
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
3
5
5
1
8
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
0
.
4
.
2
0
2
4

Research

Dynamic spatiotemporal patterns of brain

connectivity reorganize across development

Jakub Vohryzek 1, Alessandra Griffa1,2, Emeline Mullier1, Cecilia Friedrichs-Maeder1,3,
Corrado Sandini4, Marie Schaer4, Stephan Eliez4, and Patric Hagmann1,5

1Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
2Dutch Connectome Lab, Department of Complex Trait Genetics, Centre for Neuroscience and Cognitive Research,

Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
3Department of Neurology, Bern University Hospital, University of Bern, Switzerland

4Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
5Signal Processing Lab 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Keywords: Dynamic functional connectivity, Brain dynamics, Structural connectivity, Spatiotemporal
connectome, Development, System diversity, Spatiotemporal diversity

ABSTRACT

Late human development is characterized by the maturation of high-level functional
processes, which rely on reshaping of white matter connections, as well as synaptic density.
However, the relationship between the whole-brain dynamics and the underlying white
matter networks in neurodevelopment is largely unknown. In this study, we focused on how
the structural connectome shapes the emerging dynamics of cerebral development between
the ages of 6 and 33 years, using functional and diffusion magnetic resonance imaging
combined into a spatiotemporal connectivity framework. We defined two new measures of
brain dynamics, namely the system diversity and the spatiotemporal diversity, which quantify
the level of integration/segregation between functional systems and the level of temporal
self-similarity of the functional patterns of brain dynamics, respectively. We observed a
global increase in system diversity and a global decrease and local refinement in
spatiotemporal diversity values with age. In support of these findings, we further found an
increase in the usage of long-range and inter-system white matter connectivity and a
decrease in the usage of short-range connectivity with age. These findings suggest that
dynamic functional patterns in the brain progressively become more integrative and
temporally self-similar with age. These functional changes are supported by a greater
involvement of long-range and inter-system axonal pathways.

AUTHOR SUMMARY

Maturation in human development is represented by changes in both functional dynamics
and structural connectivity in the human brain. By constructing a spatiotemporal
connectome for a cohort of 81 subjects ranging from 6 to 33 years of age, we demonstrate
how these changes can be studied in a unified framework. We do so by defining two new
measures of brain dynamics, namely the spatiotemporal diversity, mapping the level of
temporal self-similarity of the functional patterns of brain dynamics, and system diversity,
quantifying the level of integration/segregation between functional systems. These measures,
we argue, represent a novel way of looking at brain dynamics constraints by structural
connectivity. Using these measures, we show that dynamic functional patterns in the brain
progressively become more integrative and temporally self-similar with age.
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Reorganization of spatiotemporal patterns across development

INTRODUCTION

Human brain development from childhood to the early adult stage is marked by maturation
of high-level brain processes, such as cognitive control, executive functions, and multimodal
integration (Burr & Gori, 2012; Goswami, 2011). These processes arise through integration
of information from local functional systems within complex neural networks, whose devel-Functional systems:

Assembly of brain regions across the
cortex that have similar functional
specialisation.

opment is achieved through the optimization of white matter axonal bundles, as well as the
selection of local connections at the neuronal level (i.e., synaptic pruning; Tau & Peterson,
2010). In order to characterize these neurodevelopmental processes, it is therefore of crucial
interest to investigate the evolution of both structural white matter connections, as well as
dynamic interactions between the different brain regions, as they give rise to mature and com-
plex network organizations (Giedd & Rapoport, 2010; Hagmann, Grant, & Fair, 2012; Hwang,
Hallquist, & Luna, 2013; Luna, Padmanabhan, & O’Hearn, 2010; Menon, 2013).

Network neuroscience serves as an ideal candidate to represent these relations in terms of
brain static functional connectivity (FC), structural connectivity (SC), and, recently, dynamicStructural connectivity:

A set of physical/white matter
connections among neural
assemblies.

functional connectivity (dFC). Both structural connectivity and functional connectivity have
been widely studied (Collin & van den Heuvel, 2013). They depict various topological prop-
erties of large-scale brain architecture, such as small-worldness, hubness, and, in case of dy-
namic functional connectivity, network time-variance (Allen et al., 2014; Bullmore & Sporns,
2009; Grayson & Fair, 2017; Rubinov & Sporns, 2010). However, how dynamic functional
connectivity patterns evolve with structural connections across neurodevelopment remains
largely unknown.

The functional interactions among different brain regions in a resting state—an external
stimulus-free condition—are often characterized as statistical dependencies between pairs of
neural assemblies’ blood oxygen level–dependent (BOLD) signals. The modular structure of
functional networks has been widely studied as they decompose into reproducible connectiv-
ity patterns, dubbed resting-state networks or functional systems (Damoiseaux et al., 2006; Fox
et al., 2005; Yeo et al., 2011). Across human development, functional systems tend to be more
and more integrated, thanks to the strengthening of long-range and inter-system functional
interactions (DiMartino et al., 2014; Dosenbach et al., 2010; Fair et al., 2007; Marek, Hwang,
Foran, Hallquist, & Luna, 2015; Menon, 2011; Vértes & Bullmore, 2015). Research on the
dynamic aspects of these interactions has focused on exploring the temporal variability of
functional connections’ strength during rest. Several studies have shown increased variability
across time in functional connections, and particularly inter-system connections, with age
(Hutchison & Morton, 2015; Marusak et al., 2017; Ryali et al., 2016). Yet, how dynamic
interactions between structurally connected brain regions flexibly adapt and reorganize across
time and ages is a topic of growing interest.

