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ARTICLE INFO ABSTRACT

Keywords: In order to elucidate the question whether resistance to nitro drugs in G. lamblia is due to common resistance
Adaptation markers, trophozoites of three resistant G. lamblia strains, namely C4, 1062ID10, and 713M3 were grown in the
Drug susceptibility presence of the two nitro drugs metronidazole and nitazoxanide and compared to their corresponding wild-types
fr{:ii:ﬁc: WBC6, 106, and 713 by mass spectometry shotgun analysis of their proteomes. Depending on the strain and the

nitro drug, more than 200 to 500 differentially expressed proteins were identified, but there were no common
patterns across strains and drugs. All resistant strains underwent antigenic variation with distinct surface an-
tigens like variant surface proteins or cysteine rich proteins depending on strain and nitro compound. A closer
look on enzymes involved in nitroreduction and detoxification of nitro radicals, NO or O, suggested the existence
of distinct strategies for each drug and each strain. Therefore, we conclude that resistance to nitro drugs in G.
lamblia is not correlated with a specific pattern of differentially expressed proteins and therefore seems not to be
the result of a directed process.

1. Introduction

Giardia lamblia (syn. G. duodenalis; G. intestinalis), a flagellated,
amitochondrial, binucleated protozoan (Plutzer et al., 2010; Miiller and
Miiller, 2016; Cernikova et al., 2018), is a common causative agent of
persistent diarrhea in developing (Squire and Ryan, 2017) as well as in
industrial (Zylberberg et al., 2017) regions. Giardiasis is commonly
treated with the nitro compounds metronidazole (MET), other 5-ni-
troimidazole compounds, or nitazoxanide (NTZ). Albendazole (ALB) is
a valuable alternative in the case of resistance to nitro drugs (Nash,
2001; Minenoa and Avery, 2003; Huang and White, 2006). Moreover,
G. lamblia is susceptible to a variety of antibiotics because of its pro-
karyote-like transcription and translation machineries (Miiller and
Hemphill, 2013). According to a commonly accepted model, nitro
compounds are activated by reduction yielding toxic intermediates
causing nitrosative stress (Lloyd et al., 2003; Miiller and Miiller, 2016).
The electrons are provided by pyruvate ferredoxin oxidoreductase
(PFOR) as reviewed elsewhere (Brown et al., 1998; Leitsch et al., 2011).
Other enzymes potentially involved in the reduction of nitro drugs are
the nitroreductases NR1 (Nillius et al., 2011; Ansell et al., 2017) and
NR2 (Miiller et al., 2013, 2015), and thioredoxin-reductase (Leitsch
et al., 2011, 2016). Moreover, the NO reducer flavohemoglobin
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(Mastronicola et al., 2010) may play a role as scavenger. Despite the
fact that resistance formation to nitro compounds is eagerly detected
both in vitro and in vivo, the molecular basis of resistance formation is
far from being elucidated. Freshly obtained, resistant patient isolates
would be optimal, but they are difficult to maintain in axenic culture.
Therefore, most of the studies generate resistant “model” strains in vitro
and compare them with isogenic wild-type strains (Upcroft, 1998;
Leitsch, 2015). In accordance to the prevailing model for the mode of
action of nitro drugs, one would hypothesize that resistant trophozoites
have decreased amounts of enzymes involved in nitroreduction, and
that this decrease is due to regulations at transcriptional and/or post-
transcriptional levels. The observation that knock-down of PFOR is
correlated with increased resistance to metronidazole (Dan et al., 2000)
fosters this hypothesis. Studies with MET-resistant strains have re-
vealed, however, that resistance is not always correlated with reduced
PFOR activity (Miiller et al., 2007, 2018). Thus mechanisms of action
independent of POR activity may exist as suggested by early studies
showing genome rearrangements in resistant strains (Upcroft et al.,
1990; Upcroft and Upcroft, 1993). Moreover, transcriptional changes
evidenced by differential analyses using microarrays followed by
quantitative RT-PCR on selected transcripts (Miiller et al., 2008) and
strand-specific RNA sequencing (Ansell et al., 2017) reveal profound
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differences in gene expression between susceptible and resistant strains
including different expression profiles not only of genes involved in
nitroreduction, but also of genes coding for variant surface proteins
(VSPs) and others. These results are backed by a recently published
proteomic study (Emery et al., 2018) where — depending on the stains —
more than 200 differentially regulated proteins have been identified.

