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Aberrant c-Met activity has been implicated in the development of hepatocellular carcinoma (HCC), suggesting that c-

Met inhibition may have therapeutic potential. However, clinical trials of nonselective kinase inhibitors with c-Met activity

(tivantinib, cabozantinib, foretinib, and golvatinib) in patients with HCC have failed so far to demonstrate significant effi-

cacy. This lack of observed efficacy is likely due to several factors, including trial design, lack of patient selection according

to tumor c-Met status, and the prevalent off-target activity of these agents, which may indicate that c-Met inhibition is

incomplete. In contrast, selective c-Met inhibitors (tepotinib, capmatinib) can be dosed at a level predicted to achieve

complete inhibition of tumor c-Met activity. Moreover, results from early trials can be used to optimize the design of clin-

ical trials of these agents. Preliminary results suggest that selective c-Met inhibitors have antitumor activity in HCC, with

acceptable safety and tolerability in patients with Child-Pugh A liver function. Ongoing trials have been designed to assess

the efficacy and safety of selective c-Met inhibition compared with standard therapy in patients with HCC that were

selected based on tumor c-Met status. Thus, c-Met inhibition continues to be an active area of research in HCC, with

well-designed trials in progress to investigate the benefit of selective c-Met inhibitors. (HEPATOLOGY 2018;67:1132-1149).

L
iver cancer was responsible for 745,000 deaths
worldwide in 2012.(1) Hepatocellular carci-
noma (HCC) is the most common type of liver

cancer, typically occurring in patients with chronic liver
disease due to hepatitis B/C infection, alcohol abuse,
hemochromatosis, or nonalcoholic steatohepatitis.(2)

The prevalence of HCC is increasing due to the

increasing incidence of hepatitis infection, obesity, and

metabolic syndrome, as well as increased survival of

patients with liver disease. Prognosis is typically poor

at diagnosis: the median overall survival (OS) is

approximately 11 months(3) for patients with advanced

HCC.
Fewer than 25% of patients diagnosed with HCC

are candidates for potentially curative surgery. Other
therapeutic options are limited, with only two systemic

therapies, both nonselective kinase inhibitors, app-

roved for advanced HCC: sorafenib, which inhibits
intracellular Raf kinases and a variety of cell surface

kinase receptors to inhibit angiogenesis and tumor

growth, is approved for first-line use(4); and rego-
rafenib, which targets kinases involved with tumor

Abbreviations: bid, twice daily; HCC, hepatocellular carcinoma; HGF, hepatocyte growth factor; MTD, maximum tolerated dose; OS, overall sur-

vival; PD-1/PD-L1, programmed death 1/PD-1 ligand; RON, receptor originated from Nantes; TKI, tyrosine kinase inhibitor; VEGF/VEGFR, vas-

cular endothelial growth factor/VEGF receptor.
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angiogenesis, oncogenesis, and maintenance of the
tumor microenvironment, is approved for second-line
use for patients who have progressed on sorafenib.(5)

However, first-line sorafenib and second-line regorafe-
nib each extend the median OS of patients with
advanced HCC by <3 months.(6-8) Imaging reveals
that approximately half the cases of advanced HCC are
hypervascular. Inhibition of the vascular endothelial
growth factor receptor (VEGFR) by sorafenib and
regorafenib might therefore contribute significantly to
the benefit each compound confers in this setting.
With efficacy observed with these targeted agents,

therapies directed against a number of targets impli-
cated in the development of HCC, including VEGF/
VEGFR, fibroblast growth factor and its receptor,
platelet-derived growth factor receptor, epidermal
growth factor receptor, RAS/RAF, extracellular sig-
nal–regulated kinase, phosphoinositide 3-kinase,
mammalian target of rapamycin, and c-Met, have been
tested or are in development.(9) The c-Met pathway
has gained attention because it is a key pathway in the
liver, and targeted therapies have shown signs of prom-
ise in the clinic.(10-13) We critically review the role of
c-Met in HCC, reported trials of purported c-Met
inhibitors, the properties required of a successful drug,
and the features required of trials designed to demon-
strate benefit in HCC based on recently reported data
from trials of c-Met inhibitors.

c-Met Signaling in
Cellular Biology
c-Met is a receptor tyrosine kinase with one known

ligand, hepatocyte growth factor (HGF). c-Met is
expressed by epithelial cells, endothelial cells, neurons,
hepatocytes, and hematopoietic cells.(14) c-Met is

involved in epithelial–mesenchymal transition and
plays a critical role in tissue modeling during embryo-
genesis; postpartum c-Met has a limited role in tissue
repair, particularly in the liver.(15)

HGF induces c-Met dimerization and activation,
leading to stimulation of multiple downstream signal-
ing pathways, including mitogen-activated protein
kinase, phosphoinositide 3-kinase, signal transducer
and activator of transcription, and nuclear factor
kappa-B.(16) These pathways execute the cellular
effects of c-Met activation, including increased prolif-
eration, survival, mobilization, invasiveness, and epi-
thelial–mesenchymal transition.(17)

c-Met Signaling in Liver
Disease and HCC
A complex interplay exists between liver disease,