On the other hand, the structural brain network, mapping large axonal bundles, has been
characterized by tracking water diffusion in brain white matter (Bullmore & Sporns, 2009;
Hagmann et al., 2008). In development, small-world topology and all major white matter
tracts are at place from an early age (Collin & van den Heuvel, 2013). Consequently, the de-
velopmental changes occurring across childhood and adolescence come from an adjustment
of axonal diameters, myelination, and other factors (Hagmann et al., 2010). This leads to an
overall maturation of white matter connectivity with profound effects on brain functions (Collin
& van den Heuvel, 2013; DiMartino et al., 2014; Dumontheil, 2016; Hagmann et al., 2012;
Vértes & Bullmore, 2015). Indeed, the correlation between structural and functional connec-
tivity values in the brain tends to increase from toddler age to late adolescence, suggesting a
consolidation of functional patterns coherent with the maturation processes of the underlying
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Reorganization of spatiotemporal patterns across development

white matter substrate (Hagmann et al., 2010). With growing evidence of functional connec-
tivity patterns being shaped by the structural connectivity architecture, an interesting question
arises as to how the underlying white matter structure affects the dynamics of functional con-
nections with age.

The aim of this work is to investigate brain changes of dynamic functional connectivity in-
teractions, and their relationship with the underlying white matter maturation processes from
early childhood to late adolescence and young adulthood. To this end, we represent the struc-
tural and functional connectivity information of individual healthy subjects, from 6 to 33 years
of age, using a previously proposed multilayer graph framework, named spatiotemporal con-
nectome (Griffa et al., 2017). This network representation allows decomposition of the fMRI

Spatiotemporal connectome:
A temporal network composed of
connections between neural
elements that are simultaneously
coactive at the same time or
consecutive time and have a
structural connection between them. data into time-varying functional coactivation patterns between anatomically connected brain

regions. This brings the functional and structural network-based investigation of brain de-
velopment under one unified framework (Griffa et al., 2017). By doing so we were able to
characterize, in a combined fashion, the maturation of functional and structural connections
in terms of (a) the integration and segregation dynamics of the different functional systems,
(b) the spatiotemporal heterogeneity of functional coactivation patterns, and (c) the functional
role of long-range inter-system versus short-range structural connections. In such a way, we
tested the hypothesis that dynamic functional activity becomes functionally more integrative
across development and at the same time results in consolidated activity patterns with higher
spatiotemporal stability.

To be able to test this hypothesis, we developed two newmeasures to characterize the func-
tional role of brain regions in a spatiotemporal connectome (Figure 1). First, we constructed
spatiotemporal connectomes of individual subjects, which allowed us to map the dynamic pat-
terns of functional coactivation constrained by structural connectivity (Figures 1A, B). Formally,
these dynamic functional patterns correspond to the connected components of the multilayer

Connected components:
Brain’s dynamic functional patterns
across time and cortical space
calculated from the spatiotemporal
connectome.

network. Second, to reflect the spatiotemporal heterogeneity of the dynamic patterns, we de-
fined a spatiotemporal diversity (STD) measure quantifying the cosine-similarity between pairs

Spatiotemporal diversity:
A measure quantifying how similar
the dynamic functional patterns are
across time and cortical space.

of vector-embedded connected components (Figure 1C). Third, to address dynamic integrative
properties between brain functional systems, we introduced a system diversity (SD) measure

System diversity:
A measure quantifying the
distribution of functional systems
active in the dynamic functional
patterns across time and cortical
space.

based on the entropy of the histogram of functional systems’ distribution for each connected
component (Figure 1C). Using these methodological instruments, we investigated, across mul-
tiple scales of analysis, how brain spatiotemporal dynamics mature with age, in terms of inter-
system integrative capacity, dynamic patterns’ heterogeneity, and long/short range structural
connections’ usage (Figure 1D).

RESULTS

From resting-state functional MRI (fMRI) data and a cohort-template structural connectivity
matrix, we constructed the spatiotemporal connectomes (Griffa et al., 2017) for 69 subjects
from 6 to 33 years of age (see the Supporting Information). We used a cortical parcellation
of 448 brain regions from the Lausanne 2008 atlas (Cammoun et al., 2012). We extracted
the multilayer graph representation of functional coactivation patterns between anatomically
connected brain regions, as series of weakly connected components (CCs; Griffa et al., 2017).
See Figures 1A and 1B. Moreover, we associated with every brain region a functional system
(FS) as defined by Yeo et al. (2011): visual (VIS), somato-motor (SM), dorsal attention (DA),
ventral attention (VA), limbic (LIM), frontoparietal (FP), and default mode (DM) systems. Fur-
thermore, we defined two novel measures—namely, the spatiotemporal diversity (STD) and the
system diversity (SD)—to characterize the functional system dynamic recruitment and temporal
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Reorganization of spatiotemporal patterns across development

Figure 1. Computation of system diversity and spatiotemporal diversity. (A) Data used. (B) From
the BOLD signal of 448 brain regions and template structural connectome, we constructed a sparse
multilayer graph represented in the form of connected components. (C) We concatenated all sub-
jects within a given age group and calculated the SD and STD measures. SD is computed as
functional system probability distribution entropy and is representative of the functional systems’ dis-
tribution for each connected component. Functional systems were defined as visual (VIS), somato-
motor (SM), dorsal attention (DA), ventral attention (VA), limbic (LIM), frontoparietal (FP), and default
mode (DM) systems (Yeo et al., 2011). STD is measured as an average cosine similarity between
vector-embedded connected components and tracks the dynamic spatiotemporal versatility of the
individual brain regions. (D) Both SD and STD between groups were calculated (a) globally, (b) for
CCs of specific functional systems, and (c) for CCs involved in individual brain regions.

