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The massively parallel nature of biological information processing plays an important

role due to its superiority in comparison to human-engineered computing devices.

In particular, it may hold the key to overcoming the von Neumann bottleneck that

limits contemporary computer architectures. Physical-model neuromorphic devices seek

to replicate not only this inherent parallelism, but also aspects of its microscopic

dynamics in analog circuits emulating neurons and synapses. However, these machines

require network models that are not only adept at solving particular tasks, but that

can also cope with the inherent imperfections of analog substrates. We present a

spiking network model that performs Bayesian inference through sampling on the

BrainScaleS neuromorphic platform, where we use it for generative and discriminative

computations on visual data. By illustrating its functionality on this platform, we implicitly

demonstrate its robustness to various substrate-specific distortive effects, as well as

its accelerated capability for computation. These results showcase the advantages of

brain-inspired physical computation and provide important building blocks for large-scale

neuromorphic applications.

Keywords: physical models, neuromorphic engineering, massively parallel computing, spiking neurons, recurrent

neural networks, neural sampling, probabilistic inference

1. INTRODUCTION

The aggressive pursuit of Moore’s law in conventional computing architectures is slowly but
surely nearing its end (Waldrop, 2016), with difficult-to-overcome physical effects, such as heat
production and quantum uncertainty, representing the main limiting factors. The so-called von
Neumann bottleneck between processing and memory units represents the main cause, as it
effectively limits the speed of these largely serial computation devices. The most promising
solutions come in the form of massively parallel devices, many of which are based on
brain-inspired computing paradigms (Indiveri et al., 2011; Furber, 2016), each with its own
advantages and drawbacks.

Among the various approaches to such neuromorphic computing, one class of devices is
dedicated to the physical emulation of cortical circuits; not only do they instantiate neurons and
synapses that operate in parallel and independently of each other, but these units are actually
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represented by distinct circuits that emulate the dynamics of
their biological archetypes (Mead, 1990; Indiveri et al., 2006;
Jo et al., 2010; Schemmel et al., 2010; Pfeil et al., 2013; Qiao
et al., 2015; Chang et al., 2016; Wunderlich et al., 2019). Some
important advantages of this approach lie in their reduced power
consumption and enhanced speed compared to conventional
simulations of biological neuronal networks, which represent
direct payoffs of replacing the resource-intensive numerical
calculation of neuro-synaptic dynamics with the physics of the
devices themselves.

However, such computation with analog dynamics, without
the convenience of binarization, as used in digital devices,
has a downside of its own: variability in the manufacturing
process (fixed pattern noise) and temporal noise both lead to
reduced controllability of the circuit dynamics. Additionally, one
relinquishes much of the freedom permitted by conventional
algorithms and simulations, as one is confined by the dynamics
and parameter ranges cast into the silicon substrate. The main
challenge of exploiting these systems, therefore, lies in designing
performance network models using the available components
while maintaining a degree of robustness toward the substrate-
induced distortions. Just like for the devices themselves,
inspiration for such models often comes from neuroscience, as
the brain needs to meet similar demands.

With accumulating experimental evidence (Berkes et al.,
2011; Pouget et al., 2013; Haefner et al., 2016; Orbán
et al., 2016), the view of the brain itself as an analytical
computation device has shifted. The stochastic nature of neural
activity in vivo is being increasingly regarded as an explicit
computational resource rather than a nuisance that needs to
be dealt with by sophisticated error-correcting mechanisms
or by averaging over populations. Under the assumption
that stochastic brain dynamics reflect an ongoing process of
Bayesian inference in continuous time, the output variability
of single neurons can be interpreted as a representation of
uncertainty. Theories of neural sampling (Buesing et al., 2011;
Hennequin et al., 2014; Aitchison and Lengyel, 2016; Petrovici
et al., 2016; Kutschireiter et al., 2017) provide an analytical
framework for embedding this type of computation in spiking
neural networks.

In this paper we describe the realization of neural sampling
with networks of leaky integrate-and-fire neurons (Petrovici
et al., 2016) on the BrainScaleS accelerated neuromorphic
platform (Schemmel et al., 2010). With appropriate training,
the variability of the analog components can be naturally
compensated and incorporated into a functional network
structure, while the network’s ongoing dynamics make explicit
use of the analog substrate’s intrinsic acceleration for Bayesian
inference (section 2.3). We demonstrate sampling from low-
dimensional target probability distributions with randomly
chosen parameters (section 3.1) as well as inference in high-
dimensional spaces constrained by real-world data, by solving
associated classification and constraint satisfaction problems
(pattern completion, section 3.2). All network components are
fully contained on the neuromorphic substrate, with external
inputs only used for sensory evidence (visual data). Our work
thereby contributes to the search for novel paradigms of

information processing that can directly benefit from the features
of neuro-inspired physical model systems.

