Ronay, Franz C; Wegehaupt, Florian J; Becker, Klaus; Wiedemeier, Daniel B; Attin, Thomas; Lussi, Adrian; Steiger-Ronay, Valerie (2019). Pure hydroxyapatite as a substitute for enamel in erosion experiments. Journal of dentistry, 84, pp. 89-94. Elsevier Science 10.1016/j.jdent.2019.04.002
Text
Ronay et al_J Dent_2019.pdf - Published Version Restricted to registered users only Available under License Publisher holds Copyright. Download (281kB) |
OBJECTIVES
The study evaluated the suitability of pure crystalline hydroxyapatite (HA) as a substitute for human (H) and bovine (B) enamel in erosion experiments.
METHODS
Human and bovine enamel and hydroxyapatite specimens (n = 18 each) were submitted to demineralisation by HCl at pH values of 3.0, 2.6 and 2.0 (1.0, 2.5, and 10 mmol/l concentration). Specimens were eroded in a superfusion chamber for 7 min (flow rate: 1 μl/s). Multiple fluid samples were taken per specimen throughout the exposure period. The dissolved calcium content was measured using a colorimetric assay with Arsenazo III reagent, to serve as surrogate for erosive substance loss. Additionally, erosive tissue loss was quantified by profilometry. Differences in erosive substance loss were assessed by the Kruskal-Wallis and Conover's posthoc test.
RESULTS
Good agreement in erosive substance loss between HA and human specimens was found at pH 2.6, as no statistically significant difference and considerable overlap of their respective interquartile ranges was observed. At pH 2.0 and 3.0, a statistically significant difference between HA and human and bovine enamel was determined. HA consistently tended to have lower mean dissolution rates, with a maximum deviation from human enamel of -16% at pH 3. It displayed lower specimen variability with an average coefficient of variation of 17%, compared to 25% (H) and 25% (B), respectively.
CONCLUSIONS
Crystalline hydroxyapatite may not be suitable for full substitution of biologic enamel in erosion experiments focusing on absolute measurement values, but is useful for establishing consistent relative trends between erosive agents due to biosimilar erosion behavior and lower experimental variability. This is especially true for preliminary studies where approval for use of biological samples is restricted.
CLINICAL SIGNIFICANCE
Crystalline hydroxyapatite is a useful substitute of human or bovine enamel in experiments studying chemical aspects of dental erosion.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
04 Faculty of Medicine > School of Dental Medicine > Department of Preventive, Restorative and Pediatric Dentistry |
UniBE Contributor: |
Lussi, Adrian |
Subjects: |
600 Technology > 610 Medicine & health |
ISSN: |
0300-5712 |
Publisher: |
Elsevier Science |
Language: |
English |
Submitter: |
Daniela Zesiger |
Date Deposited: |
03 Dec 2019 14:38 |
Last Modified: |
05 Dec 2022 15:32 |
Publisher DOI: |
10.1016/j.jdent.2019.04.002 |
PubMed ID: |
30959076 |
Uncontrolled Keywords: |
Bovine Calcium Demineralization Human Hydrochloric acid Profilometry |
BORIS DOI: |
10.7892/boris.135550 |
URI: |
https://boris.unibe.ch/id/eprint/135550 |