Network Neuroscience 4



Reorganization of spatiotemporal patterns across development

self-similarity of the different CCs (Figure 1C). Both measures were compared between two age
groups—adults (median [interquartile range] = 24.3 [6.7]) and children (median [interquartile
range] = 10.7 [2.8])—across three different spatial scales of investigation: global, functional
system level, and nodal level (see Figure 1D and the Methods section). Last, we examined
the connected components’ properties on the edge level, in relation to the white matter fiber
length and inter-system connectivity. For details about the number, spatial, and temporal size
of the CCs in relation to age, see the Supporting Information.

Spatiotemporal Connectome Measures

For the developmental analysis, two new measures of the CCs were defined, namely the sys-
tem diversity (SD) and the spatiotemporal diversity (STD). From an intuitive point of view, every
brain region will be recruited in several CCs across an fMRI recording. These CCs can vary in
their association with the different functional systems (Yeo et al., 2011), and in their spatiotem-
poral similarity. These two features are described by the SD and STD measures, respectively.
The SD quantifies the heterogeneity of functional systems’ allegiance within an individual
CC and is computed as the entropy of the functional system probability distribution across
all unique regions recruited within the CC (Figure 1C). SD represents the integrative proper-
ties of each individual CC. STD, on the other hand, quantifies the spatiotemporal diversity of
CCs, and it is therefore defined for pairs of CCs. The STD is measured as the average cosine
similarity between vector-embedded CC pairs (Figure 1C). The STD tracks the spatiotemporal
versatility of the dynamic functional patterns represented by the CCs. We calculated these two
measures for the adult and children groups, for three distinct resolution scales of investigation.
The investigated scale defined what subset of CCs was considered for the group comparison:
global scale—all CCs for a particular age group; functional system scale—all CCs with at least
20% of brain regions part of a functional system, for a particular age group; and node scale—all
CCs involving a specific brain region, for a particular age group (see Figure 1 and the Methods
section).

Global Reorganization of Spatiotemporal Patterns With Age

First, we tested the hypothesis that from childhood to adulthood, the brain develops func-
tionally integrated dynamic patterns, while at the same time becomes more spatiotemporally
conservative in their recruitment. To this end, we quantified the difference in STD and SD
values between the children and adult groups, on the global level of investigation. As the
measures are defined on a group level, the difference between the average STD and SD values
over all the CCs in each age group was statistically evaluated in relation to a null distribution
computed from 1,000 permutations of CC reassignment between the two age groups. For a
group comparison between children (median [interquartile range] = 10.7 [2.8]) and adults
(median [interquartile range] = 24.3 [6.7]), the global SD was found to be larger in adults
than in children (p = 0.001, two-tailed permutation test, Figure 2), suggesting more integrative
spatiotemporal patterns in adults. On the other hand, STD was decreased in adults compared
with children (p = 0.022, two-tailed permutation test, Figure 2), suggesting a decrease in the
repertoire of spatiotemporal patterns with age.

Function-Specific Reorganization of Spatiotemporal Patterns With Age

To further characterize the maturation of functional dynamics with age, we extended the de-
scribed global analyses to the functional system level. For each functional system i, we carried
out a permutation test considering only the CCs related to system i. We defined a CC to be
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Reorganization of spatiotemporal patterns across development

Figure 2. SD and STD at the global level. Comparison of SD and STD between the two age groups
of adults (A) and children (CH). The left diagram represents the real and permuted values of both
measures. The right diagram shows the null distributions as a difference between the two groups
in relation to the real difference between the two groups (SD: p value = 0.001 and STD: p value
= 0.022, two-sided permutation test).

related to the functional system i if at least 20% of the cortical regions active in that CC belong
to system i, according to the functional parcellation defined in Yeo et al. (2011) See Figure 3.
We observed significant STD differences between children and adults for the frontoparietal,
dorsal attention, and limbic systems (FP: p = 0.021, DA: p = 0.024, LIM: p = 0.031, one-
tailed permutation test FDR corrected, Figure 3, top). The different functional systems can be
related to higher order (FP, LIM, VA, and DA) and lower order (VIS and SM) systems, and de-
fault mode systems (Margulies et al., 2016). Along this line of reasoning, our results suggest
that the consolidation of functional activation patterns and related structural communication
pathways from childhood to adulthood mainly happens at the level of the higher order cog-
nitive systems, with the exception of the VA system. When investigating possible age-related
changes of SD values at the level of the single functional systems, we did not observe any
statistically significant difference between the children and adult groups, for any of the func-
tional systems. Considering the fact that SD values were higher in adults than in children at
the global level, this result indicates a global, but not system-specific, tendency of increased
functional integration with age (Figure 3, bottom).

