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Highlights 

 EEG microstate topographies differ between controls and memory clinic patients 

 Microstate parameters differ in a gradient-like manner in SCD, MCI and AD patients 

 Changes in topography of microstate class C correlate with CSF Aβ42 levels 

 Changes in topography of microstate class B correlate with CSF p-tau levels 

 EEG microstates detect early disruption of neurocognitive networks in AD   
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Abstract 

Spontaneous mental activity is characterized by dynamic alterations of discrete and stabile brain 

states called functional microstates that are thought to represent distinct steps of human 

information processing. Electroencephalography (EEG) directly reflects functioning of brain 

synapses with a uniquely high temporal resolution, necessary for investigation of brain network 

dynamics. Since synaptic dysfunction is an early event and best correlate of cognitive status and 

decline in patients along Alzheimer’s disease (AD) continuum, EEG microstates might serve as 

valuable early markers of AD. The present study investigated differences in EEG microstate 

topographies and parameters (duration, occurrence and contribution) between a large cohort of 

healthy elderly (n=308) and memory clinic patients: subjective cognitive decline (SCD, n=210); 

mild cognitive impairment (MCI, n=230) and AD (n=197) and how they correlate to 

conventional cerebrospinal fluid (CSF) markers of AD. Four most representative microstate 

maps assigned as classes A, B (asymmetrical), C and D (symmetrical) were computed from the 

resting state EEGs since it has been shown previously that this is sufficient to explain most of the 

resting state EEG data. Statistically different topography of microstate maps were found between 

the controls and the patient groups for microstate classes A, C and D. Changes in the topography 

of microstate class C were associated with the CSF Aβ42 levels, whereas changes in the 

topography of class B were linked with the CSF p-tau levels. Gradient-like increase in the 

contribution of asymmetrical (A and B) and gradient-like decrease in the contribution of 

symmetrical (C and D) maps were observed with the more severe stage of cognitive impairment. 

Our study demonstrated extensive relationship of resting state EEG microstates topographies and 

parameters with the stage of cognitive impairment and AD biomarkers. Resting state EEG 

microstates might therefore serve as functional markers of early disruption of neurocognitive 

networks in patients along AD continuum.   

Keywords: Alzheimer’s disease, biomarkers, electroencephalography, functional microstates, 

cerebrospinal fluid 
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Abbreviations: 

AD = Alzheimer’s disease 

CSF = cerebrospinal fluid 

EEG = electroencephalography 

FDG-PET = fluorodeoxyglucose-PET 

fMRI = functional magnetic resonance imaging 

GFS = Global Field Synchronization 

GFP = Global Field Power 

HC = healthy elderly controls 

ICA = independent component analysis 

MCI = mild cognitive impairment 

MMSE = Mini-Mental State Examination 

PLI = Phase Lag Index 

qEEG = quantitative electroencephalography 

SCD = subjective cognitive decline 

SNAC-K = Swedish National study on Aging and Care – Kungsholmen 

TANCOVA = topographic analysis of covariance  

TANOVA = topographic analysis of variance  
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1. Introduction  

How the brain integrates large-scale distributed neural activity into coherent cognitive processes 

is one of the ongoing puzzles in cognitive neuroscience. Many studies using different functional 

imaging modalities have investigated and confirmed functional interaction of extensive neuronal 

populations organized to perform cognitive functions in the form of neurocognitive networks 

(Varela et al., 2001; Bressler and Menon, 2010). Conjointly, they revealed that human brain 

activity constitutes of functionally connected brain areas that are synchronously active during the 

task-absent resting state (Raichle et al., 2001). Stimulus-independent spontaneous mental activity 

is therefore a result of global intrinsic well-organized brain activity during rest (Raichle, 2010). 

Impaired functional connectivity has been repeatedly reported in various neuropsychiatric 

disorders (He et al., 2007; Seeley et al., 2009; Bressler and Menon, 2010). Alzheimer’s disease 

(AD) is of particular interest since it is characterized by disturbance of higher cortical functions 

such as memory, comprehension, learning capacity, language, etc. Moreover, it is accompanied 

by the impairment of thinking and reasoning as well as with reduction in the flow of ideas 

(World Health Organization, 1992). Dementia in AD evolves on a continuum consisting of 

subjective cognitive decline (SCD) as the first symptomatic and mild cognitive impairment 

(MCI) as the subsequent prodromal stage of the disease (Jessen et al., 2010; Jessen et al., 2014). 