HCC, and c-Met (Fig. 1). Chronic liver diseases such
as cirrhosis and those caused by hepatitis B or C infec-
tion are well-known triggers of HCC.(18) Liver disease
increases demand for hepatocyte proliferation, which
in turn promotes the up-regulation of c-Met and/or
HGF.(19) In addition, c-Met is transcriptionally
induced by hypoxia-inducible factor-1, a transcription
factor triggered by hypoxia in advanced bulky HCC
tumors, and may induce VEGF-A expression, further
enhancing tumor angiogenesis.(20) c-Met-induced
hepatocyte proliferation, survival, and regeneration are
involved in liver repair(21,22); and c-Met can also affect
the development of liver disease by suppressing chronic
inflammation and the development of fibrosis.(23)

c-Met activity is therefore beneficial in liver disease,
potentially promoting wound healing and delaying dis-
ease development.(24) However, this activity appears to
have limitations, with preclinical data suggesting
that c-Met activity decreases in the later stages of
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chronic liver disease as regenerative potential becomes
exhausted.(25)

Despite its potentially beneficial effects in chronic liver
disease, increased c-Met activity can initiate, drive, or
contribute to the development and progression of HCC.
Aberrant c-Met activity is associated with rapid tumor
growth, aggressively invasive disease, and poor patient
prognosis.(26) c-Met aberrations occur in approximately
50% of patients with HCC(27) and can arise through
gene mutation (4%), gene amplification (24%), increased
mRNA expression (50%), and receptor overexpression
(28%).(28,29) Constitutively activating mutations in the
kinase domain can occur, although these are rare in
HCC.(30) More frequently, overexpression of c-Met
causes receptor dimerization and activation(31) with
reduced dependence on HGF. Overexpression of recep-
tors capable of transactivating c-Met, including receptor
originated from Nantes (RON)(32) and insulin-like
growth factor receptor 1,(33) can also activate c-Met.
Aberrant c-Met activity can also result from the abnor-
mally high HGF levels that are associated with HCC.(34)

c-Met has thus been identified as an important fac-
tor in the modulation of liver disease and as an onco-
genic driver of HCC. c-Met activity may also confer
resistance to sorafenib therapy in HCC.(35)

c-Met Inhibitors in HCC
Inhibitors of c-Met/HGF signaling have demon-

strated antitumor potential in preclinical models of
HCC by decreasing hepatocellular tumor cell prolifera-
tion, cell motility, and invasion and promoting apopto-
sis.(36) c-Met inhibitors have also shown signs of
efficacy in the treatment of HCC, particularly against
c-Met-positive tumors.(37)

c-Met signaling can be inhibited by several types of
agent, principally HGF-neutralizing antibodies, HGF
antagonists, and c-Met tyrosine kinase inhibitors
(TKIs). Clinically relevant examples of each are identi-
fied in Table 1. All types have the potential to inhibit
HGF-dependent c-Met signaling. Some HGF
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FIG. 1. Interplay between cirrhosis, HCC, and c-Met expression in the liver. Cirrhosis triggers an increase in c-Met activity, which
serves to mitigate disease progression by promoting liver regeneration and reducing inflammation and fibrosis. However, c-Met also
provides an oncogenic drive which promotes the development of HCC. Cirrhosis further promotes HCC by increasing demand for
cellular proliferation, leading to dysplasia which favors oncogenesis. Genomic instability in HCC further promotes c-Met aberrations,
leading to increased c-Met activity. Cirrhosis reduces the regenerative capacity of the liver and may exclude patients from therapy by
resection. Cirrhosis also reduces tolerance to systemic therapies, particularly those causing substantial hepatotoxicity.
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antagonists may also partially inhibit HGF-
independent c-Met signaling by inducing c-Met inter-
nalization, thereby lowering cell surface expression.(38)

c-Met TKIs can reliably inhibit both HGF-dependent
and HGF-independent c-Met signaling because both
mechanisms depend on c-Met kinase activity.
c-Met TKIs can be broadly categorized as nonselec-

tive or selective. Selectivity is normally claimed when
c-Met is the only kinase inhibited at clinically relevant
exposures, nominally requiring agents to be at least 10-
fold more potent against c-Met than all other kinases.
Selectivity established in vitro does not rule out activity
against untested kinases or nonkinase targets or the
existence of metabolites with nonselective activity. Fur-
thermore, in vivo and in vitro selectivity profiles may
significantly differ. In contrast, nonselective c-Met
inhibitors have confirmed activity with similar potency
against at least one other kinase.
The antitumor activity of nonselective c-Met inhibi-

tors may be enhanced through inhibition of non-c-Met

targets. However, their selectivity profiles are fixed and
thus relevant for a minority of patients with tumors
with heterogeneous but specific target expression. Inhi-
bition of targets beyond c-Met is associated with
increased toxicity, which may limit the achievable dose
so that c-Met cannot be inhibited effectively. This addi-
tional toxicity and potential suboptimal target inhibition
may outweigh and/or limit the potential benefit of
enhanced antitumor activity due to inhibition of multi-
ple targets. Furthermore, the antitumor activity of non-
selective c-Met inhibitors may be predominantly due to
their activity against non-c-Met targets, making it
impossible to ascribe drug effects observed in trials spe-
cifically to the inhibition of c-Met.
In contrast, selective c-Met inhibitors are expected

to induce fewer toxicities at clinically relevant doses
sufficient to produce effective c-Met inhibition.
Reduced toxicity supports the use of selective c-Met
inhibitors over nonselective c-Met inhibitors in combi-
nation with other therapies.(39)