Nodal Dynamic Cortical Signature of Spatiotemporal Patterns in Different Age Groups

Next, we examined both the STD and the SD measures at the nodal level to characterize the
dynamic properties of the different brain regions, and we qualitatively compared the derived
cortical maps between children and adult groups. For the STD in the adult group (Figure 4,

Network Neuroscience 6
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Figure 3. Spatiotemporal diversity (STD) and system diversity (SD) at functional system level.
Comparison of SD and STD between the two age groups of adults (A) and children (CH) for individ-
ual functional systems between the real value (dashed red line) and its null distribution. (A) STD for
individual functional systems between the groups (STD, frontoparietal (FP): p value = 0.021, dorsal
attention (DA): p value = 0.024, limbic (LIM): p value = 0.031, one-tailed permutation test FDR
corrected). (B) SD for individual functional systems between the groups.

top left), we observed a clear separation between regions belonging to primary lower order
functional systems (VIS and SM) and higher order systems (FP, LIM, and VAS), with the ex-
ception of the DA system having similar values as the lower order systems. Higher order
areas depict more heterogeneous spatiotemporal functional patterns (higher STD) compared
with primary areas, possibly reflecting their functional versatility and lower degree of special-
ization. Similar demarcation between higher order cognitive systems and lower order areas
was also consistent in the children group (Figure 2, top left). However, children had globally
more heterogenous spatiotemporal patterns compared with the adult group, as indicated by
the distribution of the nodal STD values above the 45-degree equality line in the adult-children
nodal-STD scatterplot (Figure 4, top right). On the other hand, children demonstrated globally
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Figure 4. Cortical patterns of spatiotemporal diversity (STD) and system diversity (SD) values in
children and adults. Every brain map represents values of STD and SD for the 448 cortical nodes.
(A) Cortical maps for STD of the adults and children groups. (B) Cortical maps for SD of the adults
and children groups. Correlation plots represent the relationship between the STD and SD values
of the two groups. Dashed black line stands for the identity line, with different colors represent-
ing different functional systems: visual (VIS; purple), somato-motor (SM; blue), dorsal attention
(DA; green), ventral attention (VA; pink), limbic (LIM; yellow), FP (orange), default mode (DM; red).
White demarcation lines represent the separation of the seven functional systems. (C) Correlation
between STD adults and STD children (r = 0.79). (D) Correlation between SD adults and SD chil-
dren (r = 0.65). The inserted brain in the correlation graphs represents the Yeo functional systems
(Yeo et al., 2011).

lower SD values compared with adults (see adult-children nodal-STD scatterplot, Figure 4,
bottom right), indicating lower levels of integration between the different functional systems.
The cortical patterns of SD values were similar between the two groups (Figure 4, bottom
left). For both children and adults, regions belonging to the default mode system demonstrated
unique spatiotemporal features with high STD but low SD, suggesting that default mode spa-
tiotemporal activation patterns are highly heterogeneous in time, with few interactions with
the other functional systems.

Brain Integrative Tendencies in Development

To test the hypothesis that the brain shifts from more localized brain activity patterns to global
representations across development, we investigated the relationship between the subjects’
age, and the functional recruitment of structural connections with different physical lengths.
We note that, in our framework, each edge of the multilayer graph represents a functional
coactivation of two brain regions structurally connected through a white matter bundle of a
certain spatial length. We associated with each edge of the spatiotemporal connectome a phys-
ical length, as derived from a 68-subject structural connectivity template (see the Supporting
Information). We chose two length-thresholds to classify the network edges as short-range
or long-range, namely 20 mm and 42 mm, consistent with the literature (Baker et al., 2014;
Behrman-Lay et al., 2015). See Figure 2.

Network Neuroscience 8
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Figure 5. Development of brain integration. (A) Changes in relative use of short edges (to the
subject’s maximum number of edges used) as a function of age. (B) Changes in relative use of long
edges (to the subject’s maximum number of edges used) as a function of age. (C) Changes in relative
use of intra-system edges (to the subject’s maximum number of edges used) as a function of age.

As each subject will have a unique multilayer network with a varying number of connected
components and edges by construction, we normalized the number of short/long edges of
each subject’s spatiotemporal connectome by the total number of edges for each subject and
reported the relative number of short/long edges per subject. This approach allowed us to
quantify the relative (and not the absolute) functional usage of structural connections with
age. From childhood to early adulthood, we found a significant positive association between
age and the probability of long-range neural pathways functional usage (> 42 mm, Pearson’s
r = 0.31, p = 0.009, significant for 42 ± 5-mm-length threshold, Figure 5B, and a nega-
tive association between age and short connections functional usage (< 20 mm, Pearson’s
r = −0.38, p = 0.001, significant for 20 ± 5-mm-length threshold, Figure 5A). These correla-
tions remained significant after including the average frame-wise displacement as a nuisance
regressor (long edges: Pearson’s r = 0.25, p = 0.038; and short edges: Pearson’s r = −0.33,
p = 0.005; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012).

Next, we focused on how the integrative tendencies play out in the redistribution of edges
between different functional systems. To this end, we assigned to each edge of the multilayer
graph a label indicating whether that edge represents an inter- or intra-system connection.
The functional systems’ labels were taken from the FSs described in Yeo et al. (2011). We
normalized each subject’s edge distribution by the total number of edges present in the subject’s
spatiotemporal connectome. Thus, we looked at the relative (and not absolute) use of the
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inter-system and intra-system edges. We showed that the probability of recruiting inter-system
edges increases with age (Pearson’s r = 0.29, p = 0.017, Figure 5C). Also, the results remained
significant after regressing out possible motion artefacts, quantified by the average frame-wise
displacement (Pearson’s r = 0.29, p = 0.015; Power et al., 2012). These results indicate that
the functional usage of long-range, inter-system axonal pathways increases from childhood to
early adulthood and is in line with the consolidation of more integrative functional dynamics
shown by the above-described SD and STD analyses. During development, the human brain
reconfigures toward more integrative, large-scale, and inter-system functional interactions.