2. METHODS

2.1. The BrainScaleS System
BrainScaleS (Schemmel et al., 2010) is a mixed-signal
neuromorphic system, realized in 180 nm CMOS technology,
that emulates networks of spiking neurons. Each BrainScaleS
wafer module consists of a 20 cm silicon wafer with 384
HICANN (High Input Count Analog Neural Network) chips,
see Figure 1A. On each chip, 512 analog circuits emulate the
adaptive exponential integrate-and-fire (AdEx) model (Brette
and Gerstner, 2005; Millner et al., 2010) of spiking neurons
with conductance-based synapses. The dynamics evolve with an
acceleration factor of 104 with respect to biological time, i.e., all
specific time constants (synaptic, membrane, adaptation) are
∼ 104 times smaller than typical corresponding values found
in biology (Schemmel et al., 2010; Petrovici et al., 2014). To
preserve compatibility with related literature (Petrovici et al.,
2016; Schmitt et al., 2017; Leng et al., 2018; Dold et al., 2019),
we refer to system parameters in the biological domain unless
otherwise specified, e.g., a membrane time constant given as
10ms is actually accelerated to 1 µs on the chip.

The parameters of the neuron circuits are stored in analog
memory cells (floating gates) with 10 bit resolution, and the
synaptic weights are stored in 4 bit SRAM (Schemmel et al.,
2010). The analog memory cells are similar to the ones in
Lande et al. (1996), and they are described in Loock (2006) and
Millner (2012).

Spike events are transported digitally and can reach all other
neurons on the wafer with the help of an additional redistribution
layer that instantiates an on-wafer circuit-switched network
(Zoschke et al., 2017) (Figures 1B,C).

Because of mismatch effects (fixed-pattern noise) inherent
to the substrate, the response to incoming stimuli varies from
neuron to neuron (Figure 1D). In order to bring all neurons
into the desired regime and to reduce the neuron-to-neuron
response variability, we employ a standard calibration procedure
that is performed only once, during the commissioning of the
system (Petrovici et al., 2017b; Schmitt et al., 2017). Nevertheless,
even after calibration, a significant degree of diversity persists
(Figure 1E). The emulation of functional networks that do not
rely on population averaging therefore requires appropriate
training algorithms (section 3.2).

2.2. Sampling With Leaky
Integrate-and-Fire Neurons
The theory of sampling with leaky integrate-and-fire neurons
(Petrovici et al., 2016) describes a mapping between the dynamics
of a population of neurons with conductance-based synapses
(equations given in Table 1) and a Markov-chain Monte Carlo
sampling process from an underlying probability distribution
over binary random variables (RVs). Each neuron in such a
sampling network corresponds to one of these RVs: if the k-th
neuron has spiked in the recent past and is currently refractory,
then it is considered to be in the on-state zk = 1, otherwise it is in
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FIGURE 1 | (A) Photograph of a fully assembled wafer module of the BrainScaleS system (dimensions: 50 × 50 × 15 cm). One module hosts 384 HICANN chips on

48 reticles, with 512 physical neurons per chip and 220 synapse circuits per neuron. The wafer itself lies at the center of the module and is itself not visible. 48 FPGAs

are responsible for I/O and experiment control. Support PCBs provide power supply for the on-wafer circuits as well as access to neuron membrane voltages. The

connectors for inter-wafer (sockets resembling USB-A) and off-wafer/host connectivity (Gigabit-Ethernet sockets) are distributed over all four edges of the main PCB.

Mechanical stability is provided by an aluminum frame. (B) The wafer itself is composed of 48 reticles (e.g., red rectangle), each containing 8 HICANN chips (e.g.,

black rectangle, enlarged in C). Inter-reticle connectivity is added in a post-processing step. (C) On a single HICANN chip, the largest area is occupied by the two

synapse matrices which instantiate connections to the neurons positioned in the neuron array. (D,E) Postsynaptic potentials (PSPs) measured on 100 different neuron

membranes using the same parameter settings before (D) and after (E) calibration. The insets show the height-normalized PSPs. The calibration serves two

purposes. First, it provides a translation rule between the desired neuron parameters and the technical parameters set on the hardware. In this case, it brings the time

constants τmem and τsyn close to the target of 8ms, as evidenced by the small spread of the normalized PSPs. Second, in the absence of such a translation rule, it

sets the circuits to their correct working points. Here, this happens for the synaptic weights: after calibration, PSP heights are, on average closer to the target working

point of 3mV, but they remain highly diverse due to the variability of the substrate. For more details see Schmitt et al. (2017). The PSPs are averaged over 375

presynaptic spikes and smoothed with a Savitzky-Golay filter (Savitzky and Golay, 1964) to eliminate readout noise. The time-constants are given in the biological

domain, but they are 104 faster on the system.

the off-state zk = 0 (Figures 2A,B). With appropriate synaptic
parameters, such a network can approximately sample from a
Boltzmann distribution defined by

p∗(z) =
1

Z
exp

(

1

2
z
T
Wz + z

T
b

)

, (1)

where Z is the partition sum, W a symmetric, zero-diagonal
effective weight matrix and bi the effective bias of the i-th neuron
(Figure 2D).