Are these changes in gene expression directed or undirected? If
changes in gene expression are directed, a common pattern of genes
involved in resistance formation should be identified, if not, the pattern
is random, and there is no common pattern of resistance markers be-
tween different strains and different nitro drugs. Our working hypoth-
esis is that these changes are undirected.

Since gene expression patterns in G. lamblia may be influenced by
biotic parameters such as strain genotypes and abiotic parameters such
as the composition of the culture media, for instance, it is difficult to
find an underlying common pattern by comparing studies performed by
different groups on different strains. Moreover, it would be interesting
to investigate whether results observed with resistant strains grown in
the presence of MET can be extrapolated to other nitro compounds such
as NTZ. Therefore, comparative omic approaches with various strains
resistant to more than one nitro drug grown in the presence of several
drugs under the same conditions are paramount. In particular, shotgun
mass spectrometry is a valid tool to investigate this hypothesis as shown
by previous studies (Emery-Corbin et al., 2018; Emery et al., 2018).

Here, we present a proteomic study comparing three different MET
resistant strains, namely C4 derived from the wild-type strain WBC6,
1062ID10 derived from 106, to 713M3 derived from 713 to their re-
spective wild-types. The strains belong to assemblage Al, and do not
fully represent the assemblage more commonly found in humans, such
as assemblage A2 and B, that have relevant differences at genomic level
with assemblage Al (Emery et al., 2015). Strain C4 has been generated
by successive increase of NTZ in the culture medium as described
(Miiller et al., 2007). The strains 1062ID10 and 713M13 have been
obtained characterized in detail more than two decades ago by the
Upcroft group (Upcroft et al., 1990, 1999; Townson et al., 1992; Leitsch
et al., 2011). The three strains are not only resistant to both MET and
NTZ, but susceptible to ALB. Therefore, we include a comparison be-
tween those strains grown on MET and on NTZ into our study.

2. Materials and methods
2.1. Biochemicals and drugs

If not otherwise stated, all biochemical reagents were from Sigma
(St Louis, MO, USA). Nitazoxanide (NTZ) was synthesized at the
Department of Chemistry and Biochemistry, University of Bern,
Switzerland (Ch. Leumann). NTZ and metronidazole (MET) were kept
as 100 mM stock solutions in DMSO at —20 °C.

2.2. Axenic culture, harvest and storage of G. lamblia trophozoites

Trophozoites from G. lamblia wild-type " (WBC6. 106, 713)" and of
the NTZ/MET resistant strains " (C4, 1062ID10, 713M3)" were grown
under anaerobic conditions in 10ml culture tubes (Nunc, Roskilde,
Denmark) containing modified TYI-S-33 medium as previously de-
scribed (Clark and Diamond, 2002) Prior to shotgun mass spectrometry
analysis, cultures from resistant strains were routinely passaged 5 times
in the presence of 50 uM NTZ or MET, respectively. Subcultures were
performed by inoculating 20 pl (wild-type) or 100 pl (resistant) of cells
from a confluent culture detached by cooling (see below) to a new tube
containing 10 ml of the appropriate medium (Miiller et al., 2006). For
all experiments comparing wild-type to resistant trophozoites, the
medium from confluent cultures was removed one day before the
harvest and replaced with fresh medium without nitro compound.
Trophozoites were detached by incubation on ice for 15 min followed
by centrifugation (300xg, 10min, 4°C). Pellets were washed three
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times with ice-cold PBS, counted, and stored at —80 °C for subsequent
proteomic analysis or for quantification of expression of selected genes.

2.3. Proteomics

Cell pellets were lysed in 100 pL. 8M urea/100 mM Tris/HCl pH 8/
protease inhibitor cocktail (Roche Diagnostics, Rotkreuz, Switzerland)
by incubation for 15 min at room temperature followed by 15 min in an
ultrasonic water bath. Reduction, alkylation, digestion and nano-re-
versed-phase liquid chromatography coupled to tandem mass spectro-
metry (nLC-MS/MS) was performed as described elsewhere (Engel
et al., 2014).