Preclinical and clinical stages of AD have already been recognized as “disconnection 

syndromes” since numerous functional magnetic resonance imaging (fMRI) and quantitative 

electroencephalography (qEEG) studies have shown disturbances in resting state functional 

connectivity of different brain regions in the referred patient groups (Leuchter et al., 1992; Jelic 

et al., 1996; Li et al., 2002; Koenig et al., 2005; Damoiseaux, 2012; Badhwar et al., 2017; 

Smailovic et al., 2018). Widespread distribution of neuropathological hallmarks in the brain, 

such as amyloid plaques and neurofibrillary tangles might subtend disruptions in the large-scale 

neurocognitive networks. Besides, it has already been postulated that neurodegeneration, 

neuronal and synaptic loss and dysfunction might lead to the loss of structural and functional 

integrity of the long cortico-cortical projections, which gives rise to the clinical symptoms of AD 

(Morrison et al., 1996; Badhwar et al., 2017; Smailovic et al., 2018). Therefore, diagnostic 

modalities that have a capability to detect disruptions in spontaneous mental processes in sub-
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second time dimension, i.e. disturbances in large-scale resting state neural networks, are 

candidate markers of early AD.   

EEG has long been proven to be a valuable method for investigation of the brain resting states as 

it directly mirrors brain synaptic activity, i.e. summated excitatory and inhibitory postsynaptic 

potentials, with a uniquely high temporal resolution (Michel, 2009). Conventional qEEG analysis 

in the frequency domain, such as power spectra analysis together with the novel qEEG measures 

of functional connectivity involving global field synchronization (GFS) and phase lag index 

(PLI) have already been proven to correlate with the stage of cognitive impairment (Huang et al., 

2000; Park et al., 2008; Engels et al., 2015) and AD molecular biomarkers (Smailovic et al., 

2018). However, the referred frequency analyses integrate EEG recording over seconds and 

therefore entail loss of temporal resolution. Employing multichannel EEG analysis in the time 

domain with the millisecond time resolution might therefore provide a valuable tool for an 

investigation of the dynamics of resting state neurocognitive networks. 

EEG recording can be directly visualized by a single scalp field map, i.e. color-dependent plot of 

potentials recorded across all electrodes sites. These maps or topographies of electric fields vary 

throughout recording time as they are generated by the ensemble of all active neural networks in 

the brain at one given moment in time. Therefore, temporal organization of the large-scale neural 

networks can be analyzed using topographies of electric fields measured at the level of the scalp. 

Previous studies revealed two notable properties of the resting state EEG time domain analysis. 

First, these arrangements of electric fields remain quasi-stable for a certain length of time before 

a sudden transition into the new arrangement (Lehmann et al., 1987). Referred periods of stabile 

topographies of electric potentials do not overlap in time and last around 60-120 ms (Lehmann et 

al., 1987; Koenig et al., 2002; Michel and Koenig, 2018) which is compatible with the resolution 

of the human information processing (Efron, 1970). They were proposed to represent elementary 

and momentary unit of thoughts as the “atoms of thoughts” and were named functional 

microstates (Lehmann et al., 1998; Lehmann et al., 2010). Second, microstate topographies are 

notably similar across EEGs of different subjects. Only four distinct alternating maps are 

sufficient to explain most of the topographical variance of the resting state EEG data (Pascual-

Marqui et al., 1995; Koenig et al., 2002). These microstate topographies were named class (map) 

A, B (asymmetrical), C and D (symmetrical). Previous studies employing resting-state fMRI and 

EEG modalities have provided evidence for the temporal correlation between the occurrence of 
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the specific microstate map and the activity of a particular resting state network of the brain 

(Britz et al., 2010; Musso et al., 2010; Yuan et al., 2012). In more detail, Britz et al. reported 

association of the microstate maps A and B with auditory and visual and microstate maps C and 

D with saliency and attention networks (Britz et al., 2010). Another study that involved EEG 

source localization technique found that cortical generators of neuronal electric activity that give 

rise to EEG microstates correspond to the parts of the default mode network (DMN) (Pascual-

Marqui et al., 2014). The above findings motivated EEG microstate investigations in patients 

with AD, since dysfunction of the referred resting state networks have been repeatedly reported 

in cognitively impaired individuals (Sorg et al., 2007; Li et al., 2012; Verma and Howard, 2012; 

Hafkemeijer et al., 2015; Wang et al., 2015; Badhwar et al., 2017; Mascali et al., 2018).  