In the original model, each neuron receives excitatory and
inhibitory Poisson input. This plays two important roles: it
transforms a deterministic LIF neuron into a stochastic firing
unit and induces a high-conductance state, with an effective
membrane time constant that is much smaller than other time
constants in the system: τeff ≪ τsyn, τref (see e.g., Destexhe
et al., 2003; Petrovici, 2016), which symmetrizes the neural
activation function, as explained in the following. The activation
function of an LIF neuron without noise features a sharp onset,
but only a slow converge to its maximum value, hence being
highly asymmetric around the point of 50% activity. Background
Poisson noise smears out the onset of the activation function,
while the reduced membrane time constant accelerates the
convergence to the maximum, making the activation function
more symmetric and thus more similar to a logistic function,
which is a pre-requisite for this form of sampling. For the
explicit derivation see Petrovici (2016) and Petrovici et al. (2016).
A mapping of this activation function to the abovementioned

TABLE 1 | Description of the neuron and synapse model.

Type Leaky integrate-and-fire (LIF),

conductance-based synapse,

exponential kernel

Subthreshold dynamics Subthreshold dynamics [t /∈ [tsp, tsp + τref )] :

Cm(d/dt)u(t) =

−gl[u(t)−Eleak ]−ginhsyn(t)[u(t)−Einh]−gexcsyn (t)[u(t)−Eexc]

Reset and refractoriness [t ∈ [tsp, tsp + τref )] :

u(t) = Vreset

This model was emulated on the BrainScaleS

system (Schemmel et al., 2010)

Spiking If u(t) crosses Vthresh from below at t = tsp,

neuron emits a spike with timestamp tsp

Synapse dynamics For each presynaptic spike at tsp :

gsyn(t) = J exp[−(t− tsp − d)/(τsyn)]θ (t− tsp − d)

where J is the synaptic weight, d the synaptic delay

and θ the Heaviside function

This model was emulated on the BrainScaleS

system (Schemmel et al., 2010)

The variables are described including their numerical values in the experiment in Table 2.

logistic function 1/[1 + exp(−x)] provides the translation from
the dimensionless weights and biases of the target distribution to
the corresponding biological parameters of the spiking network
(Petrovici, 2016).
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FIGURE 2 | Sampling with leaky integrate-and-fire (LIF) neurons. (A) Schematic of a spiking sampling network (SSN) with 5 neurons. Each line represents two

reciprocal synaptic connections with equal weights. (B) Example membrane potentials of three neurons in the network. Following a spike, the refractory mechanism

effectively clamps the membrane potential to the reset value for a duration τref. During this time, the RV corresponding to that neuron is in the state z = 1 (marked in

green). At any point in time, the state sampled by the network can therefore be constructed directly from its output spikes and the refractory time τref of the neurons.

(C) Probability distribution sampled by an SSN with three neurons as compared to the target distribution. (D) Based on this framework (Petrovici et al., 2016),

hierarchical sampling networks can be built, which can be trained on real-world data. Each line represents a reciprocal connection (two synapses) between the

connected neurons.

Although different in their dynamics, such sampling
spiking networks (SSNs, Figure 2D) function similar to (deep)
Boltzmann machines (Hinton et al., 1984), which makes them
applicable to the same class of machine learning problems (Leng
et al., 2018). Training can be done using an approximation of
wake-sleep algorithm (Hinton et al., 1995; Hinton, 2012), which
implements maximum-likelihood learning on the training set:

1bi = η(〈zi〉
∗ − 〈zi〉) , (2)

1Wij = η(〈zizj〉
∗ − 〈zizj〉) , (3)

where 〈·〉 and 〈·〉∗ represent averages over the sampled (model
or sleep phase) and target (data or wake phase) distribution,
respectively, and η is the learning rate.

In order to enable a fully-contained neuromorphic emulation
on the BrainScaleS system, the original model had to be
modified. The changes in the network structure, noise generation
mechanism, and learning algorithm are described in section 2.3.

