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ABSTRACT  
Multivariate Syndromic Surveillance (SyS) systems that simultaneously assess and combine information 

from different data sources are especially useful for strengthening surveillance systems for early detection 

of infectious disease epidemics. Despite the strong motivation for implementing multivariate SyS and 

there being numerous methods reported, the number of operational multivariate SyS systems in 

veterinary medicine is still very small. One possible reason is that assessing the performance of such 

surveillance systems remains challenging because field epidemic data are often unavailable. The objective 

of this study is to demonstrate a practical multivariate event detection method (directionally sensitive 

multivariate control charts) that can be easily applied in livestock disease SyS, using syndrome time series 

data from the Swiss cattle population as an example. We present a standardized method for simulating 

multivariate epidemics of different diseases using four diseases as examples: Bovine Virus Diarrhea (BVD), 

Infectious Bovine Rhinotracheitis (IBR), Bluetongue virus (BTV) and Schmallenberg virus (SV). Two 

directional multivariate control chart algorithms, Multivariate Exponentially Weighted Moving Average 

(MEWMA) and Multivariate Cumulative Sum (MCUSUM) were compared. The two algorithms were 
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evaluated using 12 syndrome time series extracted from two Swiss national databases. The two 

algorithms were able to detect all simulated epidemics around 4.5 months after the start of the epidemic, 

with a specificity of 95%. However, the results varied depending on the algorithm and the disease.  The 

MEWMA algorithm always detected epidemics earlier than the MCUSUM, and epidemics of IBR and SV 

were detected earlier than epidemics of BVD and BTV. Our results show that the two directional 

multivariate control charts are promising methods for combining information from multiple time series 

for early detection of subtle changes in time series from a population without producing an unreasonable 

amount of false alarms. The approach that we used for simulating multivariate epidemics is relatively easy 

to implement and could be used in other situations where real epidemic data are unavailable. We believe 

that our study results can support the implementation and assessment of multivariate SyS systems in 

animal health. 

 

KEY WORDS 

Syndromic surveillance, MEWMA, MCUSUM, time series, directional multivariate control charts, 

epidemic simulation  

 

INTRODUCTION 

Syndromic surveillance (SyS) is based on the real-time or near real-time analysis of health related data 

that are available prior to laboratory confirmation (Triple-S Project, 2011). Since the beginning of the 21st 

century, SyS has been used to enhance traditional passive disease surveillance, improve early warning 

systems, and for better control of emerging or re-emerging diseases. Multivariate SyS systems that 

simultaneously assess and combine information from different data sources have potential value for 

strengthening systems for early detection of infectious disease epidemics. Diseases often cause a wide 

variety of symptoms and/or affect different subpopulations. For example, abortion can only affect 
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breeding age females. A single syndrome time series (TS) cannot capture different types of information. 

We would not expect to capture information about a disease that causes diarrhea in adult cows by 

monitoring a TS of cattle abortions. To capture more of this information, SyS systems should be 

multivariate, because multiple data sources contain more information about the changing disease status 

of a population (Dorea and Vial, 2016; Wong et al., 2003). Including more data in a surveillance system 

and combining them in an appropriate way should provide greater event detection sensitivity and more 

confidence in the information produced by the system (Hopkins et al., 2017; Rolka et al., 2007).  

Numerous methods have been proposed for multivariate SyS using spatio-temporal or temporal 

approaches. Temporal approaches can be classified into three main categories (Sonesson and Frisén, 

2005; Vial et al., 2016): parallel monitoring, dimension reduction, and vector accumulation. Parallel 

monitoring is a method that combines univariate methods. Aberration detection algorithms are applied 

separately to each TS and an alert is raised depending on how many TS exceed a limit and how the results 

from individual TS are combined. Different rules or methods for combining results have been proposed. 

Recent examples in animal health have been reported (Brouwer et al., 2015; Burkom et al., 2011; Dorea 

et al., 2013). Dimension reduction methods summarize the components for each time point into one 

statistic. A popular reduction method is the Hotelling T2 statistic (Hotelling, 1947), but other approaches 

using Bayesian hypothesis testing have been proposed, see (Burkom et al., 2004; Faverjon et al., 2016) for 

examples in animal health. Vector accumulation approaches are methods in which information from each 

TS is accumulated and transformed into a scalar alarm statistic. Multivariate control charts such as 

Multivariate Cumulative Sums (MCUSUM) and Multivariate Exponential Weighted Moving Average 

(MEWMA) fall into this category (Frisén, 2011). See (Miekley et al., 2013; Whist et al., 2014) for examples 

from veterinary public health. Many multivariate control charts can detect change in TS means in any 

direction (Pignatiello and Runger, 1990). In early disease detection surveillance, the interest is often in 

detecting a change in only one direction, usually an increase. Occasionally a decrease is important but 
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rarely are both relevant in the same TS. In SyS, directionally sensitive multivariate control charts have 

been recommended to improve the aberration detection performance of the algorithms (Fricker, 2007; 

Joner et al., 2008; Yahav and Shmueli, 2014). Compared to Hotelling T2, MEWMA and MCUSUM have been 

reported to detect small shifts in the process mean and should be more effective for detecting an epidemic 

early in its course, when the number of cases is small, and the shift in the TS mean is minimal. 