2.4. Statistical methods

The MS data were obtained from three biological replicates, with
technical replicates for each biological replicate, for each strain. All MS
data were processed by MaxQuant (version 1.5.4.1) with matching
between runs of the same sample type, but not between different types,
in order to avoid over-interpretation. The sample sets corresponding to
wild-type strains WBC6, 106, and 713 and the resistant strains derived
from these wild-types were interpreted separately by MaxQuant.
Fragment spectra were interpreted against a recent Giardia protein se-
quence database in fasta format (GiardiaDB-
5.0_GintestinalisAssemblageA_AnnotatedProteins_v2) using a trypsin
cleavage rule with amide bond cleavage allowed after lysine and argi-
nine if a proline follows and up to three missed cleavage sites, fixed
carbamidomethylation modification of cysteines, variable oxidation of
methionine and acetylation of protein N-termini. Precursor and frag-
ment mass tolerances were set to 10 and 20 ppm, respectively. Peptide
spectrum matches, peptide and protein group identifications were fil-
tered to a 1% false discovery rate (FDR), and a minimum of two razor or
unique peptides were required to accept a protein group identification.
Protein identifications considered as contaminations (e.g. trypsin or
BSA) as well as proteins identified only by site (considered by
MaxQuant developers as very likely false positives) were removed for
statistical validation. The normalized label free quantification (LFQ)
protein group intensities as calculated by MaxQuant were used for re-
lative proteome quantifications. First, we imputed missing protein LFQ
values for samples in any condition group when there was at least one
LFQ intensity per sample triplicate (downshift of 1.8 S.D. with a width
of 0.3 S.D.). This left protein groups without values in one or the other
group. For Student's T-tests, those missing protein intensities were re-
placed by imputed values from the very low end of intensity distribu-
tions (downshift 2.5 S.D., width of 0.3 S.D.). A permutation based FDR
(=1%) procedure was then used to correct for multiple testing between
sample groups. The imputed values were used for the calculation of p-
values (expressed as -LOG) and g-values. The test differences in log2-
fold change were then calculated on the effective median intensities
and a log2-fold change of at least one was required to be considered as
significant. Statistical testing and imputation were made with Perseus
version 1.5.5.3 (Tyanova et al., 2016).

3. Results

3.1. Mass spectrometry analysis of proteins expressed in nitro drug-resistant
and susceptible trophozoites

Shotgun mass spectrometry of the proteomes of trophozoites of the
nitro drug-resistant strains C4, 1062ID10, and 713M3 grown in the
presence of metronidazole (MET) or nitazoxanide (NTZ) and their re-
spective wild-types WBC6, 106, and 713 allowed the identification of
1607, 1403, and 1452 proteins, respectively (Table 1). The complete
datasets are accessible in Table S1. Overall analysis of the data by
principal component analysis revealed three non-overlapping clusters
of wild-types, resistant strains grown on MET and resistant strains
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Table 1

Summary of protein quantification data. Three strains with double re-
sistance to nitazoxanide (NTZ) and to metronidazole (MET), namely C4,
10621D10, and 713M3 and their respective wild-type strains WBC6, 106 and
713 were grown (the resistant strains in the presence of 50 uM MET or NTZ),
harvested and subjected to MS shotgun analysis as described in Materials and
methods. For each strain, three biological replicates have been tested (with
three technical replicates per biological replicate).

WBC6 vs. C4 106 vs. 10621D10 713 vs. 713M3
Unique peptides 21048 16567 16587
Non-redundant proteins 1607 1403 1452
Differential NTZ 225 248 304
Differential MET 510 287 216

grown on NTZ for all three strains tested. This suggested a very small
subset of differentially expressed proteins common to both nitro com-
pounds in each strain (Fig. 1).

