomass function at a 10%, pOGR, of the optimal growth yield, vopt,biomass. This analysis is done when the gene of study is

knocked out, which implies that all its associated reactions are knocked out based on the gene-protein-reaction associations

(vKO = 0).

We identify alternative sets of metabolites by integrating integer cut constraints after generating each solution iteratively (Lee et al.,

2000) (Equation 2). We redefine the integer cuts defined for the maximization problem (Equation 1) to avoid obtaining suboptimal

solutions that are supersets (in terms of integers) of an optimal solution.

XM

k

�
1� zMk

�
> 0 (eq. 2)
whereM is the set of metabolites for which experimental concent
ration data is available (same as OP 2). The setMk is the subset of

the metabolites inM that have active integers (zM,k = 1) in a solution k of the OP 2. The cut constraint enforces that the next solution

k+1 has at least one integer of the set Mk different.

Integration of gene expression data with TEX-FBA

Transcriptomics data (here RNaseq) quantify the amount of mRNA present in a cell at a certain time point of its life cycle, thereby

suggesting which genes and reactions might be active at that time point. Gene expression might change between the blood and liver

stages ofP. berghei development. TEX-FBA is the onlymethodology that allows to integrate gene expression data into genome-scale

models and account simultaneously for thermodynamics and metabolomics data to generate context-specific models.

The TEX-FBA methodology (Pandey et al., 2019) maximizes associations between levels of gene expression and levels of reaction

fluxes. The inputs to TEX-FBA are a model, a set of lowly, medium, and highly expressed genes (based on absolute gene expression

levels), and two flux thresholds pl, and ph to associate to lowly and highly expressed reactions. TEX-FBA translates gene levels to

reaction levels using the gene-protein-reaction rules in the model. We assumed that the combination of lowly and highly expressed

genes in a gene-protein-reaction rule with OR and AND associations allow a high and low flux, respectively, through the associated

reactions. TEX-FBA then performs flux variability analysis (FVA) to identify the allowable flux ranges (FR) of the reactions at the

conditions of study, and associates within the FVA ranges a maximum allowable flux through the lowly expressed reactions and a

minimum required flux through the highly expressed reactions using a MILP formulation. For high-labeled reactions we enforced

a minimal flux such that FR = [ph .(vmax-vmin), vmax], while we enforced a maximum flux value for low-labeled reactions such that

FR = [vmin, pl .(vmax-vmin)]. The maximum number of highly and lowly expressed reactions that satisfy the associated FRs define a

maximum consistency score. TEX-FBA allows the identification of all alternative gene expression profiles for the maximum consis-

tency score. See next sections for a description of the input parameters in the integration of gene expression into iPbe.

Identification of essential genes in alternative gene expression profiles

Gene essentiality might change based on gene expression. For instance, cells might have redundant metabolic pathways to produce

an essential metabolite. If both pathways are active simultaneously (their associated genes are expressed), they will be part of syn-

thetic lethal pairs. If only one of these pathways is active, it will be essential for growth. The goal of this approach is to identify genes

that become essential upon integration of gene expression data into a genome-scale model.

We integrated gene expression data following the TEX-FBA approach (Pandey et al., 2019), and we identified all alternative gene

expression profiles at maximum consistency score. We defined separately each gene expression profile in the model by keeping the
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flux constraints on the highly and lowly expressed reactions and keeping the requirement of maximum consistency score. We then

performed gene essentiality analysis following a standard exhaustive enumeration approach with TFA, i.e., knocking out the genes

one-by-one and testing if growth could be achieved. Here, any gene whose knockout led to an infeasible solution was considered

essential.

Identification of essential genes in a scenario without regulation of gene expression between isoenzymes

Transcriptional regulation links metabolism and gene expression in the cell (Chiappino-Pepe et al., 2017b; Donati et al., 2018). Upon

knockout of a gene, its isoenzyme might become upregulated to compensate for this loss and assure the flux through the metabolic

pathway. In this study, we considered the extreme scenario in which lowly-expressed genes are knocked out (there is no regulation),

and we studied in silico essentiality with transcriptomics data integrated. In this context, a lack of regulation indicates that a lowly

expressed gene cannot get upregulated to compensate for the knockout of a highly expressed gene.

We knocked out all lowly expressed genes by removing them from the GPR associations. We then identified essential genes at

alternative gene expression profiles as described above.

Identification of bottleneck reaction levels

Integration of gene expression data into a genome-scalemodel rewires the distribution of fluxes in themetabolic network. New genes

might become essential due to gene expression. One could identify reactions whose flux levels at a gene expression profile render a

gene essential.