Despite the strong motivation for implementing multivariate SyS, and numerous methods being available, 

the number of operational multivariate SyS systems in veterinary medicine is still very small (Dorea and 

Vial, 2016). One reason could be the gap between research and surveillance practice (Hopkins et al., 2017). 

This is especially true for methods to evaluate the detection performance of a SyS system, where examples 

in the public health literature are scarce, and even scarcer in veterinary public health (Colón-González et 

al., 2018; Dorea and Vial, 2016). Where examples exist, they focus only on a single disease and/or a limited 

number of syndromic data sources, using real (Brouwer et al., 2015; Burkom et al., 2011; Miekley et al., 

2013; Siegrist and Pavilin, 2004; Vial et al., 2016) or simulated epidemic data (Tokars et al., 2009; Xing et 

al., 2011; Yahav and Shmueli, 2014). Using real multivariate epidemic data for one disease raises the 

question of how the surveillance system will perform when there is an epidemic with different 

characteristics (i.e. a different epidemic shape), or if the epidemic were caused by a different disease. 

When multivariate epidemics are simulated, authors often report comparing algorithm performance 

under standardized conditions using, for example, a single epidemic peak with the same shape and 

magnitude, inserted into all the TS being monitored, at the same point in time. These simulated epidemics 

are far from representative of the behavior of real epidemics, and the results of the corresponding 

evaluations may not be generalizable in surveillance practice. Some reports have proposed simulating 

more realistic multivariate epidemics using approaches based on expert opinion, historical epidemic data, 

or compartment models (Colón-González et al., 2018; Faverjon et al., 2016; Lotze et al., 2007). However, 
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the number of examples in the literature is still scarce and the simulation of multivariate epidemics 

remains a challenge.  

Strengthening surveillance for early detection of animal diseases is a priority for Switzerland. It has been 

highlighted as an important component of the ‘Swiss Animal Health Strategy 2010’1 that aims to maintain 

or improve the high standard of animal health in the country. Switzerland has been officially free from 

Infectious Bovine Rhinotracheitis (IBR) since 1990 (Ackermann et al., 1990), and started an eradication 

program for Bovine Virus Diarrhea (BVD) in 2008 which dramatically reduced the number of incident BVD 

cases in the country (Zimmerli et al., 2009). Being able to detect re-emergences of these diseases quickly 

and with certainty is of primary importance for maintaining freedom from IBR and achieving freedom 

from BVD. The last two major cattle epidemics in Europe, Bluetongue virus (BTV) in 2006 (Zientara and 

Sánchez-Vizcaíno, 2013), and Schmallenberg virus (SV) in 2011 (Doceul et al., 2013), produced only a small 

number of disease cases in Switzerland. However, the risk of new epidemics of these diseases in Europe 

is far from negligible, as illustrated by the recent re-emergence of BTV in France (Courtejoie et al., 2018). 

Diseases such as IBR, BVD, BTV, and SV typically produce clinical cases with nonspecific clinical signs, 

making early epidemic detection difficult for traditional passive surveillance systems (Doherr and Audigé, 

2001). Multivariate SyS may hold promise as a method for strengthening early detection systems for re-

emerging cattle diseases in Switzerland. 

The purpose of this paper is to demonstrate a practical multivariate event detection method (directionally 

sensitive multivariate control charts) that can be easily applied in livestock disease SyS. We used real SyS 

TS from the Swiss cattle population as an example. Epidemics are required to estimate the performance 

of event detection algorithms. However, since epidemics of important diseases are often rare, we also 

present a standardized method for simulating multivariate epidemics using four diseases of interest for 

                                                           
1 See http://www.blv.admin.ch/gesundheit tiere/03007/index.html?lang=en. 
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Switzerland (BVD, IBR, BTV and SV) as examples. The detection performance of two directionally sensitive 

multivariate control charts were compared: directionally sensitive MEWMA (Joner et al., 2008), and 

directionally sensitive MCUSUM (Fricker, 2007). The detection performance of the two algorithms was 

compared using 12 syndrome TS extracted from two Swiss national databases.  

 

MATHERIAL AND METHOD 

1. Data collection and selection 

Two databases containing data from the national Swiss cattle population were used: the Swiss Animal 

Movement Database (AMD), and a database owned by the Association of Swiss Cattle Breeders (ASR). The 

AMD has been studied and reported to have potential value for syndromic surveillance because of its 

relatively high quality in terms of population representativeness and reporting timeliness (Struchen et al., 

2015). The ASR database contains clinical data collected by farmers. This database has not been 

investigated in Switzerland, but similar data have been reported to be of value for SyS in others 

countries(Dorea and Vial, 2016). The selection of candidate TS was based on the type of data available, 

organ systems potentially affected by the diseases under surveillance and cattle age groups.  