Several studies have reported decreased microstate duration in patients with different stages of 

cognitive impairment and AD (Dierks et al., 1997; Strik et al., 1997; Stevens and Kircher, 1998). 

Conversely, longer overall microstate duration in patients with AD compared to healthy elderly 

has also been reported (Ihl et al., 1993). Although findings originated from small-scale clinical 

studies and involved outdated analytical methodology based on two-dimensional map 

descriptors, they indicated a relationship between cognitive status and microstate parameters. 

However, thorough investigation of the microstate topographies and parameters and their 

relationship to the molecular markers of AD neuropathology in a well-defined memory clinic 

cohort have not been conducted so far.  

In accordance with the growing need for the early and reliable functional state and trait markers 

of AD as well as noninvasive outcome measures in clinical trials, the aim of the present study 

was to investigate the relationship of EEG microstates with the cognitive status and conventional 

AD CSF biomarkers. We hypothesized that both microstate topographies and parameters are 

altered in the cognitively impaired patients compared to healthy elderly controls and that these 

changes are associated with AD-like CSF biomarker profile. The study population included over 

600 memory clinic patients with wide spectra of cognitive impairment and 300 healthy elderly 

controls. 

2. Material and methods 

2.1.  Study population 

The present study included 308 healthy elderly controls recruited as part of the Swedish National 

study on Aging and Care in Kungsholmen, Stockholm (SNAC-K) and 637 cognitively impaired 
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patients from the Memory Clinic, Karolinska University Hospital Huddinge. The SNAC-K study 

was approved by the Ethics Committee at Karolinska Institute and the Regional Ethical Review 

Board in Stockholm (Dnrs: 01-114, 04-929/3, Ö 26-2007). The involvement of the patients in the 

study was approved by the local ethical committee of the Karolinska University Hospital 

Huddinge (Dnr: 2011/1978-31/4). Informed written consent was obtained according to the 

Declaration of Helsinki from all participants. All patients had capacity to take a decision to 

donate the results of their routine assessments for the research purposes. Table 1. Presents the 

demographic characteristics of the study population (healthy elderly and memory clinic patients).  

2.1.1. Healthy elderly controls (SNAC-K cohort) 

SNAC-K is a population-based study that started in 2001 and recruited individuals ≥ 60 years of 

age living at home or in institutions. The participants were randomly selected from age-stratified 

groups in 6- (between 60 and 78 years) and 3-year intervals (>81 years). All participants 

underwent extensive examination consisting of a social interview and assessment of physical 

functioning, a psychological test battery, self-administrated questionnaires and a comprehensive 

clinical assessment including geriatric and neurological examination together with laboratory 

tests. At baseline, a subsample of participants who were free from dementia underwent an 

extended biomedical assessment including structural MRI imaging and resting state EEG 

recordings. Depending on their age, the participants are re-examined every 6 (between 60 and 78 

years) or every 3 years (>78 years).  

In total, 484 participants underwent resting state EEG recording but 308 were retained for the 

analyses following the exclusion criteria (121 males and 187 females, mean age 71.6, mean 

Mini-Mental State Examination (MMSE) score 29.3) (Table 1.). The exclusion criteria included 

i) a baseline MMSE score lower than 27 points; ii) decline in the MMSE of more than two points 

and/or a dementia diagnosis (DSM IV criteria) during the first 6 years of the follow-up; and iii) 

presence of any major neurological and/or psychiatric disorder evidenced by the medical history 

or neuroradiological report.  

2.1.2. Memory clinic cohort 

The patient group consisted of 637 memory clinic referrals clinically diagnosed with SCD 

(n=210) comparable to the Jessen et al. (Jessen et al., 2014), MCI (n=230) according to Winblad 

et al. (Winblad et al., 2004) and AD (n=197) according to ICD-10 criteria (World Health 

Organization, 1992). All patients underwent routine comprehensive clinical examination, 
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neuropsychological testing, CSF sampling and resting state EEG recording at the baseline. The 

exclusion criteria together with the demographics and clinical data (Table 1.) were previously 

described in more details in Smailovic et al. (Smailovic et al., 2018).   