DISCUSSION

In this work, we investigated the developmental changes of functional coactivation patterns
constrained by the underlying structural connections, in a cohort of 69 subjects aged between
6 and 33 years. Our results demonstrate that, from childhood to adulthood, the brain spa-
tiotemporal dynamics undergo a functional reorganization, where brain regions are recruited
in more functionally heterogeneous patterns of activity with age. Moreover, these patterns of
activity grow to be more spatially and temporally consolidated with age. These results are sup-
ported by further analyses on the increasing usage of long-range as well as inter-system white
matter connections. Our findings corroborate previous developmental studies that focused
on functional and structural connectivity maturation independently. These studies indicate
that structural networks mature from spatially proximal to a more integrative topology, sup-
porting functional reorganization of increasingly complex higher order cognitive interactions
between various resting-state networks (Collin & van den Heuvel, 2013; Grayson & Fair, 2017;
Hagmann et al., 2012; Vértes & Bullmore, 2015).

Dynamic Reorganization of Brain Activity Patterns

Our analysis on spatiotemporal patterns shows that global SD increases with age, whereas
global STD decreases with age. This suggests that brain activation becomes increasingly func-
tionally distributed, while becoming more consolidated in its spatiotemporal configurations.
Indeed, the result on SD supports an image of functionally collaborative brain regions, en-
gaging in complex cognitive functions with age (Marusak et al., 2017; Vértes & Bullmore,
2015). On the other hand, the decrease of STD with age seems to corroborate previous litera-
ture on static FC when looking at the dynamic aspects of FC. Functional networks have been
shown to have rudimentary topological architecture, such as functional hubs and well-defined
resting-state networks, at place early on in development, with major changes coming from
strengthening of cross-domain and hub-spoke region connections (Hwang et al., 2013; Marek
et al., 2015). From a dynamic perspective, this is in congruence with the functional usage of
increasingly more mature and conservative channels of communication, potentially leading to
effective information processing necessary for mature cognitive functioning.

The STD changes (decrease) with age were mainly driven by higher order areas, including
the frontoparietal and dorsal attention systems, suggesting a prominent consolidation of these
functional systems across the age range investigated in this study (Fair et al., 2007; Supekar,
Musen, & Menon, 2009). When considering the cortical maps of the STD and SD values, a
particular position is occupied by the regions belonging to the default mode system—a task-
negative system associated with inner thinking, representation of self, and internal modes of
cognition (Raichle et al., 2001). DM regions including the precunei, medial prefrontal cor-
tices, and angular gyri simultaneously demonstrate low SD values consistent with the notion
of task-negative network (Karahanoǧlu & Van De Ville, 2015; Raichle, 2015) and high STD,
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in line with recent literature suggesting the existence of diverse spatiotemporal DM patterns
in dynamic functional connectivity analyses (Griffa et al., 2017; Karahanoǧlu & Van De Ville,
2015). It is worth noting that in our analyses the default mode system, as opposite to the other
functional systems, tended to have lower SD values in adults compared with children (although
this difference was not statistically significant; Figure 3), possibly suggesting a consolidation
of the task-negative role of this network across neurodevelopment.

Integrative Age-Related Changes in Edges of the Spatiotemporal Connectome

Our results showed distance and inter-system age-related changes of structural connections
usage. The probability of functional recruitment of long-range white matter connections in-
creased with age, whereas the probability of recruiting short-range connections tended to de-
creasewith age. These findings are in linewith previous results on static functional connectivity
strength, which demonstrate an increase for distant and a decrease for proximal region pairs
(Fair et al., 2007; Supekar et al., 2009; Vértes & Bullmore, 2015). However, these findings
were recently put into question because of concerns about possible effects of motion artefacts,
which might lead to an overestimation of distance-dependent functional effects (Grayson &
Fair, 2017; Marek et al., 2015). It is also important to point out that previous studies used
Euclidean distances to characterize the maturation of functional connectivity strength in re-
lation to brain regions’ spatial relationships. In contrast, our method takes into account only
functional relationships between region pairs that are structurally connected by white matter
axonal pathways, thus adding to the refinement and robustness of our findings.

The probability of inter-system connection functional usage increased with age. These find-
ings support a picture of brain functional systems collaboratively engaging in tackling higher
order cognitive functions with age (Marek et al., 2015; Vértes et al., 2012). Previous studies,
which focused on the modular evolution as a defining feature of brain functional integration,
are however at odds with these results, as they observe a global decrease in inter-system and
a global increase in intra-system functional connectivity, suggestive of formation of functional
modules rather than their refinement and collaborative tendencies between them (Gu et al.,
2015; Stevens, Pearlson, & Calhoun, 2009). This discrepancy might very well result from the
approach taken to describe the brain communities, as all the mentioned studies concentrate
on the static FC description of brain activity. However, when looked at from the dynamic per-
spective, in the sense of communities being defined along not only spatial dimension but also
temporal, it is possible to gain more realistic insight into the brain communities’ organization
in development. Thus when drawing from our results on ST and STD, (i.e., system diversity
increases with age whereas the diversity of spatiotemporal patterns decreases with age, mainly
driven by FP, DA, and limbic systems), it is possible to observe the brain network development
as a tendency toward increasing interactive system with increasing specialization of their func-
tioning.