TABLE 1. Clinically Important Inhibitors of the HGF/c-Met Signaling Pathway

Drug Name Type Mechanism
Therapeutically

Relevant Targets Phase 2 Indications Phase 3 Indications

Rilotumumab mAb Neutralizing HGF Prostate, GBM, ovarian,
SCLC, NSCLC, CRC, RCC

Gastric, SCLC

Ficlatuzumab mAb Neutralizing HGF AML, HNSCC, NSCLC

Onartuzumab mAb Antagonist c-Met GBM, NSCLC, TNBC, gastric,
CRC

Gastric, CRC

Tivantinib Nonselective TKI Non-ATP competitive c-Met, tubulin Gastric, CRC, RCC, HNSCC,
prostate, breast, pancreas,
mesothelioma, myeloma,
sarcoma

HCC (failed),
NSCLC (stopped)

Golvatinib Nonselective TKI ATP competitive c-Met, KDR Glioblastoma, melanoma,
SCCHN, HCC

Cabozantinib Nonselective TKI ATP competitive c-Met, KDR, RET, KIT,
TIE-2, FLT-3

GBM, NSCLC, breast,
cholangiocarcinoma, CRC,
pancreas, myeloma,
thyroid, ovarian cancer

Prostate, HCC

Foretinib Nonselective TKI ATP competitive c-Met, KDR, TIE-2, RON,
FLT-4 FLT-3

Gastric, SCCHN, pRCC,
NSCLC, breast

Crizotinib Nonselective TKI ATP competitive c-Met, ALK NSCLC, lymphoma,
melanoma, gastric,
urothelial cancer

Savolitinib Selecitve TKI ATP competitive c-Met pRCC, gastric cancer

Capmatinib Selective TKI ATP competitive c-Met pRCC, NSCLC, HCC, HNSCC,
CRC, melanoma, GBM

Tepotinib Selective TKI ATP competitive c-Met HCC, NSCLC

Abbreviations: ALK, anaplastic lymphoma kinase; AML, acute myeloid leukemia; ATP, adenosine triphosphate; CRC, colorectal can-
cer; FLT, Fms Related Tyrosine Kinase; GBM, glioblastoma multiforme; HNSCC, head and neck squamous cell carcinoma; KDR,
vascular endothelial growth factor receptor-2; KIT, tyrosine protein kinase kit; mAb, monoclonal antibody; NSCLC, non-small-cell
lung cancer; pRCC, papillary renal cell carcinoma; RCC, renal cell carcinoma; RET, rearranged during transfection; RON, receptor
originated from Nantes; SCLC, small-cell lung cancer; TIE-2, Tyrosine-protein kinase receptor Tie-2; TKI, tyrosine kinase inhibitor;
TNBC, triple-negative breast cancer.
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To date, six HGF/c-Met inhibitors have been investi-
gated in clinical trials in HCC. All are TKIs, four nonse-
lective and two selective (Table 2). The nonselective
inhibitors tivantinib and cabozantinib have been assessed
in phase 3 studies as second-line therapy for HCC; the
remainder are currently being investigated in phase 1b/2
trials of first-line therapy for HCC (Table 3).

Nonselective c-Met
Inhibitors

TIVANTINIB

Tivantinib is a non–adenosine triphosphate–com-
petitive inhibitor of c-Met, with an inhibitor constant
of 355 nM. Tivantinib inhibits c-Met by stabilizing its
nonphosphorylated inactive conformation,(40) which
was expected to confer high selectivity. Preclinical
studies have demonstrated that tivantinib is cytotoxic
against many cell lines in vitro, including three derived
from HCC,(41) but that this cytotoxicity is unrelated to
c-Met expression. Tivantinib was subsequently shown
to inhibit microtubule assembly, explaining its cytotox-
icity in vitro; and to be active in cell lines resistant to
the microtubule disruptors vincristine, colchicine, and
paclitaxel because tivantinib is not a substrate for aden-
osine triphosphate–binding cassette transporters.(42)

Tivantinib also potently inhibits glycogen synthase
kinases 3 alpha and beta, potentially contributing to
cytotoxicity by promoting apoptosis.(43)

A phase 1b study of tivantinib in patients with pre-
viously treated HCC and Child-Pugh A or B liver cir-
rhosis (NCT00802555)(44) showed that the most
common treatment-related adverse events were neutro-
penia, leukocytopenia, fatigue, and anorexia, a safety
profile like that described for cytotoxic microtubule
disruptors and therefore likely due to the non-c-Met
inhibitory activity of tivantinib. No drug-related wors-
ening of liver function or performance status was
observed, although one patient experienced a drug-
related bilirubin increase. Antitumor activity was
observed.
A subsequent phase 2 study (NCT00988741)(45)

assessed the antitumor activity of tivantinib in tumors
of known c-Met status. While the trial was initiated
using tivantinib 360 mg twice daily (bid), the dose was
amended to 240 mg bid to reduce the high incidence
of treatment-emergent grade �3 neutropenia. Time to
progression was significantly longer for patients with
c-Met-high tumors versus c-Met-low tumors (1.6

versus 1.4 months, P 5 0.03), although progression-
free survival and OS were not significantly different
(progression-free survival, 1.5 versus 1.4 months, P 5