3.2. Differentially expressed proteins

A more detailed analysis revealed between 216 and 510 proteins
with different levels in wild-type and resistant strains for each drug
separately (Table 1). Concerning the proteins with higher expression
levels in wild-types than in resistant strains, only three proteins were
commonly identified, however, with resistant strains grown on NTZ and
twelve with resistant strains grown on MET. In addition, only one
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common protein was identified in both situations, namely the hy-
pothetical protein p34701 with a 1985 amino acid sequence, a pre-
dicted size of ca. 220 kDa including a signal peptide with a cleavage site
around amino acid 30, several transmembrane domains, and a coiled-
coil domain around amino acid 1200 (Fig. S1). Concerning the opposite
situation, those proteins with higher expression levels in resistant
strains than in wild-types, the respective numbers were two and three
with no common proteins in both subsets (Fig. 2). A closer look on these
four subsets of proteins with altered expression levels in all three strains
revealed that of 21 proteins in total, 8 were surface proteins (variant
surface proteins, high cysteine membrane and CXC-rich proteins).
Moreover, four of the seven hypothetical proteins had transmembrane
domains or a putative surface localisation, six proteins had annotated
functions related to gene expression, signal transduction or intracellular
transport (Table 2).

3.3. Antigenic variation related to resistance formation

To investigate to which extent antigenic variation was affected in
the resistant strains as compared to their respective wild-types, we
firstly determined the complexity of surface antigens by counting the
expressed high cysteine membrane proteins, CXC-rich proteins, and
VSPs and classing them according to their LFQ intensities. Surprisingly,
wild-types and the resistant strains expressed similar numbers of dif-
ferent surface antigens. In the case of WBC6, 62 surface antigens were
expressed in the wild-type, 78 in C4 grown on NTZ and 62 in C4 grown
on MET. For strain 106, the respective numbers were 27, 33, and 26, for
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Fig. 1. Principal component analysis of proteome data set from nitro resistant G. lamblia trophozoites (C4, 10621D10, 713M3) and their corresponding
wild-types (WBC6, 106, 713). Trophozoites of the resistant strains were grown in the presence of 50 uM metronidazole (MET; red symbols) or 50 uM nitazoxanide
(NTZ; blue symbols) and compared to their respective wild-types (green symbols) by MS shotgun analysis as described in Materials and methods. For each strain, all
technical and biological (square, circle, diamond) replicates are shown. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)
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Table 2

List of proteins with significantly different levels in trophozoites of all
wild-type (WT) and all nitro drug resistant (RES) strains. The resistant
strains were grown in the presence of 50 uM metronidazole (MET) or nitazox-
anide (NTZ) as described in Materials and methods. Vsp, variant surface pro-
tein; nd, not detected; su, subunit. For each strain, three biological replicates
have been tested (with three technical replicates per biological replicate).

Differential Nitro Annotation Giardia DB
expression compound
Down-regulated in RES vs. WT
NTZ
GTP binding ADP ribosylation 8140
factor domain-1 protein
Intramembrane protease (minor 8429
histocompatibility antigen H13)
Hypothetical (membrane 114623
spanning)
MET
Hypothetical (membrane 3158
bound)
nuclear LIM Interacting factor 1 ~ 4063
High cystein membrane protein 9620
Dynein intermediate chain 10254
Hypothetical (RNA binding) 14117
Hypothetical 16793
ATP-dependent RNA helicase 16887
Vsp-3 137740
Vsp-8 137618
Vsp-77 137617
Vsp-88 101074
Vsp-160 137612
Both Hypothetical (transmembrane) 34701
Up-regulated in RES vs. WT
NTZ
Phosphatase 1 regulatory 11885
subunit
Hypothetical (serine rich 94542
adhesin)
MET
Hypothetical (nuclear protein) 3021
High cystein membrane protein 16318
group 1
CXC-rich protein 17476

strain 713, the numbers were 60, 56, and 63. Only three or less
dominated this population by LFQ levels of 10° or above (Table 3). By
plotting the intensities of five most predominant antigens for each
strain-drug combination (thus 15 for each strain), it became clear that
each wild-type strain and each resistant strain had a specific pattern of
predominant surface antigens with pronounced nitro drug-dependent
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Fig. 2. Venn diagram detailing the number of
differentially expressed proteins in trophozoites
of wild-type (WT) and nitro drug-resistant (RES)
strains. Trophozoites of the resistant strains were
grown in the presence of metronidazole (MET) or
nitazoxanide (NTZ; both 50 uM) and subjected to MS
shotgun analysis as described in Materials and
methods.