Conceptual Differences Among dFC Methods

In general, there is still no consensus about the conceptualization of brain dynamics. This
is also the case with respect to resting-state fMRI time-dependent analyses, where currently
proposed methods are still in their early days. Originally, brain dynamics were described
by static functional connectivity (Bullmore & Sporns, 2009). Recent methods have focused on
representing brain dynamics as sequences of discrete states of brain activity changing over time
(Allen et al., 2014; Baker et al., 2014). These methods deliver dFC measures such as fractional
occupancy (the fraction of time a state remains active over a recording period), lifetime of states
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(how long on average a state lasts in a sequence), or switching probability (how frequently
individual states switch between them). These approaches have also been implemented in
development studies in case of static FC (Betzel et al., 2014; Fair et al., 2007) and state-based
dFC (DiMartino et al., 2014; Hutchison & Morton, 2016; Ryali et al., 2016). However, how
individual nodes engage in temporally diverse (STD) and rich (SD) transient patterns of activity
is another way to conceptually regard the brain dynamic interactions (Griffa et al., 2017).
In this new perspective, we are not looking at a static functional connectivity or state-based
dFC, but rather at nodal dynamics constrained by structure. As such, STD can be regarded
as quantifying the versatility of nodal broadcasting, and SD as temporal diversity of nodal
broadcasting with respect to the different functional systems. From the visual inspection of the
adults’ brain maps (Figure 4), we can observe that the frontoparietal system, responsible for
coordinating behavior in a rapid, accurate, and flexible way, has high STD values, suggesting
a high versatility of nodal broadcasting in these areas. Future work should therefore explore
how the values of STD relate to behavioral measures of cognitive flexibility and/or creativity.
In the same line of thinking, adults’ brain maps (Figure 4) present high SD values in associative
areas, indicating that regions responsible for sensory integration and information broadcasting
toward higher order systems tend to coactivate with multiple functional systems in time. Future
work should relate the values of SD to the multisensory integration tasks.

Spatiotemporal Connectome and Dynamic Measures in the Brain

Describing brain dynamics has been of growing interest in the neuroscience community, with
several studies focusing on dynamic FC features in neurodevelopment. The SD measure de-
scribes the functional heterogeneity of connected components in terms of functional system
cooperation, andcanbe related to studies investigating the temporal variability of functional con-
nectivity strength (Chai et al., 2017; T. Chen, Cai, Ryali, Supekar, & Menon, 2016; Hutchison
& Morton, 2015; Marusak et al., 2017). On the other hand, the connected components of
the spatiotemporal connectome map the functionally and structurally relevant connections in
the brain over time. The level of spatiotemporal diversity of the connected components is
quantified by the STD measure. In this sense, STD relates to previously introduced “flexibility”
measures quantifying the temporal variability of community structure in multilayer graphs with
a temporal dimension (Bassett et al., 2013). However, none of the aforementioned studies con-
sider the structural connectivity constraints of brain dynamics as included in the spatiotemporal
connectome.

Methodological Considerations

We chose the spatiotemporal connectome as an investigation framework, since it provides
an original perspective on different research questions by unifying structural and functional
information under one umbrella. It is to be noted that the framework suffers from several
methodological limitations. The diffusion MRI data reconstruction and tractography ultimately
introduce false positive and negative structural connections, requiring the use of a group struc-
tural template (de Reus & van den Heuvel, 2013) This however made the subject-wise analysis
of the structural connectomes difficult to implement in the framework. Furthermore, the func-
tional coactivation patterns were derived from a point-process analysis of the fMRI signals
(Tagliazucchi, Balenzuela, Fraiman, & Chialvo, 2012), which is a simple assumption stating
that a neuronal event happens at the significant peak of BOLD activity. This choice makes the
final spatiotemporal connectome sensitive to the choice of the point-process threshold. How-
ever, it has been shown that this very sparse signal representation is able to preserve the salient
statistical aspects of the fMRI signal (Tagliazucchi, Siniatchkin, Laufs, & Chialvo, 2016).
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The construction of the spatiotemporal connectome constrains the time-resolved coacti-
vations only to the anatomically connected brain regions. While it has been shown that this
implicit hypothesis is related to temporal stability of functional dynamics as well as to the most
reproducible functional interactions (Griffa et al., 2017; Shen, Hutchison, Bezgin, Everling, &
McIntosh, 2015), it doesn’t take into consideration cases where time-resolved coactivations
may arise between disconnected regions. This information is of course relevant in describing
the full picture of the time-resolved coactivations, but the occurrence of those events is sig-
nificantly less prevalent than in the connected case—it has been shown to be on average 12
times less likely to obtain coactivation between anatomically disconnected brain regions to
the anatomically connected brain regions (Griffa et al., 2017). However, extra caution should
be exercised when trying to interpret SD/STD results in specific brain regions, which tend to
possess relatively high coactivations in the absence of anatomical connections, as shown pre-
viously for bilateral auditory cortices or the lateral postcentral gyri, for example. On one hand,
these temporal coactivations might result from synchronization of external stimuli and thus re-
quire different interpretations for their occurrence. On the other hand, this could simply be
due to the inability to fully map difficult fiber tracks such as the commissural fibers. Further
studies could look into these specific areas (Griffa et al., 2017; Thomas et al., 2014). This in
fact is one of the methodological shortcomings, as dMRI tractography is known to suffer from
both image acquisition and algorithmic problems (Jones, Knösche, & Turner, 2013), and by
default the yielded structural matrices obtain a proportion of false positive and false negative
connections (de Reus & van den Heuvel, 2013). In future work, the spatiotemporal framework
could be improved by adding probability of existence to every structural connection (Daducci,
Dal Palú, Descoteaux, & Thiran, 2016; Hinne, Heskes, Beckmann, & van Gerven, 2013).