0.06; OS, 6.6. versus 6.2 months, P 5 0.63). Although
initially taken as evidence that the antitumor activity of
tivantinib is mediated by activity against c-Met, it has
subsequently been proposed that c-Met expression is a
biomarker of susceptibility to cytotoxic therapy and
that the observed activity can be accounted for by
microtubule disruption.
Separate phase 3 studies of tivantinib in patients

with HCC after systemic treatment failure have been
initiated in the West and Japan. These trials enrolled
patients with c-Met-high tumors. Because tivantinib
can be rapidly metabolized by cytochrome P450 2C19,
in Japan two doses of tivantinib are being used in trials
in other tumor types: 360 mg bid for extensive metab-
olizers and 240 mg bid for the 20% of patients who are
low metabolizers. However, patients with advanced
HCC display distinctive tivantinib pharmacokinetic
profiles,(46) leading to a reduced dose of 120 mg bid
being used in the phase 3 trial regardless of cytochrome
P450 2C19 phenotype, potentially reducing efficacy.
The METIV-HCC phase 3 trial conducted in West-
ern patients has been recently reported to have failed to
meet its primary endpoint of improving OS.(47)

CABOZANTINIB

Cabozantinib is a nonselective TKI with activity
against c-Met, VEGFR2, FLT3, KIT, AXL, and
RET, a combination anticipated to provide synergistic
antitumor activity.(48) However, it is debatable whether
an agent with such broad-spectrum activity is optimal.
Cabozantinib can inhibit the growth of c-Met-positive
and c-Met-negative xenografts by decreasing angio-
genesis but is more effective in c-Met-positive xeno-
grafts, suggesting that c-Met inhibition contributes to
antitumor activity.(49)

Cabozantinib has been assessed in a phase 2 study
in patients with solid tumors, including a cohort of 41
patients with advanced HCC who had received a
median of one prior therapy, with 51% having
received sorafenib.(50) The most common grade 3/4
adverse events were diarrhea (17%), palmar–plantar
erythrodysesthesia (15%), and thrombocytopenia
(10%), making its safety profile more similar to those
of VEGFR TKIs than those of selective c-Met inhibi-
tors. Cabozantinib showed signs of efficacy in patients
with advanced HCC, with an overall disease control
rate of 68%. However, the relative contribution of
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cabozantinib activity against c-Met versus its other
targets is unknown. Based on these data, the ongoing
CELESTIAL phase 3 trial (NCT01908426) is com-
paring cabozantinib with placebo in patients with
HCC and Child-Pugh A liver function who have pro-
gressed following one or two prior systemic thera-
pies.(51) Patients do not appear to be selected for this
trial based on tumor c-Met status.

FORETINIB

Foretinib is a potent inhibitor of c-Met, RON, Vas-
cular endothelial growth factor receptor-2 (KDR),
receptor tyrosine kinase (AXL), Flt-1, Flt-3, Flt-4,
KIT, platelet-derived growth factor receptor, and Tie-
2(52); the latter targets are involved in angiogenesis. In
preclinical patient-derived HCC xenograft models,(53)

foretinib demonstrated significant antitumor activity
and inhibition of angiogenesis. The restoration of sen-
sitivity to lapatinib in non-HCC preclinical models
with HER1/2 and MET amplification provided evi-
dence that c-Met activity contributes to the antitumor
activity of foretinib.(54)

In a phase 1/2 study in advanced HCC
(MET111645), foretinib caused dose-limiting toxic-
ities of renal failure and proteinuria, leading to a dose
reduction for the part 2 expansion cohort.(55) At the
maximum tolerated dose (MTD), the most common
adverse events were hypertension (36%), decreased
appetite (23%), and pyrexia (21%), which are not class
effects of selective c-Met inhibitors. Antitumor activity
was promising and considered sufficient to warrant
further investigation in a randomized setting. A phase
1/2 study of first-line single-agent foretinib in patients
with advanced HCC subsequently suggested efficacy,
with an overall response rate of 22.9% and median
time to progression of 4.2 months.(56)

GOLVATINIB

Golvatinib is a dual c-Met and VEGFR-2 TKI that
inhibits tumor growth and angiogenesis in xenograft
models.(57) Regression of MET-amplified tumor lines
required high doses of golvatinib (50-200 mg/kg).(57)

No preclinical studies of golvatinib in HCC models
appear to have been reported, but in a phase 1 study of
golvatinib plus sorafenib in advanced HCC, the MTD
was established at 200 mg/day; the combination was
associated with adverse events including nausea and
vomiting, diarrhea, hyperbilirubinemia, abdominal
pain, elevated liver enzyme levels, and palmar–plantar

erythrodysesthesia.(58) Confirmed partial responses in
2 of 12 evaluable patients and durable stable disease in
4 of 13 evaluable patients supported evaluation in
phase 2 trials. A phase 1/2 trial comparing golvatinib
plus sorafenib with sorafenib alone in patients with
previously untreated HCC and Child-Pugh A or B
disease is ongoing (NCT01271504). Patients eligible
for this trial do not appear to be selected based on
c-Met status.