For low-dimensional, fully specified target distributions,
we used the Kullback-Leibler divergence (DKL, Kullback and
Leibler, 1951) as a measure of discrepancy between the sampled

(p) and the target (p∗) distributions:

DKL(p ‖ p∗) = −
∑

zi∈�

p(zi) ln

(

p(zi)

p∗(zi)

)

(4)

This was done in part to preserve comparability with previous
studies (Buesing et al., 2011; Petrovici et al., 2015, 2016), but
also because the DKL is the natural loss function for maximum
likelihood learning. For visual datasets, we used the error rate
(ratio of misclassified images in the test set) for discriminative
tasks and the mean squared error (MSE) between reconstruction
and original image for pattern completion tasks. The MSE is
defined as

MSE =
1

Npixels

Npixels
∑

k =1

(

zdatak − zreconk

)2
, (5)

where zdata
k

is the reference data value, zrecon
k

is the model
reconstruction and the sum goes over the Npixels pixels to be
reconstructed by the SSN.

2.3. Experimental Setup
The physical emulation of a network model on an analog
neuromorphic substrate is not as straightforward as a
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FIGURE 3 | Experimental setup. Each sampling unit is instantiated by a pair of neurons on the hardware. The bias neuron is configured with a suprathreshold leak

potential and generates a regular spike train that impinges on the sampling neuron , thereby serving as a bias, controlled by wb. (A) As a benchmark, we provided

each sampling neuron with private, off-substrate Poisson spike sources. (B) Alternatively, in order to reduce the I/O load, the noise was generated by a random

network (RN). The RN consisted of randomly connected inhibitory neurons with Eleak > Vthresh. Connections were randomly assigned, such that each sampling neuron

received a fixed number of excitatory and inhibitory pre-synaptic partners (Table 1). (C) Exemplary activation function (mean firing frequency) of a single sampling

neuron with Poisson noise and with an RN as a function of the bias weight. The standard deviation of the trial-to-trial variability is on the order of 0.1Hz for both

activation functions, hence the error bars are too small to be shown. The inset shows the membrane trace of the corresponding bias neuron. (D,E) The figures show

histograms over all neurons in a sampling network on a calibrated BrainScaleS system. The width s and the midpoint w0
b of the activation functions with Poisson noise

and with an RN are calculated by fitting the logistic function 〈ν〉 = ν0/{1+ exp[−(wb −w0
b )/s]} to the data.

software simulation, as it needs to comply with the
constraints imposed by the emulating device. Often, it
may be tempting to fine-tune the hardware to a specific
configuration that fits one particular network, e.g., by
selecting specific neuron and synapse circuits that operate
optimally given a particular set of network parameters, or
by manually tweaking individual hardware parameters after
the network has been mapped and trained on the substrate.
Here, we explicitly refrained from any such interventions
in order to guarantee the robustness and scalability of
our results.

All experiments were carried out on a single module of the
BrainScaleS system using a subset of the available HICANN
chips. The network setupwas specified in the BrainScaleS-specific
implementation of PyNN (Davison et al., 2009) and the standard
calibration (Schmitt et al., 2017) was used to set the analog
parameters. The full setup consisted of two main parts: the SSN
and the source of stochasticity.

In the original samplingmodel (Petrovici et al., 2016), in order
to affect biases, the wake-sleep algorithm (Equation 1) requires
access to at least one reversal potential (El, Eexc, or Einh), which
are all controlled by analog memory cells. Given that rewriting
analogmemory cells is both less precise and slower than rewriting
the SRAM cells controlling the synaptic weights, we modified
our SSNs to implement biases by means of synaptic weights. To
this end, we replaced individual sampling neurons by sampling
units, each realized using two hardware neurons (Figures 3A,B).
Like in the original model, a sampling neuron was set up to

encode the corresponding binary RV. Each sampling neuron was
accompanied by a bias neuron set up with a suprathreshold leak
potential that ensured regular firing (Figure 3C, inset). Each bias
neuron projected to its target sampling neuron with both an
excitatory and an inhibitory synapse (with independent weights),
thus inducing a controllable offset of the sampling neuron’s
average membrane potential. Because excitatory and inhibitory
inputs are routed through different circuits for each neuron,
two types of synapses were required to allow the sign of the
effective bias to change during training. For larger networks,
in order to optimize the allocation of hardware resources, we
shared the use of bias neurons among multiple sampling neurons
(connected via distinct synapses). Similarly, in order to allow sign
switches during training, connections between sampling neurons
were implemented by pairs of synapses (one excitatory and one
inhibitory) as well.