After identification of the gene expression profiles within TEX-FBA (Pandey et al., 2019) and the essential genes at the expression

profiles, we identify alternative sets of lowly and highly expressed reactions whose expression constraints should be relaxed to

rescue growth. This method uses a mixed-integer linear programming (MILP) formulation.

From context/condition/life-stage agnostic to specific models with PhenoMapping
PhenoMapping maps predicted phenotypes (here in silico essential genes for growth) to underlying cellular processes (here media

composition, metabolite concentration levels, gene expression or regulation of gene expression). One can compare the predicted

phenotypes with available experimental phenotypic data to suggest cellular processes that might happen in the conditions/

context/life-stage studied. Such hypotheses on context-specific cellular physiology can guide the generation of context-specific

metabolic models.

We compare the predicted phenotypes in all conditions studied with available experimental phenotypic data. When a gene is

essential experimentally, and we identify it as essential with PhenoMapping, we consider keeping the underlying cellular process

(constraint in the model). For example, there is a gene predicted as essential at an IMM and thanks to PhenoMapping we know

the substrates that should be available at the IMM to make this gene non-essential. When the experimental phenotype describes

this gene as essential, we can suggest the substrates mapped might not be available to the cell. Similarly, when the experimental

phenotype defines this gene as dispensable, we hypothesize the substrates mapped might be available to the cell in the conditions

studied. We note that there are genes with different experimental phenotypes (essential versus dispensable) that are mapped to the

same cellular process. In this case, we suggest treating as dispensable all genes associated to this cellular process, which will avoid

false negatives (genes predicted as essential while they are dispensable). We suggest performing the PhenoMapping analysis with a

context/condition/life-stage agnostic metabolic model that integrates thermodynamic constraints with generic concentration

ranges. We generate a context-specific metabolic model by integrating information into this context-agnostic model in the following

order: we first define the available substrates, we second constraint the possibility of secretion, we third integrate metabolomics

data, we next integrate transcriptomics data. Any of these steps might be skipped if there is no omics data available, e.g., we did

not integrate metabolomics data into iPbe-blood or iPbe-liver.

We note that the final context-specific model that integrates simultaneously more than one cellular process might present new in

silico essential genes that we did not identify in the independent analysis of cellular processes with PhenoMapping. PhenoMapping

could also be applied to perform combinatorial studies of cellular processes that are simultaneously responsible for a phenotype.

A combinatorial analysis was not performed here.

Generation of the blood- and liver-stage specific P. berghei metabolic models
We provide here details of the PhenoMapping analysis on iPbe used to generate iPbe-blood and iPbe-liver, to be read in parallel with

Table S3 and with the end metabolic models and result of the pathways/genes shown in Table S4. All references related to the data

and software used can be found in the key resources table.

Classification of genes as unconditionally and conditionally essential in iPbe

To find in silico unconditionally essential genes in iPbe, we performed essentiality studies with TFA using a rich medium with 248

substrates, and without integrating metabolomics or transcriptomics data into iPbe. We identified 118 such unconditionally essential

genes in iPbe (Table S3, tab S3.2, column ‘‘iPbe essential genes (118)’’). The accuracy of iPbe to predict blood- and liver-stage phe-

notypes is 0.72 and 0.77, with Matthew Correlation Coefficient of 0.53 and�0.06, respectively. The conditionally essential genes are

identified in the analyses defined below.

Analysis of IMM in iPbe

The rich medium in iPbe comprises 248 substrates (see definition of media in reconstruction of iPbe). We searched for the in silico

minimal medium (IMM) (Chiappino-Pepe et al., 2017a) (method detailed above) that allows growth in iPbe when the uptake of
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oxyhemoglobin is (iPbe-for-blood) and is not (iPbe-for-liver) allowed. The minimum number of substrates required for growth was 18

and 27, respectively. We found 144 and 2344 alternative compositions of IMM in iPbe for the two medium compositions (Table S3).

Analysis of IMS in iPbe

We looked for in silicominimal secretion (IMS) sets that allow growth in iPbe under all the 248 possible secretion conditions. The IMS

results are the same in iPbe-for-blood and iPbe-for-liver. There is at least one metabolite that should be secreted when growth is

required and there are 11 alternative such metabolites (Table S3).