LESSONS FROM CLINICAL
ASSESSMENT OF NONSELECTIVE
C-MET INHIBITORS IN PATIENTS
WITH HCC

The completed studies of nonselective c-Met inhibi-
tors raise issues that need to be considered. First, how
does activity against targets other than c-Met contrib-
ute to efficacy? Second, what is the impact of this
broader activity on treatment-related toxicity? Third,
how should patients be selected for therapy? Fourth,
what are the implications for combination therapy?
Contrary to initial expectations, most or all of the

pharmacological activity of tivantinib is likely unrelated
to c-Met inhibition; studies of tivantinib therefore have
little to contribute to discussion of the role of c-Met
inhibition in HCC. Cabozantinib and foretinib have
similar selectivity profiles since both target c-Met and
receptors associated with angiogenesis. Combined inhi-
bition of angiogenesis and c-Met signaling may be a
more effective antitumor strategy than inhibiting
c-Met alone as it targets a broader range of the hall-
marks of cancer.(59) Furthermore, inhibition of multiple
targets may confer synergistic antitumor activity: c-Met
inhibition is postulated to prevent the escape of cancer
cells from tumor hypoxia resulting from antiangiogenic
activity, reducing the risk of metastases associated with
antiangiogenic therapy.(60) Conversely, tumor hypoxia
can induce c-Met expression,(61) potentially reducing
the effectiveness of c-Met inhibitors. The contribution
made by c-Met activity to the anticancer properties of
these drugs has not been addressed in trials and is
unknown. Furthermore, c-Met-inhibitory effects may
be modified by antiangiogenic effects to an unknown
degree. Studies conducted with these drugs to date con-
sequently give little insight into the antitumor activity
that may be associated with selective c-Met inhibitors.
Unfortunately, too little data to assess the efficacy of
golvatinib are available. However, the dual targeting of
c-Met and VEGFR-2 is a rational approach given the
known efficacy of sorafenib in HCC, and it will be
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interesting to see whether this approach can improve on
the activity of sorafenib alone.
The toxicity profiles of cabozantinib and foretinib

appear similar to those of more selective antiangiogenic
agents (hypertension, proteinuria, and palmar–plantar
erythrodysesthesia), although cabozantinib is also asso-
ciated with hematological toxicity. This calls into ques-
tion whether c-Met inhibition is relevant to their
mechanism of action. Tivantinib has toxicity more typ-
ical of cytotoxic microtubule disruptors, as expected
based on its mechanism of action. In contrast, the
adverse events associated with golvatinib seem to be a
mix of those associated with VEGFR and c-Met inhi-
bition. As such, the antitumor activity of golvatinib
may be due to inhibition of each of these receptors; but
whether this is relevant in all patients with HCC is
unlikely, and the probability of efficacy would have to
be balanced against likely toxicity.
In trials of tivantinib, the c-Met status of tumors was

assessed, and the drug showed greater activity in patients
with c-Met-high tumors. Based on these results, subse-
quent phase 3 trials enrolled patients with c-Met-high
HCC. However, given that the contribution of c-Met
inhibition to the antitumor activity of tivantinib is proba-
bly minimal, high c-Met expression may be an incidental
biomarker of tumor sensitivity to treatment. No patient
selection based on c-Met status or analysis of outcomes
based on c-Met status was done in trials of the other
nonselective agents. Therefore, it is impossible to evaluate
whether the activity of these agents is affected by tumor
c-Met, which would help to assess whether c-Met inhibi-
tion contributes to their mechanism of action. Conse-
quently, these trials are unlikely to provide any
information on which patients are most likely to respond
to therapy.
Finally, these trials provide no information regarding

whether combination therapy is likely to be effective or
tolerable. Some information may be provided by the
ongoing phase 1/2 trial of golvatinib, but as one of the tar-
gets of this agent (VEGFR-2) is the same as that of sora-
fenib, with which it is combined, conclusions will depend
on the inhibitory activity of sorafenib. If VEGFR-2 is
maximally inhibited by sorafenib, additional inhibition by
golvatinib is unlikely to cause additional efficacy or toxic-
ity; alternatively, additional VEGFR-2 inhibition by gol-
vatinib could cause further adverse events if physiological
processes are more extensively disrupted.
In summary, from the clinical studies of nonselective

c-Met TKIs reported to date, it is not possible to draw
any conclusions regarding the antitumor activity or
toxicity associated with selective c-Met inhibition.

Furthermore, the design of the currently ongoing trials
of these agents will not provide significant further
insight into whether c-Met inhibition is critical for the
activity of these agents or the likely contribution of
c-Met inhibition to their activity.

Selective c-Met Inhibitors
Several approaches to selectively inhibit c-Met have

been developed. Small interfering RNA knockdown
has been used to specifically down-regulate c-Met,
resulting in cell cycle arrest and reduced proliferation,
motility, and invasiveness in vitro(62) and inhibition of
tumor xenograft growth in vivo,(63) indicating the
therapeutic potential of selective c-Met inhibition.
Small interfering RNA has limited clinical utility due
to poor delivery to target cells, but other methods of
selective c-Met inhibition have been evaluated.
Several antibodies directed against the extracellular

domains of c-Met have been developed. Antibody thera-
pies typically minimize off-target toxicities and are suit-
able for intermittent dosing, but activity may be
compromised if tumor cells are inaccessible to antibodies
or if antidrug antibodies develop. Most anti-c-Met
antibodies developed as potential therapeutics antago-
nize HGF binding and therefore inhibit HGF-
dependent, but not HGF-independent, c-Met activity.
This limits their therapeutic potential for the treatment
of patients with advanced HCC. Exceptionally,
LY2875358 induces significant internalization of c-Met,
reducing cell surface c-Met levels to inhibit both HGF-
dependent and HGF-independent c-Met activity.(38)