The AMD contains cattle mortality data reported by farmers to the national Swiss system for the 

identification and registration of cattle. All reported on-farm deaths and stillbirths for the period from 

January 1st, 2009 to December 31st, 2017 were extracted from the AMD. Four TS were created from this 

database. One was based on stillbirths (AMD_stillbirth) and three were based on categories of on-farm 

deaths defined according to the age at death: up to six months old (AMD_mortality_calves), 6 months to 

two years (AMD_mortality_young), and more than two years (AMD_mortality_adults). Beginning in mid-

2014, stillbirths in the AMD were defined as non-living fetuses expelled before the end of gestation, or 
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calves born dead within 24 hours following birth. Before that date, no official definition of a stillbirth 

existed in Switzerland.   

The Association of Swiss Cattle Breeders (ASR) (http://asr-ch.ch/en/asr/) is the private umbrella 

organization of the Swiss cattle breeding organizations. One of objectives of the ASR is coordination of 

the activities of its members. Since 2013 the ASR has developed and implemented a homogenized 

database containing cattle illness diagnoses reported by farmers and veterinarians. All cases are reported 

using a coding system with four levels ranging from least specific (i.e., organ affected) to most specific 

(e.g., infectious agent isolated). The data were available for the three most common breeds in 

Switzerland: Braunvieh, Fleckvieh and Holstein, which represent the majority of Swiss dairy cattle. The 

timeliness of reporting to this database is unknown. Data were available from January 1st, 2014 to 

December 31st, 2017. In the ASR database calves are defined as cattle up to 6 months of age. All the other 

animals are defined as adults. Three syndromes based on the most frequent diagnostic classification found 

in the database were created for each age category: gastrointestinal symptoms (i.e., ASR_GI_calves and 

ASR_GI_adults), respiratory symptoms (i.e., ASR_RESPI_calves and ASR_RESPI_adults), and cattle having 

a classification of “other” in the ASR classification schema (i.e., ASR_OTHER_calves and 

ASR_OTHER_adults). The category “other” encompasses various unspecific symptoms such as fever, 

anorexia, changing behavior or reduction in production. Two other syndromes based on fertility disorders 

(ASR_FERTILITY), and locomotion disorders (ASR_LOCO) were created but the data did not allow the 

distinction between calves and adults. 

In total, data for 12 syndromes were extracted from the two databases and converted to weekly 

syndrome TS (see figure 1). 
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2. Data simulation 

Detection performance was assessed using simulated data (epidemic-free baselines and multivariate 

epidemics). Time series modelling was used to create 300 simulated epidemic free baseline TS for each 

of the 12 TS selected for the study. These were copied 4 times (once for each of the 4 diseases included 

in the study). Three hundred multivariate epidemics were simulated for each of the 4 diseases included 

in the study and inserted into the corresponding set of 300 baseline TS. The output was one set of 300 

multivariate epidemics for each disease.  

2.1. Simulated epidemic-free baselines 

The Holt–Winters generalized exponential smoothing (HW) (Chatfield and Yar, 1988; Gardner, 1985) was 

used to model each syndrome TS and predict the value of the two next years of data. HW is a popular 

method used to make predictions using TS that contain a trend or seasonality. HW requires only two years 

of historical data. All the data available from 2013 to 2015 were used for model training and the HW 

parameters were determined through minimization of the squared prediction error (Kalekar, 2004). The 

data available from 2016 to 2017 were used for model validation and for the estimation of model 

prediction performance (see supplementary material 1). To simulate the epidemic-free baselines, we 

assumed that the number of cases reported on the week t followed a Poisson distribution with mean µt, 

where µt was the mean predicted value of the week t obtained with the best HW model. We then 

randomly sampled from each weekly Poisson distribution to simulate 300 epidemic-free baselines each 

containing two years of simulated data for each TS. 

2.2. Simulated multivariate epidemics 

No real epidemics of BTV, SV, IBR or BVD were present in the data, as there were no epidemics of these 

diseases in Switzerland during the study period. In order to assess detection performance of the 
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algorithms and to compare their performance for different diseases, we simulated multivariate epidemics 

based on expert opinion. We aimed at collecting information on the expected duration of a potential 

epidemic, and the proportion of diseased animals having a given clinical sign at a certain time during the 

epidemic period. We were not able to find the information we required in the literature at the desired 

level of detail in a standardized manner for the diseases of interest. Expert elicitation is an accepted 

method for estimating information when data are unavailable or difficult to collect and it was deemed the 

most appropriate method to meet our objectives. Three veterinary experts were selected based on their 

experience, and clinical and scientific knowledge: a) two large animal practitioners and researchers at the 

University of Bern Farm Animal Clinic, b) one veterinary official from the disease control department of 

the Swiss Federal Food Safety and Veterinary Office. Questionnaires were administered by personal 

interviews.  Experts were questioned about the proportion of diseased animals showing each of 12 

syndromes over the course of an epidemic. The experts suggested that for some of the selected diseases, 

infected animals would show different disease syndromes during different stages of the epidemic. Based 

on their recommendations, we divided the simulated epidemics into four consecutive periods (T = 1, T = 

2, T = 3, T = 4) of equal length. We asked the experts to estimate the proportion of infected animals that 

would show each syndrome during each of the four periods of the epidemic.  Two age classes were 

considered – calves and adult cows.  This information was used to simulate 300 multivariate epidemics 

for each of the four diseases in the study (examples of simulated epidemics are presented in 

supplementary material 2).  

