Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence

McKinley, Richard; Grunder, Lorenz; Wepfer, Rik; Aschwanden, Fabian; Fischer, Tim; Friedli, Christoph; Muri, Raphaela; Rummel, Christian; Verma, Rajeev; Weisstanner, Christian; Reyes, Mauricio; Salmen, Anke; Chan, Andrew; Wiest, Roland; Wagner, Franca (2019). Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence (arXiv). Cornell University

[img] Text
McKinley, 2019, Automatic detection of lesion load change in MS.pdf - Published Version
Restricted to registered users only
Available under License Publisher holds Copyright.

Download (2MB) | Request a copy

Item Type:

Working Paper

Division/Institute:

10 Strategic Research Centers > ARTORG Center for Biomedical Engineering Research
04 Faculty of Medicine > Department of Radiology, Neuroradiology and Nuclear Medicine (DRNN) > Institute of Diagnostic and Interventional Neuroradiology
04 Faculty of Medicine > Department of Head Organs and Neurology (DKNS) > Clinic of Neurology

UniBE Contributor:

McKinley, Richard Iain; Grunder, Lorenz Nicolas; Friedli, Christoph Daniel; Muri, Raphaela; Rummel, Christian; Reyes, Mauricio; Salmen, Anke; Chan, Andrew Hao-Kuang; Wiest, Roland and Wagner, Franca

Subjects:

500 Science > 570 Life sciences; biology
600 Technology > 610 Medicine & health

Series:

arXiv

Publisher:

Cornell University

Language:

English

Submitter:

Chantal Kottler

Date Deposited:

27 Dec 2019 10:07

Last Modified:

27 Dec 2019 10:07

ArXiv ID:

1904.03041v1

BORIS DOI:

10.7892/boris.136549

URI:

https://boris.unibe.ch/id/eprint/136549

Actions (login required)

Edit item Edit item
Provide Feedback