Analysis of essential genes per IMM and IMS in iPbe

We used iPbe and the alternative IMM compositions to identify genes that become essential upon substrate inaccessibility. For each

alternative IMM, we performed essentiality analysis, and we identified a total of 89 and 99 genes that became essential in the IMMs in

iPbe-for-blood and iPbe-for-liver. The 89 and 99 genes are part of a group of genes whose essentiality depends on the conditions of

study, also referred here as conditionally essential genes (Table S3).

Analogously, we performed essentiality with each IMS composition. There is a total of 43 genes predicted as essential at minimal

secretion conditions.

Identification of bottleneck substrates or secretions in iPbe

We looked for substrates whose absence in the IMM and IMS is responsible for the essentiality of the conditionally essential genes,

also defined as bottleneck substrates and bottleneck secretions. We found alternative sets of bottleneck substrates and secretions

linked to the medium-related conditionally essential genes (Table S3). For example, the amino sugar GDP-mannose and myo-

inositol are bottleneck substrates, whose absence from the medium leads to essentiality in the metabolic pathway of sugar activa-

tion (5.4.2.8/PBANKA_0501700 and 2.7.7.13/PBANKA_1022300) and the hydrolysis of inositol 3-phosphate (3.1.3.25/

PBANKA_0803200), respectively (Table S3).

Integration of metabolomics data into iPbe and essentiality studies (test case)

We integrated metabolomics data within the TFA framework into iPbe-for-blood and iPbe-for-liver. We used ametabolomics dataset

previously measured (Teng et al., 2009, 2014; Vo Duy et al., 2012) and compiled in the analysis of iPfa (Chiappino-Pepe et al., 2017a),

which includes metabolite levels for 60 unique metabolites (affecting 142 compartmentalized metabolites) in iPbe. We found eight

essential genes in iPbe-for-blood and two in iPbe-for-liver when this metabolomics dataset is integrated (Table S3).

Identification of bottleneck metabolites in iPbe (test case)

As defined before (Chiappino-Pepe et al., 2017a), bottleneckmetabolites are those whose concentration ranges determine the direc-

tionality of a set of reactions and with it render genes essential for growth. We searched for bottleneck metabolites within the metab-

olomics dataset using iPbe-for-blood and iPbe-for-liver. There are nine bottleneck metabolites that involve important coenzymes,

such as ATP and NAD+, and also nucleotides, and nucleotide sugars (Table S3). Interestingly, although the metabolomics data

were obtained from P. falciparum, four out of eight blood-stage conditionally essential genes linked to metabolite levels show

slow phenotypes in the blood stages of P. berghei. The only blood-stage dispensable gene in the set of eight metabolomics-related

conditionally essential genes is the glucose phosphate transferase enzyme in the amino sugar metabolism (2.7.7.64,

PBANKA_1232300). The analysis of bottleneck metabolites suggests that the concentration ratio between UDP-glucose and

UMP in the cytosol is responsible for the essential function of PBANKA_1232300.When we disregard the experimental concentration

range of UDP-glucose and allow its concentration to vary between 1 mMand 50mM, the gene PBANKA_1232300 becomes dispens-

able in iPbe. Overall, the integration of metabolomics data from P. falciparum into iPbe increases the consistency with the blood-

stage phenotypes but not with the liver-stage phenotypes. These results might suggest that the intraerythrocytic P. berghei shows

similar metabolite levels to those measured in blood stage trophozoites of P. falciparum. Despite this observation, we did not inte-

grate metabolomics data into iPbe.

Integration of gene expression data with TEX-FBA into iPbe

We integrated transcriptomics data (RNaseq for the blood and liver stages (Otto et al., 2010; Caldelari et al., 2019)) into iPbe using

TEX-FBA. We selected the time points of maximummetabolic activity in both stages: 24 h and 48 h for the blood and liver stages. We

defined the following parameters within TEX-FBA in all scenarios pl = 2x10�5, ph = 2 x10�3, low P value = 25, and high P value = 75.

There is a unique blood-stage and two liver-stage specific metabolic profiles that renders a maximum consistency score.

Identification of essential genes with alternative gene expression profiles in iPbe

We identify 64 blood- and 70 liver-stage specific essential genes, with 47 genes that are essential in both life stages based on gene

expression data. Out of the 64 genes that are in silico blood-stage essential, there are blood phenotypes for 49 genes and these

define 24 essential genes, 7 slow genes, and 18 dispensable genes. Similarly, out of the 70 genes that are in silico liver-stage essen-

tial, there are liver phenotypes for 34 genes and these define 8 essential genes, 7 slow genes, and 19 dispensable genes (Table S3).