Recently, the problem of motion artefacts has been debated in relation to the decreased sta-
tistical significance of some of the neurodevelopmental findings reported in previous literature
(Grayson & Fair, 2017). According to these reports, head motion tends to increase local func-
tional coupling and decrease long-range functional connectivity, which directly relates to some
of the findings in neurodevelopment (Grayson & Fair, 2017; Power et al., 2012; Satterthwaite
et al., 2012). There is an ongoing debate on the influence of the motion artefacts in fMRI stud-
ies (Power, Schlaggar, & Petersen, 2015). Various approaches have been proposed to attenuate
motion artefacts, involving the usage of motion nuisance regressors, global signal regression,
wavelet despiking, or motion censoring (Patel & Bullmore, 2016; Power et al., 2015; Siegel
et al., 2014). In light of these concerns, and in addition to the standard motion correction
procedures (see Methods and the Supporting Information), we applied a motion-correction strat-
egy tailored to fMRI point-process analysis: that is, the censoring (or scrubbing) of time points
possibly associated with motion (Carhart-Harris et al., 2014; Siegel et al., 2014; Tagliazucchi
et al., 2016). Moreover, we applied a stringent scrubbing correction by eliminating all the con-
nected components contained in at least one time point associated with motion (as opposedQ1
to simple individual time point scrubbing as done in standard point-process analysis; see the
Supporting Information). Finally, motion-derived signals were taken into account in regression
analyses.

CONCLUSION

In summary, we developed two novel measures to characterize how brain functional dynamics
evolve across neurodevelopment, from childhood to young adulthood. Our study suggests that
the brain in the adult population becomes more functionally integrative, as described by the
increased global SD values with age, while reducing its repertoire of brain dynamics, as shown
by the decreased global STD values with age. Although the aforementioned measures are only

Network Neuroscience 13



Reorganization of spatiotemporal patterns across development

two ways of describing the complex dynamics of brain development, they provide an original
conceptual approach to investigating the dynamic diversity of functional patterns, in relation
to well-known functional systems, as well as in relation to the temporal heterogeneity and
consolidation of the brain spatiotemporal organization. Understanding the dynamical aspects
of brain functional reorganization, taking place from childhood to adulthood, can not only help
elucidate fundamental mechanisms of brain development, but also improve our understanding
and early diagnosis of neurodevelopmental disorders. It is the authors’ hope that this study
could be a step in this direction.

METHODS

Participants

A total of 81 participants (101 data points) were considered for this developmental study. The
cohort’s age ranged from 6 to 33 years of age (median [inter-quartile range] = 16:2 [9:0]; seeQ2
the Supporting Information). Each subject underwent an MRI session on the 3 Tesla Siemens
Trio scanner at the Centre d’Imagerie Biomédicale (CIBM) in Geneva, Switzerland. The MRI
session consisted of three acquisition protocols: (a) a structural MRI acquired with T1-weighted
contrast (0.9 × 0.9 × 1.1 mm voxel resolution, TR = 2,500 ms, TE = 3 ms, TI = 1,100 ms,
acquisition matrix = 256 × 256, 192 slices, flip angle = 8◦); (b) a diffusion MRI (dMRI)
acquired with diffusion tensor imaging (DTI) sequence (2 × 2 × 2 mm voxel resolution,
TR = 8,800 ms, TE = 84 ms, flip angle = 40◦, 30 directions and maximum b = 1, 000s/mm2),
acquisition matrix = 128 × 128, 64 axial slices and slice thickness = 2 mm; and (c) a resting-
state functional MRI (fMRI) acquired for 8 min (2.4× 1.8× 3.2 mm voxel size, TR = 2, 400 ms,
TE = 30 ms, 38 slices, flip angle 85◦). During the fMRI acquisition, subjects were asked to
not fall asleep and let their mind wander while fixating their vision to the cross on the screen.
All participants provided a written consent, and the study was approved by the Institutional
Review Board of the Geneva University School of Medicine.

Structural Connectivity Template

In the spatiotemporal connectome, we used a template structural connectivity matrix derived
from a cohort of 68 subjects with diffusion spectrum imaging (DSI) acquisition. This structural
template has already been used in previous works (Griffa et al., 2017). In brief, the subjects’
structural MPRAGE volumes were delineated into white matter, gray matter, and cerebrospinal
fluid using FreeSurfer software, v.5.0.0. Then, the DSI dataset was reconstructed and the ori-
entation distribution function (ODF) was estimated in each voxel (Wedeen, Hagmann, Tseng,
Reese, & Weisskoff, 2005). With the upper limit of three, the main fiber orientation was con-
sidered as the largest maxima of the ODF in each voxel. Furthermore, deterministic streamline
tractography (Jones, 2008), with 32 streamline seeds per white matter voxel and per fiber ori-
entation, was performed. A boundary-based cost function (FreeSurfer) was used to register the
subject diffusion space (b0) to theMPRAGE and brain parcellation (Greve & Fischl, 2009). Mor-
phological brain parcellations and the diffusion data were taken together to obtain subject-wise
structural connectivity matrices. Thanks to the inclusion of high b-value diffusion encodings,
DSI data provide a more superior angular resolution of local diffusion profiles than low b-
value DTI data (Wedeen et al., 2008). DSI-based tractography can therefore resolve complex
fiber configurations and deliver a richer whole-brain tractogram and structural connectivity
information. For this reason, we chose this external structural connectivity template to build
the spatiotemporal connectomes of the children and young adults included in this study. The
structural template was constructed as a binary network where connection was considered if
at least 50% of the subjects possessed it see the Supporting Information).
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MRI Processing