MET

Table 3

Antigenic complexity in nitro drug resistant G. lamblia lines (C4,
10621D10, 713M3; grown on NTZ or MET) is not altered as compared to
their corresponding wild-types (WBC6, 106, 713). The strains were grown
(the resistant strains in the presence of 50 uM MET or NTZ), harvested and
subjected to MS shotgun analysis as described in Materials and methods. For
each strain, three biological replicates have been tested (with three technical
replicates per biological replicate). Total numbers of proteins either annotated
as variant surface proteins, high cysteine surface proteins or CXC rich surface
proteins are given. The proteins were classed according to their expression le-
vels determined via the LFQ algorithm. The complete dataset concerning this
group of proteins is listed in Supplementary Table S2.

LFQ (x10°) WBC6 106 713

WT NTZ MET WT NTZ MET WT NTZ MET
>10*-10° 1 1 1 0 0 0 2 3 0
103102 11 12 8 1 0 0 6 4 6
10%-10" 31 40 28 10 17 9 27 25 21
10'-10° 19 25 25 16 16 17 25 24 26
total 62 78 62 27 33 26 60 56 53

differences in the resistant strains (Fig. 3). In the case of WBC6 wild-
type, the two most predominant antigens were VSP-8 and VSP-188. In
C4 grown in the presence of NTZ, VSP-8 remained the most pre-
dominant antigen (besides VSP-49, VSP-116, and VSP-186), in C4
grown in the presence of MET, however, VSP-123 (below detection
levels in wild-type and C4 on NTZ) became by far the most predominant
antigen. Conversely, VSP-123 was one of the predominant antigens in
the wild-type strains 106 and 713 and 713M3 on NTZ (Fig. 3).

3.4. Engzymes involved in nitroreduction or detoxification processes

Surprisingly, the dataset of commonly up- or down-regulated pro-
teins presented in Table 2 did not contain enzymes directly or indirectly
involved in reduction of nitro compounds or as detoxificators of nitro
radicals or O, as previously described by various authors (Miiller et al.,
2018). Therefore, it was tempting to have a closer look on the expres-
sion levels of those enzymes separately for each strain. In the resistant
strain C4 derived from WBC6, the nitroreductase NR1 (annotated as Fd-
NR2) was significantly down-regulated as compared to the wild-type
when the strain was grown in the presence of NTZ thereby confirming
previous results (Nillius et al., 2011). On MET, thioredoxin-reductase
was elevated and A-type flavoprotein levels were reduced. In strain
106, these enzymes were not affected. Conversely, levels of both pyr-

uvate-ferredoxin-oxidoreductases were significantly reduced in



J. Miiller, et al. 1JP: Drugs and Drug Resistance 9 (2019) 112-119

25 ¢ 12 ¢
it WBC6 106
=MET
20 [ 10 f
Y [ ONTZ
0.8 |
15 I
0.6
1.0 |
04
0.5 |
lﬂ 0.2
O.OEhﬂjJ)l" ﬂ" il:ﬂ i-h IIHI‘” 0.0 h.—.—.fl‘l O LI‘I—. _J‘II_I‘I—HIHIH
- N o ©® N = O O v e O ® O N - i e -
— g o 8T Y82 N8R Y Q d P 2 222223 Ca B33 7F 8
) 3 3 2> 4 v o x 3o v v 00 o¢ 0o 33 3 3 3 3 3 vw>T & T4 5 o
2 2 $ 5 o 5 5 56 L2e>00 A LT L% S %
14 G & gg3ggggg->-> > > 6666666 ° ga g > >
o o o ' [ T ) >
=) = = . = === == E 3
- [TENT) 2 O O ULV ULV
% I X I I I I T IT I
e
03.0' 713
TH
-l
25 | I
20
15 |
1.0 |
05 | .
00' -ﬂ w(l B i‘ﬂ P e N& ]
2 22 osfs 883z 383rkREKRITEI
2 555 T8 ST Y4 %0 0
ciesssEabeEeteg
8282=>>2>>>
= === 3
O 0 O O
I I I I

Fig. 3. Quantitative assessments of the major surface antigens. Trophozoites of the resistant strains were grown in the presence of metronidazole (MET) or
nitazoxanide (NTZ; both 50 uM) and subjected to MS shotgun analysis as described in Materials and methods. For all proteins, mean values + standard errors for
LFQ intensities in three biological replicates are shown.