The four consecutive steps in the multivariate epidemic simulation process are reported in table 1. 

Epidemic cases for each disease were added to simulated epidemic free baseline TS at randomly selected 

times between the first week of the first year of an epidemic free baseline TS and the 16th week of the 

second year of an epidemic-free baseline TS. Since the epidemics were 36 weeks long, the last 36 weeks 
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of the second year of the simulated epidemic-free baseline were exculded from the random selection to 

ensure that all the inserted epidemics had the same duration.  

Steps Parameters Value or Estimation 
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1.1 Shape of the epidemic curve  Linear increase for all four diseases  

1.2 Length of the epidemic (t_max) t_max= 36 weeks (based on expert opinion)  

1.3 Total number of animals newly affected during the last 
week of the epidemic (cases_max) 

cases_max = 400 (assumption) 

1.4 Number of newly infected animals for each week (t = 1,2, 
3…t_max) of the epidemic period (Inf_tott) 

Based on the step 1.1, Inf_tott was estimated as 
follow: 

 Inf_tott = |t*cases_max / t_max| 
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2.1 Incidence of the disease in calves (Inc_calves) and adults 
cattle (Inc_adults)  

We assumed that the four diseases would infect 
calves and adult cattle equally. Therefore we 
assumed that the incidence of the diseases in the 
two age groups should equal the proportion of 
each age group in the Swiss cattle population: 

 Inc_adults = 0.75  

 Inc_calves = 0.25  

2.2 Number of newly infected calves (Inf_calvest) and adult 
cattle (Inf_adultst) for each week t of the epidemic period  

 Inf_calvest = Inf_tott * Inc_calves 

 Inf_adultst = Inf_tott  * Inc_adults 
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3.1 Percentage of infected animals showing the syndrome S at 
the time period T (ST) 
Each epidemic was divided into four equal periods T (i.e., first 
quarter of the epidemic = T1, second quarter of the epidemic = 
T2, third quarter of the epidemic = T3, last quarter of the 
epidemic = T4). The percentage of infected animal showing 
each Syndrome S varied by the epidemic period T. 

Examples: 

 Percentage of infected calves showing respiratory 
syndrome (S = RESPIcalves) at the start of the epidemic 
(T=1) is noted RESPIcalvesT1 

 Percentage of infected calves showing respiratory 
syndrome (S = RESPIcalves) in the middle of the epidemic 
(T=2) is noted RESPIcalvesT2 

 Percentage of infected calves showing respiratory 
syndrome (S = RESPIcalves) at the end of the epidemic 
(T=3) is noted RESPIcalvesT3 

 Percentage of infected calves showing respiratory 
syndrome (S = RESPIcalves) at the end of the epidemic 
(T=4) is noted RESPIcalvesT4 

 Percentage of infected calves showing gastrointestinal 
syndrome (S = GIcalves) at the start of the epidemic (T=1) 
is noted GIcalvesT1 

 Etc. 

The minimum, most likely and maximum values 
of ST were based on expert opinion (see details in 
supplementary material 3). Each ST was then 
represented as a beta PERT distribution using the 
values defined by the experts as parameters. 
 
For each simulation of a multivariate epidemic, 
we randomly sampled a value for ST from the 
corresponding beta PERT distributions.  

3.2 Number of infected animals showing each syndrome S at 
week t of the epidemic (Inf_St) 

Example of calculation given for the syndrome S 
related to calves at the week t (with t included in 
the time period T1):  

 Inf_St = Inf_calvest * ST1 
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4.1 Percentage of animals infected, showing clinical signs AND 
reported in AMD (ReportingAMD) and ASR (ReportingASR) 

Expert opinion:  

 ReportingAMD = 1 

 ReportingASR = 0.5 

4.2 Number of animals infected, showing clinical signs AND 
reported in each syndrome S during the week t, with t 
included in the time period T (NSt) 

Example of calculation given for the syndrome S 
related to calves and ASR data during the week t 
(with t included in the time period T1):  

 NSt = Inf_St * ReportingASR 

Table 1: Consecutive steps used for multivariate epidemic simulation, associated parameters description and estimations 

 

3. Multivariate control charts 

The 12 TS in the study were assumed to be conditionally independent. The conditional independence 

assumption means that we assume that the TS are independent only when there is no epidemic ongoing 

in the population. This is an important difference as the purpose of the multivariate detection algorithms 

we used in this study is to detect the point in time when TS start to be correlated. An animal reported in 

one  TS could be reported  in another TS. However, we considered this event to be  rare and randomly 

distributed in the data because: i) 98.6% of the cattle reported sick in ASR showed only one clinical sign, 

ii) endemic diseases in calves are rarely associated with diseases in adult cattle, and iii) we assumed that 

diseases  considered in our study were  only occasionally associated with the death of the animal. 