The dynamics of the sampling neurons were rendered
stochastic in two different ways. The first setup served as a
benchmark and represented a straightforward implementation
of the theoretical model from (Petrovici et al., 2016), with
Poisson noise generated on the host computer and fed in
during the experiment (Figure 3A). In the second setup, we
used the spiking activity of a sparse recurrent random network
(RN) of inhibitory neurons, instantiated on the same wafer,
as a source of noise (Figure 3B). For a more detailed study
of sampling-based Bayesian inference with noise generated by
deterministic networks, we refer to (Jordan et al., 2017). The
mutual inhibition ensured a relatively constant (sub)population
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firing rate with suitable random statistics that can replace
the ideal Poisson noise in our application. Projections from
the RN to the SSN were chosen as random and sparse;
this resulted in weak, but non-zero shared-input correlations.
The remaining correlations are compensated by appropriate
training; the Hebbian learning rule (Equation 1) changes the
weights and biases in the network such that they cancel
the input correlations induced by the RN activity (Bytschok
et al., 2017; Dold et al., 2019). Hence, the same plasticity rule
simultaneously addresses three issues: the learning procedure
itself, the compensation of analog variability in neuronal
excitability, and the compensation of cross-correlations in the
input coming from the background network. This allowed the
hardware-emulated RN to replace the Poisson noise required by
the theoretical model.

With these noise-generating mechanisms, the activation
function of the neurons, defined by the firing rate as a function
of the bias weight wb, took on an approximately logistic shape,
as required by the sampling model (Figure 3C). Due mainly to
the variability of the hardware circuits and the precision of the
analog parameters, the exact shape of this activation function
varied significantly between neurons (Figures 3D,E). Effectively,
this means that initial weights and biases were set randomly,
but also that the effective learning rates were different for each
neuron. However, as we show below, this did not prevent the
training procedure from converging to a good solution. This
robustness, with respect to substrate variability, represents an
important result of this work. The used neuron parameters are
shown in Table 2 and a summary of the used networks is given
in Table 3. Our largest experiment, a network of 609 neurons
with 208 sampling neurons, one bias neuron and 400 neurons
in the RN (Table 3C) used hardware resources on 28 HICANN
chips distributed over seven reticles. Each of these functional
neurons was realized by combining four of the 512 neuronal
compartments (“denmems”) available on each HICANN, in
order to reduce variability in their leak potentials and membrane
time constants; for details see (Schemmel et al., 2010).

To train the networks on a neuromorphic substrate without
embedded plasticity, we used a training concept often referred
to as in-the-loop training (Schmuker et al., 2014; Esser et al.,
2016; Schmitt et al., 2017). With the setup discussed above, the
only parameters changed during training were digital, namely
the synaptic weights between sampling neurons and the weights
between bias and sampling neurons. This allowed us to work with
a fixed set of analog parameters, which significantly amplified
the precision and speed of reconfiguration during learning, as
compared to having used the analog storage instead. The updates
of the digital parameters (synaptic weights) were calculated on
the host computer based on the wake-sleep algorithm (Equation
1) but using the spiking activity measured on the hardware.
During the iterative procedure, the values of the weights were
saved and updated as a double precision floating point variable,
followed by (deterministic) discretization in order to comply
with the single-synapse weight resolution of 4 bits. The learning
parameters are given in Table 4. Clamping (i.e., forcing neurons
into state 1 or 0 with strong excitatory or inhibitory input) was
done by injecting regular spike trains with a 100Hz frequency

TABLE 2 | Neuron parameters.

(A) Sampling neuron

Name Value Description

Vreset −35mV Reset potential

Eleak −20mV Resting potential

Vthresh −20mV Threshold potential

Einh −100mV Inhibitory reversal potential

Eexc 60mV Excitatory reversal potential

τref 4ms Refractory time

τmem ca. 7ms Membrane time constant∗

Cmem 0.2 nF Membrane capacity

τ exc
syn 8ms Excitatory synaptic time constant

τ inh
syn 8ms Inhibitory synaptic time constant

(B) Bias neuron

Name Value Description

Vreset −30mV Reset potential

Eleak 60mV Resting potential

Vthresh −20mV Threshold potential

Einh −100mV Inhibitory reversal potential

Eexc 60mV Excitatory reversal potential

τref 1.5ms Refractory time

τmem ca. 7ms Membrane time constant∗

Cmem 0.2 nF Membrane capacity

τ exc
syn 5ms Excitatory synaptic time constant

τ inh
syn 5ms Inhibitory synaptic time constant

(C) Neurons of the random network

Name Value Description (all analog)

Vreset −60mV Reset potential

Eleak −10mV Resting potential

Vthresh −20mV Threshold potential

Einh −100mV Inhibitory reversal potential

Eexc 60mV Excitatory reversal potential

τref 4ms Refractory time

τmem ca. 7ms Membrane time constant∗

Cmem 0.2 nF Membrane capacity

τ exc
syn 8ms Excitatory synaptic time constant

τ inh
syn 8ms Inhibitory synaptic time constant

(D) Synapse

Name Value Description

wbias [0,15] Synaptic bias weight in hardware values (digital)

wnetwork [0,15] Synaptic network weight in hardware values (digital)

d On the order of

1ms (uncalibrated)