Interestingly, the genes that show essential blood phenotypes participate in pathways of the central carbon metabolism, such as

glycolysis and pentose phosphate pathway. Intraerythrocytic malaria parasites largely rely on a high glucose uptake to survive

(Divo et al., 1985; Homewood, 1977). Glycolysis in the malaria parasites has hence been suggested as a drug target (Harris et al.,

2013; Roth, 1990). Our PhenoMapping analysis suggests that the essential function of glycolysis in P. berghei is linked to the tropho-

zoite-specific gene expression in the blood stages rather to the lack of alternative carbon sources in the malaria parasites, as sug-

gested before (Chiappino-Pepe et al., 2017a). The genes that show essential liver phenotypes are related with fatty acid metabolism

and TCA functions.
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Identification of essential genes at alternative gene expression profiles for a scenario without regulation in iPbe

We integrated blood- and liver-stage gene expression data into iPbe using TEX-FBA and performed gene essentiality analyses at the

expression profiles with maximum consistency score considering lack of regulation. We identified eight essential genes in addition to

the blood- and liver-stage specific essential genes identified with gene expression data integrated when regulation of gene expres-

sion is allowed (Table S3, tab S3.2, column ‘‘Essential genes with gene expression data integrated when no regulation between

isoenzymes is allowed (95-87)’’). The essentiality of these eight genes is linked to the low expression level of their isoenzymes.

Identification of bottleneck reaction levels in iPbe

We looked for bottleneck reactions within the set of reactions associated with highly and lowly expressed genes based on the RNA-

seq data and input parameters to TEX-FBA. We find a total of 107 and 159 bottleneck reaction levels or reaction levels in the blood

and liver stages, respectively, that are responsible for the essential in silico function of the 64 and 70 essential genes when transcrip-

tomics data are integrated into iPbe (Table S3).

From iPbe to iPbe-blood and iPbe-liver with PhenoMapping

We first defined a medium that includes all substrates present in the alternative IMMs (also called joint IMM) when the uptake of

oxyhemoglobin is allowed (for the blood analysis) or not allowed (for the liver analysis). We performed essentiality analysis in silico

at the joint IMM and the PhenoMapping analysis of bottleneck substrates. We identified the bottleneck substrates linked to dispens-

able phenotypes (based on the blood stage and liver stage data). These are substrates that should be added to the joint IMM to avoid

false predictions of essentiality. We included such substrates in the joint IMM.We followed this approach to increase the consistency

between in silico and in vivo observations and avoid increasing the disagreements. We additionally allowed the uptake of all amino

acids and inorganics that were not part of the IMMs, since they are available in any growing condition. Based on this procedure,

we suggest a medium of 90 and 94 allowed uptakes for the intraerythrocytic and intrahepatocytic trophozoite stages of

P. berghei, respectively. We defined this media composition in iPbe-blood and iPbe-liver (see Table S4, tab 4.1, reactions defined

as ‘‘drains / exchanges’’ in the ‘‘subSystem’’ column, and showing negative lower bound or lb).

We also defined themaximum uptake rate for 27 substrates that are carbon and purine sources in iPbe-blood and iPbe-liver (Table

S4, uptakes with non-default lower bound or lb). Glucose is known to be the primary carbon source in the malaria parasite (Geary

et al., 1985; Vander Jagt et al., 1990; Pfaller et al., 1982). The definition of uptake rates for the identified carbon sources is based

on experimentally measured growth yields of P. berghei and P. falciparum on single carbon sources relative to the optimal growth

yield on glucose (Geary et al., 1985). We limited the uptake of purine sources based on available kinetic data on themaximum uptake

rate of some purines (Quashie et al., 2008). We assumed that the maximum uptake rate of adenosine is 10% of the maximum uptake

rate of glucose. We defined the uptake rate of the remaining purine sources based on the relative value of the Vmax uptake measured

(Quashie et al., 2008). We also limited the uptake of the amino sugars based on an assumed uptake rate value relative to glucose to

describe the slow phenotypes observed in the PlasmoGEM data. We calibrated the uptake of glucose and limited the uptake rates of

the remaining carbon and purine sources relative to the glucose uptake rate to yield a specific growth of approximately 0.12 h-1 in

iPbe-blood and 0.35 h-1 in iPbe-liver. We calculated the growth value assuming that 16 and 30,000 merozoites of P. berghei are

formed in 24 and 30 h in the blood and liver stages, respectively.