Conditional independence between TS meets the statistical process control chart assumption that input 

variables are independent and identically distributed multivariate normal random vectors. To meet the 

normality assumption, a one week differencing (i.e., computation of the difference between consecutive 

observations) was used to remove the temporal effects present in the raw data. The differenced residuals 

were saved as new TS. Multivariate normality of the differenced residuals was assessed and confirmed 

using the HenzeZirkler’s test (Henze and Zirkler, 1990). The two multivariate statistical process control 

chart algorithms were implemented on the differenced residual TS. 

Algorithms were implemented in R x64 version 3.0.2 (R Development Core Team, 2008). Multivariate 

normality was assessed using the R package {MVN} (Korkmaz et al., 2014). The covariance matrix and the 
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mean vector were estimated using the historical data available from 2013 to 2015, using the function 

‘mult.chart’ from the R package {MSQC} (Montgomery, 2009; Santos-Fernandez, 2013).  

 

 Directionally sensitive MEWMA 

The original MEWMA proposed by Lowry (Lowry et al., 1992) is Hotelling T2 control chart applied to EWMA 

statistics instead of the original data. The MEWMA is based on cumulative differences between observed 

data in a time window, and a threshold. Joner (Joner et al., 2008) proposed a directionally sensitive version 

of the algorithm based on the equation:  

𝑍𝑡 =  {
 max { 0, λ(X𝑡 − 𝜇) + (1 − λ)Z𝑡−1}            𝑖𝑓 𝑡 > 0
 0                                                                          𝑖𝑓 𝑡 = 0

     (1) 

where λ is a smoothing parameter (0 ≤ λ ≤ 1) that determines the relative weight of the current observed 

values (Xt) in relation to past values, and µ is the target mean of the process. Zt is a vector of the weighted 

average of the current observations standardized around 0 and it has a covariance matrix ∑Zt at time t 

equal to  
λ(1−(1−λ)2𝑡)

2−λ
∑ , with ∑ being the covariance matrix of Xt. When t → ∞, then ∑Z∞ equals to 

λ

2−λ
∑. 

The inverse of ∑Z∞, ∑Z∞
-1, corresponds to the partial correlation of the variables once you condition on all 

other variables and is used to compute the MEWMA chart statistic: 𝑀𝐸𝑊𝑡 = 𝑍𝑡′ ∑ 𝑍𝑡
−1
𝑍∞

. 𝑍𝑡′ is the 

transposed vector of 𝑍𝑡 . Five values of λ were evaluated: 0.1, 0.2, 0.3, 0.4, and 0.5.  

 Directionally sensitive MCUSUM 

Many versions of MCUSUM have been proposed. In this study, we chose the method suggested by Crosier 

(Crosier, 1988) and adapted for directional sensitivity by Fricker (Fricker, 2007). This directionally sensitive 

MCUSUM is based on the equation:  

St = {
 max { 0 , (𝑆𝑡−1 + 𝑋𝑡 − µ) ∗ (1 −

𝑘

𝐶𝑡
)}         𝑖𝑓 𝐶𝑡 > 𝑘

 0                                                                              𝑖𝑓 𝐶𝑡 ≤ 𝑘
       (1) 

Jo
ur

na
l P

re
-p

ro
of



Where k represents the expected magnitude of the distance between the target mean of the process and 

the actual mean of the process, µ is the target mean of the process, and Ct = [(𝑆𝑡−1 + 𝑋𝑡 − µ)’ ∑−1
(𝑆𝑡−1 +

𝑋𝑡 − µ)]
1/2

 with ∑-1  being the inverse of the covariance matrix of Xt . The procedure starts with S0 = 0 and 

is sequentially calculated. Five different values of k were evaluated: 0.1, 0.2, 0.5, 0.7 and 0.8. 

4. Assessing aberration detection performance  

Each week of observation was classified as true positive (TP) if a certain upper control limit (UCL) was 

exceeded on a week that was part of an epidemic. An undetected week of an epidemic was classified as 

false negative (FN). Each week in a non-epidemic period was considered a true negative (TN) if no alert 

was generated and a false positive (FP) if an alert was generated. Accuracy was evaluated using: the 

sensitivity based on the number of epidemics detected out of all inserted epidemics (Se_out), the 

sensitivity based on the number of weeks in an epidemic period in which an alarm was triggered (Se_wk), 

the specificity (Sp), the positive predictive value (PPV) and the negative predictive value (NPV). Se_out 

was calculated for all 300 simulated epidemics-baseline TS pairs combined. The parameters Se_wk, Sp, 

PPV, NPV were calculated for each epidemic-baseline TS pair. These parameters were calculated as follow: 

Se_out = epidemics detected /total number of epidemics inserted     

Se_wk = TP/(TP+FN)      

Sp = TN/(TN + FP)      

PPV = TP/(TP + FP)        

NPV = TN/(TN + FN) 

 

For disease detection, it was not important for all weeks of an epidemic to be recognized, but it was crucial 

for an epidemic to be detected at least once and that it should be detected early in the course of the 

epidemic. Therefore, the Se_out was considered more important than Se_wk. The timeliness of the first 
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alarm raised during an epidemic was computed (detection timeliness) as the time lag (in weeks) between 

the start of the epidemic and the first alarm. The average (Tmean), median (Tmed), t minimum and 

maximum values (Tmin and Tmax), and the standard deviation of the timeliness (Tsd) were computed 

using the results from all 300 simulated baselines with epidemics. 