Synaptic delay, estimated in Schemmel et al. (2010)

Parameters of the network setup specified in Table 1. The analog parameters are shown

as specified in the software setup and not as realized on the hardware. For details on the

calibration procedure see e.g., Schmitt et al. (2017). ∗The calibration of the membrane

time constant was not available at the time of this work, and the corresponding technical

parameter was set to the smallest available value instead (fastest possible membrane

dynamics for each neuron).

from the host through five synapses simultaneously, excitatory
for zk = 1 and inhibitory for zk = 0. These multapses
(multiple synapses connecting two neurons) were needed to
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TABLE 3 | Network parameters.

(A) Probability distribution with poisson noise

Name Value Description

Ns 5 Number of sampling neurons

Nb 1 Number of bias neurons

Nr 0 Number of random neurons

KRN – Within-population in-degree of neurons in the random network

Knoise – In-degree of sampling neurons from the random network

wRN – Synaptic weights in the random network

in hardware units

ν
e/i
Poisson 300Hz Poisson frequency to sampling neurons per synapse type

(B) Probability distribution with random network

Name Value Description

Ns 5 Number of sampling neurons

Nb 1 Number of bias neurons

Nr 200 Number of random neurons

KRN 20 Within-population in-degree of neurons in the random network

Knoise 15 In-degree of sampling neurons from the random network

wRN 10 Synaptic weights in the random network

in hardware units

ν
e/i
Poisson – Poisson frequency to sampling neurons per synapse type

(C) High-dimensional dataset

Name Value Description

Ns {207, 208} Number of sampling neurons, { rFMNIST, rMNIST }

Nb 1 Number of bias neurons

Nr 400 Number of random neurons

KRN 20 Within-population in-degree of neurons in the random network

Knoise 15 In-degree of sampling neurons from the random network

wRN 10 Synaptic weights in the random network

in hardware units

ν
e/i
Poisson – Poisson frequency to sampling neurons per synapse type

Parameters are shown for the three different cases described in the manuscript: (A) Target

Boltzmann distribution, Poisson noise. (B) Target Boltzmann distribution, random network

for stochasticity. (C) Learning from data, random network for stochasticity. Note that the

in-degree, sometimes also referred to as a fan-in factor, represents a neuron’s number of

pre-synaptic partners coming from some specific population.

exceed the upper limit of single synaptic weights and thus ensure
proper clamping.

3. RESULTS

3.1. Learning to Approximate a Target
Distribution
The experiments described in this section serve as a general
benchmark for the ability of our hardware-emulated SSNs and
the associated training algorithm to approximate fully specified
target Boltzmann distributions. The viability of our proposal to
simultaneously embed deterministic RNs as sources of pseudo-
stochasticity is tested by comparing the sampling accuracy of
RN-driven SSNs to the case where noise is injected from the host
as perfectly uncorrelated Poisson spike trains.

TABLE 4 | Parameters for learning.

Experiment Learning

rate

Momentum

factor

Minibatch-size Initial (W, b)

Target distribution,

Poisson

1.0 0.6 – U(−15, 15)

Target distribution,

random network

0.5 0.6 – U(−15, 15)

rMNIST 0.4 0.6 7/class Pre-trained

rFMNIST 0.4 0.6 7/class Pre-trained

We did not carry any systematic hyper-parameter optimization. Note that the used learning

parameters in the experiments in section 3.1 are not directly comparable because the

different statistics of the background noise (Poisson or random network) correspond to

different effective learning rates.

Target distributions p∗ over 5 RVs were chosen by sampling
weights and biases from a Beta distribution centered around
zero: bi,wji ∼ 2[Beta(0.5, 0.5) − 0.5]. Similar to previous studies
(Petrovici et al., 2016; Jordan et al., 2017), by giving preference to
larger absolute values of the target distribution’s parameters, we
thereby increased the probability of instantiating rougher, more
interesting energy landscapes. The initial weights and biases of
the network were sampled from a uniform distribution over the
possible hardware weights. Due to the small size of the state
space, the “wake” component of the wake-sleep updates could
be calculated analytically as 〈zizj〉 = p∗(zi = 1, zj = 1) and
〈zi〉 = p∗(zi = 1) by explicit marginalization of the target
distribution over non-relevant RVs.

For training, we used 500 iterations with 1× 105ms sampling
time per iteration. Afterwards, the parameter configuration
that produced the lowest DKL(p ‖ p∗) was tested in a longer
(5× 105ms) experiment. To study the ability of the trained
networks to perform Bayesian inference, we clamped two of the
five neurons to fixed values (z1, z2) = (0, 1) and compared
the sampled conditional distribution to the target conditional
distribution. Results for one of these target distributions are
shown in Figure 4.