Table 4
Overview of proteins involved in reduction (and thus activation) of nitro compounds and the scavenging of radicals or other toxic intermediates as a consequence of

this reduction in trophozoites of wild-type (WT) and nitro drug resistant (RES) strains, the latter grown in the presence of 50 pM metronidazole (MET) or nitazoxanide
(NTZ). Cells were harvested and subjected to MS shotgun analysis as described in Materials and Methods. For each strain, three biological replicates have been tested
(with three technical replicates per biological replicate). For all proteins, mean values * standard errors for LFQ intensities (x10°) in three biological replicates are
given (nd, below detection limit). DB, number in GiardiaDB; Fd, ferredoxin; Hb, hemoglobin; FP, flavoprotein; LT, lateral transfer; NO, NAD(P)H oxidase; NR,
nitroreductase; PFOR, pyruvate-ferredoxin oxidoreductase. *, two-sided t-test comparing the resistant strains to their respective wild-types, p < 0.001.

Annotation DB WBC6 106 713

WT MET NTZ WT MET NTZ WT MET NTZ
Fd-NR1 ("NR2") 6175 nd nd nd nd nd nd nd nd nd
Fd-NR2 ("NR1") 22677 137 £ 8 92 £ 5 58 = 1% 7 %0 5+0 5+0 42 = 4 45 = 3 36 =1
NR family 15307 nd nd nd nd nd nd nd nd nd
PFOR 1 17063 4602 *= 73 3173 = 100 4561 * 132 713 = 24 240 + 23* 292 *+ 6% 4191 + 199 3735 * 40 5146 *= 50
PFOR 2 114609 7510 * 193 4186 = 9 7846 = 110 987 + 23 501 *= 65* 812 = 8 3623 = 154 4159 = 87 5071 = 96
TrxR 9827 393 = 6 621 + 20% 395 = 25 122 + 31 163 = 30 115 + 13 533 *+ 62 1001 + 12% 558 + 111
Flavo-Hb 15009 nd nd nd nd nd nd nd 2 = 0% 2 = 0%
A-type FP 10358 927 = 35 606 = 14* 1019 * 35 178 £ 6 178 + 22 254 £ 5 933 = 21 2076 = 49* 2070 = 132*
NOLT 33769 3631 = 121 2646 = 81 4463 = 277 577 + 33 514 £ 15 641 = 27 2938 = 94 2594 * 113 2827 = 54
NO 9719 451 * 22 376 = 17 428 * 14 9 * 4 8 x5 83 1 390 = 3 470 = 6 425 * 3

116
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1062ID10 grown on MET and PFOR1 only when the strain was grown
on NTZ. Strain 713 had again a different pattern. The resistant 713M3
had higher levels of flavo-hemoglobin and on A-type flavoprotein on
both nitro compounds and higher levels of thioredoxin reductase only
on MET. Both NAD(P)H-oxidases remained unaffected in all strains thus
serving as a control (Table 4).

4. Discussion

In previous studies, we characterized the G. lamblia WBC6 clone C4
double-resistant to nitazoxanide (NTZ) and to metronidazole (MET)
with respect to differential mRNA expression levels (Miiller et al., 2007,
2008) and to physiological parameters (Miiller et al., 2018) Meanwhile,
other groups have published transcriptomic (Ansell et al., 2017) and
proteomic (Emery-Corbin et al., 2018; Emery et al., 2018) studies with
MET-susceptible and resistant strains with a different genetic back-
ground. In order to answer the question, whether resistance formation
to nitro drugs in G. lamblia is directed and therefore has a common
pattern of up- or down-regulated proteins on different nitro compounds,
we have included two other strains with double resistance, namely
1062ID10 and 713M3, and investigated all resistant strains on both
nitro compounds MET and NTZ. Overall, the responses of resistant G.
lamblia strains to NTZ and to MET are clearly different from each other.
This suggests that — besides a common mode of action due to the nitro
groups — both compounds have additional, or different mode(s) of ac-
tion, e.g. as inhibitors of various enzymes or by forming adducts on
different proteins (Hemphill et al., 2013; Leitsch, 2017).