Because a large number of false positive alarms would quickly become unmanageable in surveillance 

practice, we set the UCLs at a maximum of 5% false positive alarms. These UCLs were considered the 

optimal alarm thresholds for each algorithm and named UCL5%. The UCL5% were defined for each 

algorithm and each set of parameters by using the 300 epidemic-free simulated baselines.  

RESULTS 

 Expert opinion and multivariate epidemic simulation 

Experts estimated the proportion of diseased animals showing individual clinical signs or syndromes in 

different stages of an epidemic. Respiratory syndromes in calves and cows were estimated to be highly 

prevalent for IBR. Anorexia/weight loss/apathy were more prevalent in diseased animals infected with SV. 

However, for most clinical signs the differences between the diseases were not very large. Mortality 

values did not vary greatly between diseases. Stillbirths and abortions in diseased animals were estimated 

to occur in similar levels for all four pathogens. Milk loss and other productive deficits were present in 

every disease, although the experts highlighted BVD as the disease where this syndrome was particularly 

prevalent. Results of the expert opinion survey can be found in supplementary material 3. 

 Overall detection performance using simulated data 

The upper control limits producing 5%  false positive alarms (UCL5%) were computed for each algorithm 

and each set of parameters tested (i.e., k for MCUSUM and λ for MEWMA) by considering all the simulated 
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diseases epidemics together. The results and their corresponding overall epidemic detection performance 

are reported in table 2.   

For MEWMA, the highest Se_wk and PPV were obtained with smaller values of λ. The timeliness of the 

detection was lowest for λ equal to 0.3. When λ increased or decreased, the time to the first true alarm 

(TP) increased. The shortest average time for detection for MCUSUM was obtained with a k value of 0.5. 

However, for this value of k, PPV was one of the lowest values obtained and Se_wk one of the largest.  

At UCL5%, both algorithms were able to correctly detect more than 97% of the epidemics inserted, with 

PPV varying between 86.9 and 95.0. Se_wk and NPV were low overall and never exceeded 40% and 62% 

respectively. The mean time of detection (Tmean) varied a lot depending on the algorithm. MEWMA 

always outperformed MCUSUM. MCUSUM had the shortest average time for detection (Tmean values 

ranged between 8.6 and 10.6 weeks) compared to MCUSUM (Tmean values ranged between 14.6 and 

16.6 weeks) regardless of the parameters used. 

Algorithm UCL5% Tmean Se_out Se_wk NPV PPV 

MCUSUM 

k = 0.1 11 16.6 97.8 34.0 59.3 94.8 

k = 0.2 9.5 15.8 98.2 35.5 59.6 93.0 

k = 0.5 6.5 14.6 99.8 34.6 59.2 91.9 

k = 0.7 5.5 14.9 99.9 30.3 57.9 94.6 

k = 0.8 5.0 15.3 100 25.8 56.4 92.3 

MEWMA 

λ = 0.1 55.5 10.6 100 39.1 61.2 95.0 

λ = 0.2 35.5 8.9 100 32.3 58.4 91.6 

λ = 0.3 29.5 8.6 100 28.3 57.0 90.0 

λ = 0.4 27.5 9.1 100 25.2 55.9 88.1 

λ = 0.5 27.0 9.5 100 23.6 55.3 86.9 

Table 2: Overall detection performance obtained with MEWMA and MCUSUM for different parameter values at the upper 

control limit producing 5% false positive alarms (UCL5%). detection, Tmean = mean time of detection, Se_out =  sensitivity 

based on the number of epidemics detected out of all inserted epidemics, Se_wk = weekly sensitivity, NPV = negative predictive 

value, PPV = positive predictive value 

 

 Individual disease detection performance using simulated data 
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Detection performance was computed separately for each simulated disease. Based on the previous 

results and because our objective was to favor early detection, we set the parameters λ and k of MEWMA 

and MCUSUM respectively at 0.3 and 0.5 for the rest of the analysis. The results obtained with these 

parameters at the UCL5% previously defined are reported in table 3. 

Algorithm UCL5% Disease Tmin Tmax Tmean Tmedian Tsd Se_wk Sp NPV PPV 

MCUSUM, 
K = 0.5 

6.5 

IBR 1 29 11.4 11 5.5 49.6 96.8 65.1 94.0 

SV 1 24 13.6 15 7.8 44.1 97.0 62.8 93.9 

BTV 1 35 16.3 18 9.3 22.6 96.8 55.7 87.5 

BVD 1 35 16.9 19 9.5 22.1 96.9 54.8 88.0 

MEWMA, 
λ = 0.3 

29.5 

IBR 1 14 7.2 9 2.8 38.7 96.7 60.5 92.4 

SV 1 22 8.1 7 5.2 35.0 97.0 59.2 92.4 

BTV 1 28 9.0 8 6.1 19.7 96.6 54.7 85.2 

BVD 1 28 10.2 9 6.5 20.0 96.8 54.1 86.5 

Table 3: Specific detection performances obtained with MEWMA and MCUSUM for the parameters values minimizing the time 

for detection and for each disease (i.e., Infectious Bovine Rhinotracheitis (IBR), Schmallenberg virus (SV), Bluetongue virus 