We did not constrain the secretions in iPbe to generate iPbe-blood and iPbe-liver based on the following observation: out of the 43

genes essential in IMS conditions, 24 genes are also essential in IMM. From the 19 genes essential in the IMS that are not essential in

any IMM, there is no gene with essential phenotype in the blood or liver stages. We hence allowed the models iPbe-blood and iPbe-

liver to secrete all 248 extracellular metabolites.

We did not consider a lack of regulation of gene expression between isoenzymes in the final blood- and liver-stage specificmodels

of iPbe based on the following observation: we reported eight new essential genes in a scenario without regulation of gene expres-

sion. Of those eight genes, only one (PBANKA_1109400) is essential in the blood stages and one (PBANKA_0820900) in the liver

stages based on the available phenotypes.

We did not integrate metabolomics data since there was no dataset available for P. berghei.

To generate the final blood- and liver-stage specific iPbe models we relaxed the bottleneck reaction levels underlying dispensable

phenotypes.

Pathway representation
The metabolic pathways depicted in this manuscript are based on their description in the genome-scale metabolic model of

P. berghei iPbe (Table S4). Metabolites (medium size gray circles) are connected through metabolic reactions (solid arrows when

single-step reactions are illustrated; else dashed arrows) and enzymes (white circles with enzyme abbreviated names) based on

iPbe. We depicted the reaction directionalities obtained from a Flux Variablity Analysis (FVA) when 90% of optimal growth in the liver

stages (iPbe-liver) is required. Extracellular metabolites (medium size circles with thick black lines) define which metabolites in the

depicted pathway can be scavenged from or secreted to the surroundings/host cell in iPbe and transported into the Plasmodium

intracellular compartment where the pathway is localized. Metabolites that are biomass precursors in iPbe-liver (black circles)

describe the metabolic tasks associated with the present pathways in the liver stage development of the malaria parasites. All ref-

erences to intracellular and extracellular metabolites refer to metabolites inside or outside the parasite cell. Blood ((Bushell et al.,

2017), right box above the enzyme abbreviated name) and liver (this study, left box above the enzyme abbreviated name) phenotypes

from the screening indicate whether the associated gene/s is/are dispensable (green), growth reducing (yellow), or essential (red) for
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P. berghei growth. A white box indicates that no phenotype is available for the corresponding gene and life stage. Enzyme abbrevi-

ated names as used in the Kyoto Encyclopedia of Genes and Genomes (KEGG (Kanehisa and Goto, 2000), http://www.genome.jp/

kegg/) or PlasmoDB (Bahl et al., 2003).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis of barseq data
Comparison of data from the technical duplicate PCR reactions made from each gDNA sample allowed identification of reactions in

which technical failures had occurred, meaning that PCRs were repeated. Sampling-induced error was modeled as follows: the log

proportion of all barcodes in each sample was calculated as log2 (barcode count + 0.5), and the standard deviation between technical

duplicates was calculated for each log-proportion. A moving average was taken by abundance with a window width of 11 across

genes in the same sample. We enforced monotonicity on the relationship between abundance and standard deviation. For each

stage transition, B1-M, M-SG, and SG-B2, we calculated a log2 fold change by subtracting the log-proportion in the former stage

from the latter. We also propagated the errors associated with each of these measurements into an estimate of the error of this

fold-change. In the case of the salivary gland to blood transition we additionally normalized for reductions that might be due to

impaired blood stage growth, by correcting with a factor calculated from the Bushell et al., 2017 blood stage growth measurements

of each gene, allowing for the three days of growth thatmutants were given following sporozoite injection. Error values for blood stage

growth measurements were again propagated.

Typically we now had three measurements for each transition for each gene. We amalgamated these into a single fold-change

value by taking the inverse-variance weighted mean of the available values, and propagated errors through to this final value.

Variance analysis and phenotype assignment
We calculated proportions (relative abundance) for each gene in its respective pool for each sample, meaning the barcode count

divided by the total barcode counts for that sample. We plotted relative abundance on a log2 scale in the MG sample against that

in the B1 sample, coloring individual data points based on phenotype: no power, reduced, not reduced. We used violin plots to illus-

trate variance of relative abundances at the B1 stage and observed a higher variability and lower absolute relative abundance for the

mutants with no power phenotype. This can be expected because if the absolute relative abundance is low at the B1 stage, this may

lead to noisy measurements.

Statistical analysis of single gene KO phenotypic data
For oocyst number quantification, results were statistically evaluated using Prism (GraphPad) with a one-way analysis of variance

(ANOVA) test with Dunnet’s multiple comparisons (**p < 0.01, ***p < 0.001, ****p < 0.0001).