Despite the high number of proteins with different levels in wild-
type vs. resistant strains in single strains on single compounds, it turns
out that there are no common proteins that are up-regulated in all re-
sistant strains on both drugs. Moreover, only one protein, the hy-
pothetical membrane protein p34701 is down-regulated on both drugs
in the resistant strains as compared to their respective wild-types. The
corresponding gene is transcribed to similar extents in all strains (Table
S3). Since the identification is based on two peptides at low intensities
only, these results should, however, not be over-interpreted.

Regarding the drugs separately, only 15 proteins are differentially
regulated in the case of MET and only 5 in the case of NTZ, the majority
being surface proteins including VSPs. Common VSP patterns are found
in the resistant strains upon exposure to MET, but not to NTZ. This
observation suggests that double resistant strains may alter their surface
protein composition depending on the nitro compound present in their
culture media. Furthermore, respective data on strain 106 versus
1062ID10 imply that exposure of resistant trophozoites to both MET
and NTZ resulted in an apparent overall reduction of VSP synthesis. A
possible explanation is that the proteome analysis depends on G. lamblia
WBC6 as genome reference strain. Therefore, the spectrum-to-peptide
matches in the non-referenced isolates 106 and 713 may be limited,
especially in the case of the highly variable VSPs and may have caused
significant losses in VSP identifications as highlighted in a recent study
depicting the limitations of differential proteomics in referenced and
non-referenced isolates of G. lamblia (Emery-Corbin et al., 2018).

Concerning the reduction (and thus activation) of nitro compounds
and the scavenging of radicals or other toxic intermediates as a con-
sequence of this reduction, the three investigated strains seem to have
developed three different strategies. i.) The reduction of electrons
available for nitro reduction by down-regulation of pyruvate-ferre-
doxin-oxidoreductase prevails in the case of strain 1062ID10. ii.) The
induction of the NO reducer flavohemoglobin (Mastronicola et al.,
2010; Rafferty et al., 2010) and the O,-scavenger (and weak NO re-
ducer) A-type flavor- or flavodiiron protein (Di Matteo et al., 2008;
Vicente et al., 2009), thus an antioxidant stress response (Arguello-
Garcia et al., 2015; Ma'ayeh et al., 2015) is the strategy of strain
713M3. iii.) In WBC6 clone C4, the previously observed down-regula-
tion of the nitroreductase NR1 (Nillius et al., 2011; Miiller et al., 2018)
is confirmed on NTZ only. According to a hypothesis (Ansell et al.,
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2017), NR1 possibly could reduce MET by using electrons from the
PFOR-ferredoxin electron transport chain. Interestingly, a recent pro-
teomics study (Emery et al., 2018) has identified NR1 as the only en-
zyme potentially involved in nitroreduction downregulated in all in-
vestigated MET-resistant strains upon growth on MET although
substantial downregulation was actually documented in resistant 713
strain only. Accordingly, the authors consider downregulation of NR1
as the strongest candidate for a universal passive resistance mechanism.
Our present study challenges this hypothesis because here down-
regulation of NR1 is observed only in one nitro drug-resistant clone,
namely WBC6 clone C4, and only in trophozoites grown in presence of
NTZ (see Table 4). Accordingly, our data suggest that, at least as far as
WBC6 clone C4 is concerned, downregulation of NR1 could be corre-
lated to resistance formation towards NTZ but not MET. Moreover,
functional studies on the recombinant enzyme revealed that NR1 is a
better quinone-reductase than a nitroreductase (Miiller et al., 2015).
Therefore, it may be only indirectly involved in the susceptibility to
nitro drugs.

On MET, levels of thioredoxin reductase are increased, a feature that
this strain shares with 713M3. Thus, in these strains, thioredoxin re-
ductase acts rather as a potential radical scavenger (Ma'ayeh et al.,
2015) than as an activator of MET (Leitsch et al., 2016). This suggests
that resistant strains generated by adaptation to increasing amounts of
the respective drugs are different from transgenic strains expressing a
specific resistance marker.

However, it should be kept in mind, that the levels of enzyme
proteins may not be directly linked to the respective levels of enzyme
activities. For instance, lower activities may be correlated with lower
levels of essential coenzymes such as FAD, as shown for clone C4
(Miiller et al., 2018) and for the resistant 106 and 713 isolates (Leitsch
et al., 2011), backed by own unpublished data. Therefore, enyzmologic
and metabolomics studies are complementary to genomic, tran-
scriptomic and proteomic approaches and cannot replaced by them.