On average, with Poisson noise, the training showed fast
convergence during the first 20 iterations, followed by fine-
tuning and full convergence within 200 iterations. As expected,
the convergence of the setups using RNs was significantly
slower due to the need to overcome the additional background
correlations, but they were still able to achieve similar
performance (Figure 4A).

In both setups, during the test run, the trained SSNs converged
to the target distribution following an almost identical power
law, which indicates similar mixing properties (Figure 4B).
For longer sampling durations (≫10× 103ms), the systematic
deviations from the target distributions become visible and
the DKL(p ‖ p∗) reaches the same plateau at approximately
DKL(p ‖ p∗) ≈ 2× 10−2 as observed during training.
Figures 4C,D, respectively show the sampled joint and marginal
distributions after convergence (Supplementary Video 1). These
observations remained consistent across a set of 20 different
target distributions (see Figure 4E for a representative selection).

Similar observations weremade for the inference experiments.
Due to the smaller state space, convergence happened faster
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FIGURE 4 | Emulated SSNs sampling from target Boltzmann distributions. Sampled distributions are depicted in blue for setups with Poisson noise and in orange for

setups using RNs. Target distributions shown in dark yellow. Data was gathered from 150 runs with random initializations. Median values are shown as dark colors

and interquartile ranges as either light colors or error bars. (A) Improvement of sampled distributions during training. The observed variability after convergence (during

the plateau) is not due to noise in the system, but rather a consequence of the weight discretization: when the ideal (target) weights lie approximately mid-way

between two consecutive integer values on the hardware, training leads to oscillations between these values. The parameter configuration showing the best

performance during a training run—which, due to the abovementioned oscillations, was not necessarily the one in the final iteration—was chosen as the end result of

the training phase. Averages of these results are shown as dashed lines. (B) Convergence of sampled distributions for the trained SSNs. (C,D) Sampled joint and

marginal distributions of the trained SSNs after 5× 105 ms, respectively. (E) Consistency of training results for different target distributions using Poisson noise. Here,

we show a representative selection of 6 distributions with 10 independent runs per distribution. The box highlighted in blue corresponds to the target distribution used

in the other panels of Figure 4. The data is plotted following the traditional box-and-whiskers scheme: the orange line represents the median, the box represents the

interquartile range, the whiskers represent the full data range and the × represent the far outliers. (F) Target distributions corresponding to the last five

box-and-whiskers plots in (E). (G) Convergence of conditional distributions for the trained SSNs. (H) and (I) Sampled conditional joint and marginal distributions of the

trained SSNs after 5× 105 ms, respectively.

(Figure 4G). The corresponding joint and marginal distributions
are shown in Figures 4H,I, respectively. The lower accuracy of
these distributions is mainly due to the asymmetry of the effective
synaptic weights caused by the variability of the substrate,
toward which the learning algorithm is agnostic. The training
took 5× 102 s wall-clock time, including the pure experiment
runtime, the initialization of the hardware and the calculation
of the updates on the host computer (total turn-over time of the

training). This corresponds to a speed-up factor of 100 compared
to the equivalent 5× 104 s of biological real time. While the
nominal 104 speed-up remained intact for the emulation of
network dynamics, the total speed-up factor was reduced due
to the overhead imposed by network (re)configuration and I/O
between the host and the neuromorphic substrate.

We carried out the same experiments as described previously
with 20 different samples for the weights and the biases of the
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FIGURE 5 | Emulated SSNs sampling from different target Boltzmann distributions. This figure shows the results of experiments identical to the ones in section 3.1 for

20 different target distributions with 10 repetitions for each sample. We show the DKL(p ‖ p∗) of the test-run after training for (A) the joint distributions with Poisson

noise, (B) the inference experiment with Poisson noise, (C) the joint distributions with a random background network and (D) the inference experiment with a random

background network. The data is plotted following the traditional box-and-whiskers scheme: the orange line represents the median, the box represents the

interquartile range, the whiskers represent the full data range and the × represent the far outliers. In each subplot the leftmost data (highlighted in red) corresponds to

the distribution shown in Figure 4.

target distribution. In Figure 5 we show the final DKLs after
training to represent a target distribution both with Poisson noise
and with the activity of a random network. The experiments
were repeated 10 times for each sample. Median learning
results remained consistent across target distributions, with the
variability reflecting the difficulty of the problem (discrepancies
between LIF and Glauber dynamics become more pronounced
for larger weights and biases). Variability across trials for the
same target distribution is due to the trial-to-trial variability of
the analog parameter storage (floating gates), due to the inherent
stochasticity in the learning procedure (sampling accuracy in an
update step), as well as due to systematic discrepancies between
the effective pre-post and post-pre interaction strengths between
sampling units, which are themselves a consequence of the
aforementioned floating gate variability.