Relative sizes of liver stage parasites were statistically compared using Kruskal-Wallis tests; (*p < 0.05, ***p < 0.001).

Detached cell formation data were statistically evaluated using Prism (GraphPad) with a one-way analysis of variance (ANOVA) test

with Dunnet’s multiple comparisons (**p % 0.01; ***p % 0.001).

DATA AND CODE AVAILABILITY

Raw screening data as well as the downstream data processing workflow can be found in the following github repository: https://

github.com/theosanderson/M-L_Screen.

The generic genome-scale metabolic model of P. berghei iPbe and the blood- and liver-stage specific models, i.e., iPbe-blood and

iPbe-liver, in .mat file format are available at the LCSB database http://lcsb-databases.epfl.ch/GEMs.

Documented implementation of the PhenoMapping workflow in MATLAB is available on www.github.com/EPFL-LCSB/

phenomapping. The software package includes a tutorial that indicates step-by-step how to analyze context-specific information

integrated into a genome-scale model using PhenoMapping. The genome-scale model iPbe and data used in this study are also

available in the repository. The tutorials indicate how to reproduce the results of this paper. PhenoMapping requires the matTFA

toolbox (Salvy et al., 2019) for TFA and TEX-FBA toolbox (Pandey et al., 2019) for the integration of gene expression data.
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Supplemental Figures

Figure S1. Phenotype Assignment and Statistical Analysis, Related to Figure 1

(A) A scheme showing how phenotypes of not reduced, no power or reduced were assigned to each gene knockout at each stage transition. This was based on

the normalized (and blood stage fitness-corrected for SG-B2) relative change in abundance within the pool (Log2-FC) and associated standard deviation. A

Log2-FC (�2XSD) value was calculated by the subtraction of 2xSD from the diff value. A Log2-FC (+2XSD) value was calculated by the addition of 2xSD to the diff

value. Geneswith a ‘‘not reduced’’ phenotype have a Log2-FC (�2XSD) value > -1. Genes with a no power phenotype have a Log2-FC (+2XSD) > -1. Genes with a

reduced phenotype have a Log2-FC (+2XSD) value of < -1. The two ‘‘not reduced’’ bars serve to illustrate howboth a small effect size or a high variance can lead to

a conservative phenotype call of ‘‘not reduced’’ where the mean remains close to 1. While the first ‘‘reduced’’ bar shows a clear reduced phenotype, the second

‘‘reduced’’ bar and its comparison with the ‘‘no power’’ bar shows how at a given log2FC, variance can determine whether a low stage transition rate is called

‘‘reduced’’ or ‘‘no power.’’ (B) Mean relative abundance of all mutants in B1 and MG samples. A high level of correlation shows representative sampling by the

mosquito for all but the least abundant mutants. Color-coding of phenotypes showing that underrepresentedmutants lack statistical power tomake a phenotype

call. (C) Violin plots showing that phenotypes at the B1-MG transition were assigned preferentially for the well-represented mutants in the B1 sample, which were

sampled accurately by the mosquito.



Figure S2. Combined Experimental and Computational Workflow to Study Blood and Liver Phenotypes and Their Mechanistic Origin using

iPbe. Description of the iPbe Model and Essentiality Predictions, Related to Figure 4

(A) Workflow diagram showing how data form the experimental screening platform are integrated to study blood and liver phenotypes and their underlying

mechanisms and to develop a more comprehensive metabolic model following the cycle of systems biology. (B) Distribution of metabolic enzymes in iPbe. (C)

Metabolic subsystems in iPbe. (D) Relation between genes predicted as essential in iPbe, iPbe-blood and iPbe-liver. (E) Contingency matrix for gene essentiality

predictions and the liver stage M-L screen phenotypes compared with iPbe liver. (F) Contingency matrix as for (E) but compared with the general iPbe model.