LY2875358 has shown promising activity against
advanced solid tumors(64); but the focus for development
of LY2875358 appears to be non-small-cell lung cancer,
and no studies in patients with HCC appear to be
ongoing.
Selective c-Met TKIs represent the current most

likely clinical candidates. Studies of agents such as
PHA665752, AMG 337, RP1400, and tepotinib both
in vitro and in vivo provide consistent evidence that
selective targeting of c-Met can inhibit the prolifera-
tion of HCC cells and cause xenograft tumors to
shrink, with effects greatest when c-Met expression is
high.(36,65-68) Effects on cell motility and migration
have also been observed. These observations warrant
the clinical assessment of selective c-Met TKIs. We
focus on two selective c-Met TKIs, tepotinib and
capmatinib, which are in development for HCC
(Table 2).
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TEPOTINIB

Tepotinib(69) has an in vitro 50% inhibition concen-
tration of 3 nM for c-Met, >1,000-fold selectivity for
c-Met over 236 of 241 other kinases tested, and
>200-fold selectivity over the remaining five kinases
tested. A phase 1 first-in-humans trial established a
recommended phase 2 dose of tepotinib 500 mg/day,
which is predicted to achieve minimum plasma con-
centrations of tepotinib �700 ng/mL in >95% of
patients, sufficient to ensure effective inhibition of
c-Met phosphorylation and efficacy against tumor
growth.(70) The half-life of tepotinib was estimated to
be approximately 46 hours.(70) No MTD was estab-
lished, and there were signs of antitumor activity. The
rational dose selection for tepotinib, which was
designed to ensure complete c-Met inhibition, should
enable the effect of c-Met inhibition to be assessed
with confidence in tepotinib trials in patients with
HCC.
Tepotinib is being assessed in two phase 1b/2 trials

in advanced HCC.(71,72) The first (NCT02115373) is
investigating tepotinib as second-line monotherapy for
patients with c-Met-positive HCC failing sorafenib
treatment. In the phase 1b part, 14 of 17 patients expe-
rienced grade �2 treatment-related adverse events and
5 experienced grade �3 treatment-related adverse
events, included peripheral edema (n 5 2), acute kid-
ney injury (n 5 2), and lipase increase (n 5 1).(73) A
partial response was seen in 2 patients; 3 patients had
stable disease. The maximum duration of response was
>57 weeks. Recruitment to the phase 2 part has
recently been completed.
The second study (NCT01988493) is comparing

tepotinib with sorafenib first-line in Asian patients
with HCC.(72) In the phase 1b part, the most common
treatment-related adverse events of grade �2 were
diarrhea (n 5 10), elevated aspartate aminotransferase
(n 5 7), and elevated alanine aminotransferase
(n 5 6). Fifteen of 27 patients experienced grade �3
treatment-related adverse events, the most common
being grade 3 increased lipase levels (n 5 3) and grade
3 diarrhea (n 5 2).(74) Of 7 patients with c-Met-
positive HCC, 2 had a partial response and 2 had sta-
ble disease; which compares favorably to outcomes in
the group of 18 patients with c-Met-negative disease,
in whom the best observed response was stable disease.
The phase 2 parts of both of these trials require that

patients have HCC with high levels of c-Met (c-Met
21 or c-Met 31 by immunohistochemistry), and,
being randomized, the trial in progress in Asia will

demonstrate whether tepotinib is more effective than
sorafenib in this selected patient population.

CAPMATINIB

Capmatinib has an in vitro 50% inhibition concen-
tration of 0.13 nM for c-Met and >10,000-fold selec-
tivity over 57 other kinases tested.(75) In a phase 1 trial
of capmatinib in patients with c-Met-dependent solid
tumors (NCT01072266), 15 of 33 (45%) with HCC,
capmatinib 600 mg bid was identified as a dose suit-
able for further study. The relatively high dose and
twice-daily dosing regimen reflect the short plasma
half-life of capmatinib (3.1 hours).(76) Near-complete
inhibition of c-Met phosphorylation was reported in
paired biopsies from 1 patient with colorectal cancer.
The most frequent drug-related adverse events were
decreased appetite (33%), nausea (30%), vomiting
(27%), and fatigue (27%). The most frequent drug-
related grade 3/4 adverse events were fatigue and
decreased appetite, and dose-limiting toxicities were
fatigue and increased bilirubin. Stable disease in 8 of
33 patients was the best-reported response in this
heavily pretreated patient population. Patients with
HCC and confirmed c-Met pathway dysregulation are
being recruited to a phase 2 expansion trial
(NCT01737827). A further phase 1b/2 trial examining
capmatinib in combination with PDR001, an anti–
programmed death 1 (PD-1) antibody, is also recruit-
ing patients with advanced HCC (NCT02795429);
but there is no requirement for tumor c-Met positivity.
The safety profiles of tepotinib and capmatinib are

similar and can reasonably be attributed to c-Met
inhibition. Importantly, profound inhibition of c-Met
has been confirmed at the active doses used, and
established without reaching the MTD in the case of
tepotinib. These observations suggest that the full
antitumor activity of selective c-Met inhibitors can be
exploited in the clinic, with a safety profile favorable
for use in combination. Both agents have shown prom-
ising signs of efficacy in HCC.