(BTV), and Bovine viral diarrhea (BVD)). UCL5% = upper control limits producing 5% false positive alarms, Tmin = time minimal 

of detection, Tmax = time maximal of detection, Tmean = mean time of detection, Tmedian = median time of detection, Tsd = 

standard deviation of the time of detection, Se_wk = weekly sensitivity, Sp = specificity, NPV = negative predictive value, PPV = 

positive predictive value 

 

The two algorithms detected 100% of the simulated epidemics. IBR epidemics were detected earlier on 

average (i.e., shorter average timeliness and higher Se_wk) than epidemics of the other diseases. 

Epidemics of SV were detected 1 to 3 weeks later than IBR epidemics. Epidemics of BTV and BVD were the 

most difficult to detect and had similar detection performance.  

The MEWMA algorithm always outperformed MCUSUM especially for detection timeliness. The average 

and median time to detection (Tmean and Tmedian, respectively) were shorter and the standard deviation 

(Tsd) and maximum time to detection (Tmax) were smaller. 

 

DISCUSSION 
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To our knowledge, this is the first report of directionally sensitive multivariate control charts being 

evaluated for animal health surveillance (Dorea and Vial, 2016). The method was easy to implement and 

the results were easy to interpret because all the information contained in the different TS were combined 

in one unique statistic. However, combining information from all TS into one statistic is also limitation of 

the approach. It was not possible to identify which TS contributed the most to the alarms raised. 

Surveillance practitioners would have to go back to the raw data to identify the TS contributed to an alarm. 

This is not a major limitation but it is a practical concern that should be considered when implementing 

multivariate control charts in field settings.  

 

The multivariate control charts evaluated in our study detected all simulated epidemics of BVD, IBR, BTV 

and SV between 2 and 3.6 months after the start of the epidemic, with 95% specificity. Comparing the 

detection performance obtained in our study to the current Swiss surveillance system is difficult because 

there is little data or information available about epidemics of these diseases in the country. With the 

exception of Schmallenberg, active surveillance systems for the diseases included in this study are in place 

in Switzerland. Programs to assure freedom from IBR and BVD are in operation. A risk-based selection of 

farms is performed yearly for IBR. Sampling is conducted in both dairy (through bulk-milk sampling in 

January and April) and non-dairy farms (blood sample are taken between January and May). For BT, blood 

samples are collected at slaughterhouses at the end of the vector season (beginning of November). In 

2008, an eradication program for BVD was initiated in Switzerland. At the moment, the sampling 

procedure (including frequency and type of sampling) depends on the type of cattle farm (dairy versus 

non-dairy) and the presence of persistently infected animals on a farm in the previous 36 months (BLV, 

2018). Based on expert opinion, we estimated 9 months (the maximum length of simulated epidemics in 

our study) to be the maximum time needed, on average, to identify an epidemic of IBR, BVD, BTV or SV in 

Switzerland with the current Swiss active surveillance systems. Using this as a standard for comparison, 
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the multivariate control charts implemented in our study have the potential to strengthen the early 

detection surveillance in Switzerland. However, our study is simulation based and more information is 

needed before definitive conclusions can be made.  

 

The two algorithms had the same overall sensitivity and specificity but performed differently in terms of 

detection timeliness. The MEWMA always detected epidemics earlier that the MCUSUM. These results 

are in contradiction to Fricker (Fricker et al., 2008) who reported that the two algorithms had very similar 

performance. We used a different method for epidemic simulation and this may explain the observed 

differences between the two studies. Fricker (Fricker et al., 2008) reported using simple simulated 

multivariate epidemics that had a linear increase in the number of cases and that were inserted at the 

same time point in all TS. In our study, the simulated epidemics where more subtle. For example, in some 

of our TS, there were no epidemic cases added because the experts consulted did not expect additional 

cases to appear in these TS (see supplementary material 3). In addition, the increases in the number of 

cases were not always inserted at the same time point in all TS because the experts indicated there might 

be a delay in the appearance of some syndromes. It is well known that multivariate control charts are 

affected by the so-called inertia problem (Woodall and Mahmoud, 2005). This problem arises because 

control charts accumulate information over time, and tend to detect changes occurring in the data with 

some delay especially when only small changes occur. The multivariate control charts tested in this study 

are reported to be less severely affected by the inertia problem than other multivariate control charts 

(Joner et al., 2008). Our results suggest that MEWMA is more robust than MCUSUM to the inertia 

problem. The time to the first true positive alarm using the MCUSUM algorithm was almost double that 

of the MEWMA. Fricker (Fricker et al., 2008) suggested that the MEWMA should be selected over the 

MCUSUM because it is easier to develop an intuitive appreciation for how to choose λ than k. We suggest 
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it should also be selected because it is less sensitive to the inertia problem, especially when subtle changes 

occur in the TS. 