(legend on next page)



Figure S3. Genotyping of Single Gene Knockout Parasite Lines, Related to Figures 5, 6, and 7
(A) Schematic representation of the endogenous gene of interest (GOI) locus, (B) the gene deletion targeting construct (PlasmoGEM) containing the 3xHA-hdhfr-

yFCU cassette and the GOI locus after disruption following double homologous recombination. Such a replacement strategy was used in cases where no sexual

stage crossing was performed to bypass lethal mosquito stage phenotypes. The positions of primers used in PCRs to confirmGOI deletion is indicated by arrows

labeled QCR1 or QCR2 and QCR2 or QCR1. (C) Schematic representation of the endogenous gene of interest (GOI) locus, the gene deletion construct (Plas-

moGEM) containing theGOMO-GFP-mCherry-FACS cassette and theGOI locus after disruption following double homologous recombination. PCRprimers used

to confirm successful integration of the construct are indicated by arrows GT andGW1 or GW2 and PCR primers used to confirm deletion of the GOI are indicated

by arrows QCR1 or QCR2 and QCR2 or QCR1 respectively. All primer sequences are shown in Table S6. The gene replacement strategy with the GOMO-GFP-

mCherry-FACS cassette was used to generatemutant parasites that were crossedwith aWTparasite line for cases in which the sKOwas blocked at themosquito

stage. (D) Pulse field gel electrophoresis (PFGE) for the following gene knockout parasite lines (chromosome location of replaced gene shown in brackets,

knockouts generated via transfection with constructs containing the 3xHA-hdhfr-yFCU cassette): DPDH-E2 (5), DHCS1 (5), DFabD (14), DFabG (8), DFabH (3),

DLipA (13), DELO-A (8), DKCRv1 (5), DCBR (11), DGFPT (5), DUSP (12), DPGM3 (9) and DPMMv1 (5). A probe was used that recognized the 30UTR of the pbdhfr

hybridized to the knockout cassette that replaced the above genes on the chromosomes listed above. A probe of z800 bp fragment of the 50UTR of the

PBANKA_0508000 gene located on the chromosome 5 was also used for the DFabH mutant parasite and a probe of z800 bp fragment of the 50UTR of the

PBANKA_0508000 gene located on the chromosome 5 was additionally used for the DCBR mutant parasite. All images have been cropped from PFGE images

showing other parasite lines. (E) Diagnostic PCR of the single gene knockout parasite linesDKCRv2,DPMMv2 and DUAP using primers to test for the presence of

the WT locus and successful integration at the kcr, pmm and uap loci, respectively (parasites generated by transfection with a construct containing the GOMO-

GFP-mCherry-FACS cassette). GT and GW2 primers were used to show integration for DKCRv2 and DPMMv2 and GT and GW1 for DUAP. Parasites were

generated with the aim of crossing with WT parasites to rescue the lethal mosquito stage phenotype. Lanes showing markers have been removed and also other

PCR products from other clones. (F) Control PCR to show successful amplification from gDNA samples taken from all single gene knockout parasite lines

generated in this study Dotted lines between lanes indicate the reordering of lane images from the same gel photo. A space between lanes indicates lane images

taken from separate gels. (G) PCRs showing the presence of genes in WT parasites and absence in mutant parasites for all single gene knockout lines generated

in this study. All primers used for genotyping PCRs are listed in Table S6. Lanes showing markers have been removed and also other PCR products from other

clones.



Figure S4. Phenotypic Analysis of Gene Knockout Mutant Parasite Lines Associated with the FASII Pathway, Related to Figure 5
(A) Graph showing oocyst numbers (relative to control; set to 100%) at day 7 post infection for DPDH-E2, DHCS1, DFabD, DFabG, DFabH and DLipA parasites.

Error bars indicate standard deviation. The results were statistically evaluated by a one-way analysis of variance (ANOVA) test with Dunnet’s multiple com-

parisons (all results non-significant at 95% confidence). Boxes shown below the graph indicate the presence (green) of sporozoites from the salivary glands for

each knockout strain between days 18 and 21 post-infection. (B) Graphs to show parasitemia for mice injected with DPDH-E2 sporozoites (based on FACS) or

relative blood stage parasitemia for mice injected with DHCS1, DFabD, DFabG, DFabH and DLipA parasites (based on relative light units by luciferase assay).

Data from all mice (control and KOs) are shown for two independent experiments and lines are drawn for the relative light unit level or parasitemia considered as

being the point at which a mouse has become positive.



Figure S5. Phenotypic Analysis of Gene Knockout Mutant Parasite Lines Associated with the FAE Pathway, Related to Figure 6

(A) Graph showing growth rate of DKCRv1 blood stage parasites in relation to control parasites, as shown as progression of parasitemia at successive

days after injection of blood stage parasites. (B) Graph showing oocyst numbers (relative to control; set to 100%) at day 7 post infection for DELO-A,