The T1-weighted image segmentation delineated the white matter, gray matter, and cere-
brospinal fluid. Subsequent parcellation of the cortical mantel into 448 brain regions of interest
was done according to Cammoun et al. (2012), with subcortical structures excluded from the
analysis. The fMRI dataset was slice-time corrected and motion corrected using rigid-body
coregistration (Jenkinson, Bannister, Brady, & Smith, 2002). The scrubbing parameters, frame-
wise displacement (FD), andDVARSwere computed prior to further preprocessing steps (Power
et al., 2012, 2014). Special care was taken of the motion-induced artefacts, with an additional
14 scans excluded because of a number of motion-corrupted time frames exceeding 10% of
the total scanning time, for thresholds of FD= 0.4 mm and DVARS= 25. Additionally, a novel
scrubbing technique was performed in the multilayer graph space, where we discarded all con-
nected components implicated in motion-corrupted time frames, thus excluding any potential
functional activations that might have arisen several time points before or after the corrupted
time frame. (See the Supporting Information for further details on motion correction.) Next,
in order to allow signal stabilization, the first four time frames were excluded. Voxel-wise
signals were detrended and motion corrected, and physiological confounds were minimized
by regressing the average white matter and cerebrospinal fluid (CSF) signals, and the six mo-
tion signals (three translational and three rotational). The Hamming windowed-sinc FIR filter
was used to bandpass filter the preprocessed fMRI series (0.01–0.1 Hz). For each subject, the
T1-weighted volume and the derived brain cortical parcellation were linearly registered to the
mean fMRI volume (FSL software; Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012),
and an average fMRI signal was computed for each one of the 448 cortical regions. The MRI pre-
processing was performed in the subject space with the Connectome Mapper (Daducci et al.,
2012) and Matlab and Python scripts.

Spatiotemporal Connectome Construction

The preprocessed fMRI signal and the SC template were combined into a unified framework
previously named spatiotemporal connectome (Griffa et al., 2017). In detail, the fMRI time
series were z-scored and thresholded at 2 standard deviations in order to obtain a binary point-
process for each brain region (Tagliazucchi et al., 2012). A region-wise point-process is a bi-
nary sequence indicating the active (z-scored fMRI signal above the threshold) and quiescent
(z-scored fMRI signal below the threshold) time points for that region. For a choice of the
threshold, please refer to Griffa et al. (2017). Connections of the multilayer graph, G̃, were
created if two brain regions were both functionally coactive and structurally wired (according
to the above-described structural connectivity template). This has been performed for con-
nections taking place at the same time and across two successive temporal frames. By doing
so, the multilayer graph encoded weakly connected components (CCs; Kivelä et al., 2014)
representing the functional spreading of coactivation patterns on the structural brain scaffold.

Spatiotemporal Connectome Measures

Every CC of the multilayer graph G̃ can be thought of as encoding functional activation of
particular brain regions represented in time and space. Here, a particular CC is described as
a spatial activation map by defining a vector x = [x1, x2,…,xN ], where N is the number of
brain regions and xi represents the number of time points within a CC a brain region i is active

for. The spatial activation map is normalized by the vector l2-norm as x̄ =
√

∑
N
i=1 |xi|

2. By
characterizing the CCs using their spatial activation vectors, we can define two new measures
of brain dynamics, namely SD and STD.
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We defined the system diversity as a functional system histogram-based entropy measure.
First, we associated with each entry of the vector x̄ a functional system label f (according to
the classification of Yeo et al., 2011). Second, we built for each x a probability vector p̄ =

[p1, p2,…,pFS], where FS is the number of functional systems and p f represents the number of
regions within a CC labeled as belonging to a specific functional system f. Then, we computed
the functional system histogram-based entropy as SD = ∑

FS
f=1 −P(p f )logP(p f ), where P(p f )

is the probability mass function.

We defined the spatiotemporal diversity as the average cosine similarity between the spatial

activation maps of CC pairs as STDscale =
2*∑

scale
n=1 ∑

scale
m=n+1 simcos(x̄n ,x̄m)

(scale∗(scale−1))
, where simcos is the cosine

similarity between vectors x̄n and x̄m, and scale accounts for the number of CCs considered for
the calculation of the average STD value and is dependent on the chosen investigation scale.
For the “global” investigation scale, we considered all the CCs extracted from a set of spa-
tiotemporal connectomes. For the “functional system” scale, we considered all the CCs with
at least 20% of brain regions labeled according to a certain functional system f. For the “nodal”
scale, we considered all the CCs involving a specific brain region. Related Matlab and Python
scripts are publicly available at https://github.com/jvohryzek/STconnectomics_
dvlp (Vohryzek, 2019).

To assess the reliability of measurements (Xing & Zuo, 2018; Zuo, Biswal, & Poldrack, 2019;
Zuo, Xu, & Milham, 2019), we recalculated the nodal SD and STD cortical map for four runs
of the HCP dataset with 97 subjects (B. Chen et al., 2015; Zuo et al., 2014; Zuo & Xing, 2014).
The results can be found in the Supporting Information.
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