Table 1. Demographics of the study population and CSF biomarker values of the patient group. 

 
Controls SCD MCI AD 

Number 308 210 230 197 

Sex ratio (males/females) 121/187 79/131 109/121 72/125 

Age (years) 71.6 ± 8.8 
b,c,d 

(60 - 93) 

60.0 ± 6.1
 b,e,f 

(50 – 83) 

65.9 ± 8.2 
c,e 

(50 - 87) 

67.8 ± 9.2 
d,f 

(51 - 89) 

Education (years) 14.4 ± 3.1 
b,c,d 

(9 - 18) 

13.3 ± 3.6 
b,e,f 

(1 – 24.5) 

12.1 ± 3.8 
c,e,g 

(3 - 22) 

11.1 ± 3.6 
d,f,g 

(6 - 23) 

MMSE
a 

29.3 ± 0.8 
b,c,d 

(27 - 30) 

28.7 ± 1.7 
b,e,f 

(23 - 30) 

27.3 ± 2.1 
c,e,g 

(18 - 30) 

23.0 ± 4.3 
d,f,g

 

(7 - 30) 

CSF biomarkers     

CSF Aβ42 (ng/L) 
- 

916.9 ± 248.8 
e,f 

(300 – 1650) 

713.6 ± 271.7 
e,g 

(229 - 1532) 

500.9 ± 123.5 
f,g 

(250 - 876) 

CSF p-tau (ng/L) - 52.4 ± 21.5 
e,f 

(16 - 183) 

62.7 ± 28.6 
e,g 

(16 - 175) 

91.5 ± 37.6 
f,g 

(16 - 240) 

CSF t-tau (ng/L)  - 256.3 ± 121.4 
e,f 

(43 - 689) 

363.6 ± 210.3 
e,g 

(41 - 1140) 

628.7 ± 309.5 
f,g 

(103 - 1500) 

Data are presented as means ± standard deviation. Kruskal-Wallis test; p < 0.05 for age, 

education, MMSE and all CSF biomarkers. Dunn-Bonferroni test for post-hoc comparisons. SCD 

= subjective cognitive decline, MCI = mild cognitive impairment, AD = Alzheimer’s disease, 

MMSE = Mini Mental State Examination. 
a 

n = 627 for the memory clinic cohort (Controls = 

308, SCD = 206, MCI = 228, AD = 193). 
b
 p < 0.05, Controls versus SCD; 

c
 p < 0.05, Controls 
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versus MCI; 
d
 p < 0.05, Controls versus AD; 

e
 p < 0.05, SCD versus MCI; 

f
 p < 0.01, SCD versus 

AD; 
g
 p < 0.01, MCI versus AD. 

2.2. CSF sampling and analysis  

The patient groups involved in the present study underwent CSF sampling and conventional CSF 

biomarker analysis (Aβ42, p- and t-tau). CSF sampling was conducted in the morning by routine 

lumbar puncture procedure in the L3/L4 or L4 /L5 intervertebral space while the patient was 

sitting in an upright position. CSF samples were collected in polypropylene tubes, centrifuged at 

1000rpm (10 minutes) in order eliminate cells and insoluble material and stored at -70°C 

pending further analysis. CSF Aβ42, p-tau (threonine 181) and t-tau protein concentrations were 

analyzed with xMAP technology using the INNO-BIA AlzBio3 kit (Innogenetics, Ghent, 

Belgium) (Olsson et al., 2005). The cutoff values were Aβ42 > 550 ng/L, p-tau < 80 ng/L, and t-

tau < 400 ng/L. The healthy individuals did not undergo lumbar puncture due to ethical 

constraints. 

2.3.  EEG recordings  

The resting state EEG recordings of the healthy elderly (SNAC-K) and memory clinic cohorts 

share key features of the methodological setup. However, they were conducted in different 

clinical and/or research frameworks and their differences are therefore described separately 

below. Raw EEG recordings of both cohorts were further preprocessed and analyzed following 

the same methodological procedure.  