DKCRv1, DKCRv2, DKCRv2 (xWT) and DCBR parasites. Error bars indicate standard deviation. The results were statistically evaluated by a one-way

analysis of variance (ANOVA) test with Dunnet’s multiple comparisons (**p < 0.01). Boxes shown below the graph indicate the presence (green) or

absence (red) of sporozoites from the salivary glands for each knockout strain between days 18 and 21 post-infection. (C) Graph showing oocyst

numbers in the DKCRv1 parasite strain relative to the control on days 4, 6, 8, 10 and 13 post-infection. Error bars display standard deviation. (D)

Table displaying sexual and mosquito stage phenotypic data for DKCRv1 parasites; gametocyte conversion rate, exflagellation rate, female: male ratio,

zygote to ookinete conversion rate and percentage of ookinetes showing abnormal morphology. Data is shown in relation to normal ranges for such

(legend continued on next page)



phenotypic assessments. (E) Graphs showing relative blood stage parasitemia for mice injected with DELO-A parasites (relative light units by luciferase

assay) and parasitemia for mice injected with DKCRv2 (x WT) and DCBR parasites (based on FACS). Data from all mice (control and KOs) are shown for

two independent experiments and lines are drawn for the relative light unit level or parasitemia considered as being the point at which a mouse has

become positive.



Figure S6. Phenotypic Analysis of Gene KnockoutMutant Parasite Lines Associatedwith the Amino Sugar Biosynthesis Pathway, Related to

Figure 7

(A) Graph showing oocyst numbers (relative to control; set to 100%) at day 7 post infection for DUSP, DPMMv1, DPMMv2, DPMMv2 (xWT), DUAP, DUAP (xWT)

and DPGM3 parasites. Error bars indicate standard deviation. The results were statistically evaluated by a one-way analysis of variance (ANOVA) test with

Dunnet’s multiple comparisons (**p < 0.01, ***p < 0.001, ****p < 0.0001). Boxes shown below the graph indicate the presence (green) or absence (red) of spo-

rozoites from the salivary glands for each knockout strain between days 18 and 21 post-infection. (B) Table displaying sexual andmosquito stage phenotypic data

for DGFPT, DPMMv1 and DPGM3 parasites; gametocyte conversion rate, exflagellation rate, female: male ratio, zygote to ookinete conversion rate and per-

centage of ookinetes showing abnormal morphology. Data is shown in relation to normal ranges for such phenotypic assessments. (C) Graphs to show para-

sitemia formice injectedwithDUSPparasites andDPMMv2 (xWT) andDUAP (xWT) parasites (based on FACS). Data from all mice (control and KOs) are shown for

two independent experiments and lines are drawn for the relative light unit level or parasitemia considered as being the point at which a mouse has become

positive.



Figure S7. A Graph Showing Correlation between the SG-B2 Transition Phenotype Seen in the M-L Screen and In Vivo Data for Single Gene

Knockout Parasite Lines, Related to Figures 5, 6, and 7

The prepatent delay in the appearance of blood stage infection following injection of sporozoites is shown for each mouse injected with single gene knockout

parasite lines DFabD, DFabH, DFabG, DPDH-E2, DHCS1, DLipA, DELO-A, DKCR (xWT), DCBR, DUAP (xWT) and DPMM (xWT) in relation to the log2-fold re-

ductions at the SG-B2 transition in theM-L screen. The sizes of data point indicate the number ofmice (total of 6) that show each pre-patent period. TheN symbol

indicates mice that never became positive after sporozoite injection.



(legend on next page)



Figure S8. The PhenoMapping Workflow to Curate Metabolic Models and PhenoMapping Analyses to Identify Context-Specific Conditions

Underlying Phenotypes, Related to Figure 4

(A) The PhenoMapping workflow involves three sets of analyses: (i) essentiality studies using themetabolic model and comparison with phenotypic data (blue); (ii)

correction of False Negatives (FN, orange); and correction of False Positives (FP, blue). The curation of the metabolic network provides hypotheses on the

metabolic function, here essential genes and underlying processes responsible for the essentiality. The classification of genes as fully, partially, or not agreeing

with observed phenotypes might change when one modifies the metabolic network (at each iteration through the workflow). GPR denotes the gene-protein-

reaction associations in the metabolic model. (B) PhenoMapping analysis to study four context-specific cellular processes or conditions underlying phenotypes:

the uptake of substrates, thermodynamic directionality of reactions and transports for a set of context-specific metabolite concentrations, gene expression, and

regulation of gene expression. The PhenoMapping analysis is modular: linear arrows from the center of the figure to the boxes of cellular processes indicate an

independent PhenoMapping analysis of cellular processes; and curved arrows between cellular processes indicate that the PhenoMapping analysis can be

applied cumulatively following the order number suggested.
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