Implications for Trial
Design
Trials conducted to date in patients with HCC have

not been designed to allow the antitumor effects of
c-Met inhibition to be fully assessed. In studies of
nonselective agents, the contribution of c-Met inhibi-
tion to antitumor activity cannot be determined, while

HEPATOLOGY, Vol. 67, No. 3, 2018 BOUATTOUR ET AL.

1143



studies of selective c-Met inhibitors in HCC suggest
that activity is greatest in tumors with c-Met aberra-
tions, but patient selection according to c-Met status
has not been well defined, and reported data are too
preliminary for strong conclusions to be drawn.
Conclusive proof that inhibition of aberrant c-Met

activity has antitumor activity will require well-
designed trials. At minimum, in the first-line setting
these would include randomization of patients to a
selective c-Met inhibitor versus the current standard of
care (sorafenib); dosing of the selective c-Met inhibitor
at a level known to inhibit c-Met activity sufficiently to
prevent associated signaling, which requires consider-
ation of pharmacodynamic and pharmacokinetic data
rather than dose selection based on MTD; appropriate
selection of endpoints, although the gold standard in
cancer trials remains OS; inclusion of patients with
underlying liver disease representative of the general
population of patients with HCC; and selection of
patients based on known aberrant tumor c-Met activ-
ity. In later-line settings, patients would be random-
ized to a selective c-Met inhibitor versus regorafenib or
placebo. In addition, the effective dose may need to be
reevaluated because it could differ from that estab-
lished for first-line treatment due to possible differ-
ences in drug pharmacokinetics and tolerability
associated with progressive liver disease.
As the inclusion of patients with c-Met-low or

c-Met-negative HCC in trials potentially confounds
the assessment of efficacy associated with c-Met inhi-
bition, the choice of method for determining aberrant
tumor c-Met activity in future trials will be important.
Potential assays include HGF immunoassay (ligand
overexpression), c-Met immunohistochemistry (recep-
tor overexpression), MET in situ hybridization (target
amplification), and MET gene sequencing (mutation).
No single assay can identify all types of aberrant
c-Met, and some assays may identify c-Met alterations
that do not lead to clinically relevant increased c-Met
activity. Furthermore, the relationship between HGF
levels, c-Met overexpression, MET amplification, and
sensitivity to c-Met inhibitors has not been fully estab-
lished. MET amplification in tumors appears to be an
effective biomarker of responsiveness to c-Met inhibi-
tors in a range of solid tumors,(77) possibly because
such aberrations are selected during tumor evolution to
drive tumor progression through c-Met overexpres-
sion. MET mutations that cause skipping of exon 14
consistently lead to accumulation of functional c-Met
on the surface of tumor cells and sensitivity to c-Met
inhibitors.(78) However, such mutations in HCC have

limited clinical importance because their incidence in
HCC is <0.1%.(78) Other activating MET mutations
are also rare, detectable only in childhood HCCs(79);
and most HCCs that express high levels of c-Met
receptor have neither amplified nor mutated MET.(28)

A proportion of such HCCs appear sensitive to c-Met
inhibitors,(80) and the challenge will be to differentiate
those likely to respond from those unlikely to res-
pond, most likely based on criteria other than c-Met
status.
The ideal diagnostic for the selection of patients

with tumors responsive to c-Met inhibitors must have
good predictivity, which depends upon diagnostic sen-
sitivity and specificity. A diagnostic based on assays to
detect genomic aberrations of c-Met (fluorescence in
situ hybridization for copy number gain, next-
generation sequencing for mutation) could provide
good specificity (most tumors with genomic aberra-
tions are sensitive to c-Met inhibitors) but limited sen-
sitivity because tumors sensitive to c-Met inhibitors
but without genomic aberration would not be identi-
fied. These assays could therefore be the basis of a
good diagnostic, but additional assays are required to
identify patients whose tumors have normal MET but
express aberrant, tumorigenic c-Met. It is reasonable
to assume that such tumors can be detected with good
sensitivity using c-Met immunohistochemistry, but
additional assays would be required to increase specif-
icity by excluding patients whose tumors express high
levels of c-Met that are incidental to tumorigenesis.
The combination of c-Met immunohistochemistry
with additional biomarkers such as gene expression
signatures determined by high-content technologies
such as RNA sequencing has the potential to improve
the predictivity of a single-marker assay by establishing
tumor addiction to c-Met at the molecular pathway
level. The development of such complex diagnostics
will require extensive investigation, followed by valida-
tion in carefully designed trials with prospectively
selected patients. Diagnostics will become increasingly
important as c-Met inhibitors progress to phase 3
trials, and the development of companion diagnostics
will be critical.
Although c-Met inhibitors have shown evidence of