2.3.1. EEG recordings of the healthy elderly controls 

The subjects underwent resting-state EEG recordings on the Schwarzer EEG Natus Incorporated 

System by using Easy Caps with the placement of the 19 scalp electrodes, proven to be sufficient 

for reliable microstate analysis (Khanna et al., 2014), following the standard 10/20 system. The 

subjects had their eyes closed and their vigilant state has been monitored during spontaneous 

real-time EEG recording. In case of changes in the vigilant state (e.g. drowsiness), the subjects 

would receive an auditory warning sound. The sampling rate of the EEG recording was 256 Hz 

with the electrode impedance below 5 kΩ and band-pass filters between 0.5 Hz and 70 Hz. 

2.3.2. EEG recordings of the memory clinic patients 

The patient group underwent resting-state EEG recording on the Nervus System. The recording 

setup was identical to the one used in the healthy control group as noted above. Compatibility of 
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two recording systems (Schwarzer Natus and Nervus) was checked by dummy signal generator 

recordings on both systems. 

2.4.  EEG microstate analysis 

The preprocessing of the EEGs of both healthy elderly controls and memory clinic patients was 

conducted in Brain Vision Analyzer, version 2.0 software (Gilching, Germany). Eye movements 

and electrocardiographic artifacts were removed using independent component analysis (ICA) 

algorithm while remaining artifacts, periods of drowsiness, eyes open and other non-resting state 

vigilant states were removed by visual inspection. The average total length of the preprocessed 

EEG recording available for the further analysis was between 6 (healthy controls) and 11 min 

(patient groups).  

Microstates analysis was performed on all the available segments of the preprocessed EEG data 

in MATLAB version R2017. The analysis followed well established procedure previously 

described in detail (Pascual-Marqui et al., 1995; Koenig et al., 2002). Functional microstates are 

defined as periods of stable electric field topographies that do no overlap in time and undergo 

sharp transitions into new topographical configurations (Lehmann et al., 1987). It has been 

previously shown that these topographies remain stable around the global field power (GFP) 

peaks and tend to change at the moments of the minimal GFP values (Michel, 2009). Therefore, 

topographies (maps) at the GFP peaks throughout the whole 2-20 Hz band-pass filtered EEG 

data were subjected to the modified k-means spatial cluster algorithm. Referred cluster analysis 

yielded four most representative microstate maps per participant, previously found to be optimal 

to explain most of the variance in the resting state EEG data (Koenig et al., 2002). Four 

individual microstate maps of all the healthy elderly subjects were further averaged in order to 

compute four average or grand mean microstate maps of the control group. The control’s grand 

mean microstate maps were assigned as class A, B, C and D based on the similarity to the 

normative microstate maps available from the literature (Koenig et al., 2002). Finally, the four 

individual maps of all the subjects in the study (healthy controls and patients) were assigned as 

class A, B, C and D based on the similarity to the corresponding controls’ grand mean microstate 

maps  (Fig. 1) and were further used for the statistical analysis of their corresponding 

topographical differences. 

The analysis of microstate parameters included computation of duration, occurrence and 

contribution of each microstate map in the EEG recording. Duration corresponds to the 
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continuous period within which particular microstate class is active and presumably reflects 

stability of the underlying active brain networks. Occurrence corresponds to the average number 

of appearance of each microstate class per second and may resemble the tendency of the 

underlying brain networks to become activated. Contribution is a microstate parameter defined 

as a percentage of the total time occupied by the particular microstate class and therefore 

portrays how much a particular map is “dominant” compared to all other maps (Koenig et al., 

2002, Khanna et al., 2015). We hypothesized that the topography of controls’ microstate maps 

differ from the maps of the patient group, e.g. the landscape of the AD patient’s map A might not 

correspond to the landscape of the control’s map A, thus involving comparison of basically 

different maps and corresponding parameters. Additionally, it has been shown that the usage of 

the average or mean microstate maps for the between-group comparisons is a valid and reliable 

approach (Khanna et al., 2014). Therefore, microstate parameters were calculated using the 

average controls’ grand mean maps as the standard that was fitted by spatial correlation to the 

original patients’ EEG data. This procedure allowed for the computation of duration, occurrence 

and contribution of each healthy elderly microstate map in the patient’s EEG data (Fig. 1). The 

microstate parameters were consequently compared between SCD, MCI and AD groups only.  
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