In none of the strains, peptides corresponding to the nitroreductase
NR2 (annotated as Fd-NR1) have been identified. This is insofar inter-
esting as this enzyme catalyzes the complete reduction and thus in-
activation of nitro compounds in functional assays and in E. coli (Miiller
et al., 2013, 2015) and would therefore be a suitable candidate for up-
regulation in resistant strains. Since the corresponding gene is tran-
scribed in all strains (Miiller et al., 2013), either the mRNA is subjected
to post-transcriptional gene silencing, most likely by RNA interference
(Prucca and Lujan, 2009; Gargantini et al., 2012) or the corresponding
polypeptide is quickly degraded. We have performed immunoblots with
specific antisera raised against two unique peptides of NR2 and could
not detect a corresponding signal in G. lamblia trophozoite crude ex-
tracts (see Fig. S2). Similarly, a third nitroreductase homologue, the NR
family protein (without N-terminal ferredoxin domain), is transcribed,
but obviously not translated or quickly degraded. The recombinant
protein has no nitroreductase activities, neither in functional assays,
nor in E. coli (J.M and N. M., unpublished data).

This leads to the conclusion that drug resistance formation in G.
lamblia is not correlated with directed changes of gene expression in the
sense that targets are down- or drug scavengers are up-regulated, but
rather correlated with random variation of gene expression. As reported
in the context of other studies related to resistance formation (Emery
et al., 2018) interaction with host cells (Emery-Corbin et al., 2018) or
en- and excystation (Einarsson et al., 2016), antigenic variation, i.e. the
expression of different cysteine-rich variant surface proteins (VSPs) on
the surface is paramount and yields a most heterogeneous population of
trophozoites. G. lamblia has several hundred genes encoding VSPs.
According to a generally admitted hypothesis, there is, however, only
one (major) VSP expressed on a single trophozoite (Nash, 2002). The
expression of different VSPs — and thus antigenic variation - is triggered
by epigenetic mechanisms involving changes of the chromatin state
(Kulakova et al., 2006) and/or RNA interference (Prucca et al., 2008;
Prucca and Lujan, 2009). Since there is post-transcriptional silencing of
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the non-expressed VSPs (Prucca et al., 2008), only proteomics can an-
swer the question how heterogeneous a given population of tropho-
zoites is. In our case, since the number of VSPs remains almost the same
in resistant and susceptible strains (see Table 3), there is neither a
broadening nor a narrowing of heterogeneity, there is only a switch to a
different pattern of VSPs between those populations (as illustrated in
Fig. 3). It could be that some of these VSPs have unknown enzyme
activities or other functions facilitating or impairing transport of se-
lected metabolites etc., but in general there are no such functions met in
evidence - except protease activities (Cabrera-Licona et al., 2017) - to
our knowledge. This direct association between nitro drug resistance
formation and the immuno-evasive process of antigenic switching
(Ankarklev et al., 2010; Gargantini et al., 2016) may contribute to both
the establishment and persistence of resistant giardiasis in an infected
host.

During resistance formation by incubation on increasing drug con-
centrations, these mechanisms may cause not only different VSP ex-
pression patterns, but also involve other, unrelated genes (Rivero et al.,
2010) thereby generating trophozoites with gene expression patterns
conferring resistance. These trophozoites are selected and enriched in
subsequent cultures. The resulting resistance phenotype is multigenic
and reversible. Therefore, “nitro drug resistance” is rather a “nitro drug
tolerance” when compared to concepts generated from antibiotic re-
sistance in bacteria (Brauner et al., 2016), as described in detail in a
previous study (Miiller et al., 2018). This observation is similar to
previously reported findings where differential expression patterns of
selected genes have been identified in transgenic Giardia lines in re-
sponse to transfection and puromycin selection (Su et al., 2007) We
hypothesize that in an untargeted transcriptomic or proteomic study on
puromycin selection, antigenic variation would have been identified, as
well. It should, however, be kept in mind that this study is based on
resistance formation under laboratory conditions in assemblage A
strains, but cannot be yet extended to naturally resistant isolates from
other assemblages.
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