 

Differences in detection performance were observed between the four diseases. Timeliness of detection 

was shorter and Se_wk was higher for both algorithms for epidemics of IBR and SV compared to epidemics 

of BVD and BTV. We expected to see differences, because our experts expected BTV and BVD to produce 

more subtle clinical signs than the other diseases. For this reason, epidemics of these two diseases were 

predicted to be more difficult to detect. These results however heavily depend on the approach used to 

simulate the epidemics of the different diseases. In this study, we assumed that the number of animals 

infected, differences between adults cattle and calves, the shape and length of the epidemics, and the 

rate of underreporting were fixed for all diseases and TS. If short simulated epidemics were used, some 

of them may not have been detected at all and this would have resulted in reduced detection 

performance. For this reason, we simulated long (9 months) epidemics in order to completely explore the 

variation in detection timeliness. The rate of underreporting in ASR data was estimated to be 50% and no 

underreporting was taken into account for the AMD data. These assumptions are probably optimistic 

especially given the fact that it is known that AMD data have a reporting delay (Struchen et al., 2017) that 

may affect detection performance to a greater or lesser degree in the case of a real epidemic. These 

assumptions may have resulted in over- or underestimation of the overall detection performance of the 

algorithms tested. Most importantly, having fixed the number of animals infected, the shape and length 

of the epidemics and the prevalence between adult cattle and calves means that the differences of 

detection performances between the diseases are only due to differences in terms of percentage of 

infected animals showing certain clinical signs. Choosing a different set of parameters for these 

assumptions for each disease could have produced different results. We decided to fixe these parameters 

for the sake of simplicity but it would be easy to modify them using our epidemic simulation approach. In 
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future studies, it would be interesting to investigate how changes in these parameters would affect the 

detection performance of the algorithms and especially the difference observed between the four 

diseases. 

 

We present a standardized approach for simulating multivariate epidemics caused by different diseases. 

Simulations have the advantage of allowing a full sensitivity analysis and testing multiple epidemic 

settings, which is essential for SyS assessment. This can rarely be done with real epidemics, as there is 

seldom enough data (Buckeridge et al., 2004). However, using simulated epidemics always raises 

questions about the validity and reliability of the results. In our study, the percentage of infected animals 

showing certain clinical signs was estimated based on expert opinion. Initially we tried to find this 

information in published literature. We were not able to find much useful epidemic data because there is 

huge variation in how epidemics are reported. There are no standards for epidemic reporting which is 

crucial for obtaining descriptive information that can be compiled across epidemics. Information about 

clinical signs is rare. We were specifically looking for the proportion of diseased animals showing specific 

clinical signs that would be present in our data. Outbreak reports more commonly contain other 

denominators such as the number of animals in the farm, region or country. For these reasons, we 

abandoned the literature search in favor of expert opinion. Expert opinion is an accepted method to 

obtain information when data are unavailable or difficult to collect and has been previously used for 

epidemic simulation (Faverjon et al., 2016). It should be pointed out that this process can introduce bias. 

The information we required is very specialized. It is related not only to diseases studied, but also to the 

characteristics of each disease within the Swiss cattle population and to the way that data are collected 

in Switzerland. Because of the uniqueness of the Swiss cattle production system, we expect this 

information is specific to Switzerland and may not be generalizable to epidemics in other countries. There 

are few experts who have the knowledge we needed, and their knowledge was likely to have been 
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influenced by their experience. It is also worth mentioning that due to the length and complexity of the 

interview, experts were not required to provide an interval of values for their estimates. Therefore, the 

parameters used in the beta PERT distributions reflect the range of individual estimates. More 

standardized and detailed outbreak reporting could provide the data required to substitute for expert 

opinion. Another option would be to use complex disease transmission models to estimate the number 

of animals infected and those showing symptoms during epidemics of BVD, IBR, Bluetongue or 

Schmallenberg. For example, Colón-González (Colón-González et al., 2018) proposed a framework based 

on compartmental models to simulate multivariate epidemics in public health. However, there were no 

published reports containing data for the 4 diseases used in this study that could be adapted to the Swiss 

cattle production system, making it impossible to implement a similar approach in our study. Developing 

compartmental models is quite technical and demands resources, which may limit their use. Eliciting 

expert opinion for multivariate epidemic simulation is cost-efficient and currently may be the most 

appropriate way to evaluate multivariate SyS system performance under field conditions where reliable 

data and other or resources are scarce.  

 

 

CONCLUSION 

The directional multivariate control charts evaluated in this study appear promising for combining 

information from multiple TS for early detection of subtle changes occurring in a population while 

maintaining the number of false positive alarms to a reasonable amount. The method was easy to 

implement and the results were easy to interpret because all the information contained in the different 

TS were combined in one unique statistic. The approach that we proposed for simulating multivariate 

epidemics has some limitations but is a solution for assessing the performance of multivariate event 
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detection in the absence of real multivariate epidemic data. We believe that our results can support the 

implementation and assessment of multivariate SyS systems in animal health. 
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