activity in HCC as monotherapy, combining them
with other therapeutic agents may also have potential.
Increasingly, personalized health care is enabling key
drivers of individual HCCs to be identified and tar-
geted,(81) and the role of nonselective inhibitors in
HCC shows that multikinase inhibition can be effec-
tive. Use of combinations of selective c-Met inhibitors
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with agents selective for other targets has the promise
to enable rational combinations of kinases to be inhib-
ited with less toxicity than that associated with the
inhibition of therapeutically irrelevant targets using
nonselective inhibitors. To date, c-Met inhibitors in
combination with sorafenib(82) and erlotinib(83) have
been evaluated in trials including patients with
HCC. Early signs of efficacy are promising, but larger
trials will be required before firm conclusions can be
drawn.
There is growing interest in immune checkpoint

inhibitors for the treatment of patients with HCC.
Limited data are currently available regarding PD-1
ligand (PD-L1) and c-Met (co)expression, but a direct
anti-inflammatory effect of HGF/c-MET on several
types of immune cells has been described, suggesting
that c-Met inhibitors combined with anti-PD-(L)1
agents may synergize to promote an antitumor
immune response.(84) Phase 1/2 and 3 trials of nivolu-
mab (anti-PD-1 antibody) alone and in combination
with the anti–cytotoxic T lymphocyte antigen 4 anti-
body ipilimumab, pembrolizumab (anti-PD-1 anti-
body), and durvalumab (anti-PD-L1 antibody) alone
and in combination with the anti–cytotoxic T lympho-
cyte antigen 4 antibody tremelimumab are ongoing(85)

and collectively have demonstrated promising efficacy,
safety, and tolerability. Because c-Met and checkpoint
inhibitors affect different targets in HCC, synergistic
efficacy from combination therapies is an exciting pos-
sibility that remains to be tested clinically.(86)

The ability to combine c-Met inhibitors with other
targeted therapies will become increasingly important
as personalized therapy for HCC becomes more
common.

Liver Disease and c-Met-
Targeted Therapy
c-Met inhibition may exacerbate underlying liver

disease in HCC,(87) although evidence from clinical
trials of c-Met inhibitors is limited, perhaps partly due
to the exclusion of patients with poor liver function
from trials to date. However, the prognosis of patients
with HCC is influenced not only by the status of the
tumor but also by the underlying liver function; 90% of
patients with HCC have underlying cirrhosis, and 75%
have active hepatitis.(88)

Cirrhosis and resection both drive liver regenera-
tion,(89) which may be compromised by c-Met inhibi-
tors. Cirrhosis additionally leads to hypoxia in the

liver,(90) promoting the expression of c-Met(91), which
may increase the concentration of c-Met inhibitor
required to render c-Met inactive. Therapies with an
antiangiogenic component, including some nonselec-
tive c-Met inhibitors, may compound liver hypoxia.
Liver disease can also affect drug pharmacokinetics

and pharmacodynamics.(92,93) Fibrosis and cirrhosis
reduce phase 1 and phase 2 enzyme activity in the liver,
impairing hepatic clearance of drugs and altering
drug–drug interactions and metabolic profiles.(94)

These effects can alter the dose of drug required to
achieve a desired blood concentration and may lead to
the emergence of novel toxicities.(90) Liver disease
therefore typically reduces the therapeutic window in
patients and may necessitate a reduction in dose to
suboptimal levels to avoid dose-limiting toxicity.(92,93)

The larger therapeutic margin of selective c-Met TKIs
compared to nonselective c-Met TKIs may be a critical
advantage for their use in patients with cirrhosis.
To allow adequate dosing and meaningful assess-

ment of efficacy, most clinical trials of drugs in HCC
are conducted in patients with Child-Pugh A disease.
Most patients with advanced HCC, however, have
Child-Pugh B or C disease and may not tolerate the
effective doses of c-Met inhibitors established in trials.
Further, c-Met inhibitors may cause disproportionate
acceleration of advanced liver disease, precluding their
use in these patients.(87) Increased c-Met inhibitor tox-
icity may be further confounded when the inhibitors
are used as part of combination regimens. Highly
selective c-Met inhibitors offer the best hope of effec-
tive treatment with acceptable toxicity in these
patients.
In summary, greater liver toxicity associated with

c-Met inhibition may be anticipated in patients with
more severe liver disease. The degree to which underly-
ing disease might restrict the use of c-Met inhibitors
for the treatment of patients with HCC has yet to be
established and may depend on additional factors
including the subtype and grade of HCC,(95,96) ethnic-
ity, and hepatitis B and C virus infection.(97)

Conclusions
c-Met is a therapeutically relevant target in HCC,

with important roles in tumor proliferation, motility,
and invasion. Both nonselective and selective inhibitors
of c-Met have been developed. Early trials of these
inhibitors indicate that c-Met inhibition has activity in
HCC and that the safety profiles of nonselective and
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selective agents differ, with implications for clinical
utility. Furthermore, these trials provide information
that can be used to optimize the design of further trials
of these agents to ensure that the activity of c-Met
inhibition is fully characterized.
It will be important to consider the potential inter-

action between underlying liver disease and c-Met
inhibitor therapy due to the apparent role of c-Met in
the repair of liver damage; however, data to date do
not indicate any clinically relevant adverse effects of
selective c-Met inhibitor therapy on liver function.
Selective c-Met inhibitors such as tepotinib have the
greatest potential for demonstrating benefit, based on
considerations including dose selection, patient selec-
tion, and adverse event profile. Ongoing trials and
translational research will improve patient selection,
enable assessment of antitumor effects, and demon-
strate the efficacy of c-Met inhibitors in combination
with other therapies.
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