3.2. Learning From Data
In order to obtain models of labeled data, we trained hierarchical
SSNs analogously to restricted Boltzmann machines (RBMs).
Here, we used two different datasets: a reduced version of the
MNIST (LeCun et al., 1998) and the fashion MNIST (Xiao et al.,
2017) datasets, which we abbreviate as rMNIST and rFMNIST

in the following. The images were first reduced with nearest-
neighbor resampling [misc.imresize function in the SciPy
library (Jones et al., 2001)] and then binarized around the median
gray value over each image. We used all images from the original
datasets (∼6,000 per class) from four classes (0, 1, 4, 7) for
rMNIST and three classes (T-shirts, Trousers, Sneakers) for
rFMNIST (Figures 6A,B). The emulated SSNs consisted of three
layers, with 144 visible, 60 hidden, and either four label units for
rMNIST or three for rFMNIST.

Pre-training was done on simulated classical RBMs using
the CAST algorithm (Salakhutdinov, 2010). The pre-training
provided a starting point for training on the hardware in
order to accelerate the convergence of the in-the-loop training
procedure. We use the performance of these RBMs in software
simulations using Gibbs sampling as a reference for the results
obtained with the hardware-emulated SSNs. After pre-training,
we mapped these RBMs to approximately equivalent SSNs on
the hardware, using an empirical translation factor based on an
average activation function (Figure 3C) to calculate the initial
hardware synaptic weights from weights and biases of the RBMs.
Especially for rMNIST, this resulted in a significant deterioration
of the classification performance (Figure 6C). After mapping,
we continued training using the wake-sleep algorithm, with the

Frontiers in Neuroscience | www.frontiersin.org 9 November 2019 | Volume 13 | Article 1201

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Kungl et al. Accelerated Inference With Spiking Neurons

FIGURE 6 | Behavior of hierarchical SSNs trained on data. Top row: rMNIST; middle row: rFMNIST; bottom row: exemplary setups for the partial occlusion scenarios.

(A,B) Exemplary images from the rMNIST (A) and rFMNIST (B) datasets used for training and comparison to their MNIST and FMNIST originals. (C,D) Training with

the hardware in the loop after translation of pre-trained parameters. Confusion matrices after training shown as insets. Performance of the reference RBMs shown as

dashed brown lines. Results are given as median and interquartile values over 10 test runs. (E,F) Pattern completion and (G,H) error ratio of the inferred label for

partially occluded images (blue: patch; red: salt&pepper). Solid lines represent median values and shaded areas show interquartile ranges over 250 test images per

class. Performance of the reference RBMs shown as dashed lines. As a reference, we also show the error ratio of the SNNs on unconcluded images in (G) and (H).

(I) Snapshots of the pattern completion experiments: O—original image, C—clamped image (red and blue pixels are occluded), R—response of the visible layer,

L—response of the label layer. (J) Exemplary temporal evolution of a pattern completion experiment with patch occlusion. For better visualization of the activity in the

visible layer in (I,J), we smoothed out its discretized response to obtain grayscale pixel values, by convolving its state vector with a box filter of 10ms width.

hardware in the loop. While in the previous task it was possible
to calculate the data term explicitly, it now had to be sampled as
well. In order to ensure proper clamping, the synapses from the
hidden to the label layer and from the hidden layer to the visible
layer were turned off during the wake phase.

The SSNs were tested for both their discriminative and their
generative properties. For classification, the visible layer was
clamped to images from the test set (black pixels correspond
to zk = 1 and white pixels to zk = 0). Each image was
presented for 500 biological milliseconds, which corresponds
to 50µs wall-clock time. The neuron in the label layer with
the highest firing rate was interpreted as the label predicted by
the model. The spiking activity of the neurons was read out
directly from the hardware, without additional off-chip post-
processing. For both datasets, training was able to restore the
performance lost in the translation of the abstract RBM to

the hardware-emulated SSN. The emulated SSNs achieved error
rates of 4.45+0.12

−0.36% on rMNIST and 3.32+0.27
−0.04% on rFMNIST.

These values are close to the ones obtained by the reference
RBMs: 3.89+0.10

−0.02% on rMNIST and 2.645+0.002
−0.010% on rFMNIST

(Figures 6C,D, confusion matrices shown as insets).
The gross wall-clock time needed to classify the 4125 images

in the rMNIST test set was 10 s (2.4ms per image, 210×
speed-up). For the 3,000 images in the rFMNIST test set, the
emulation ran for 9.4 s (3.1ms per image; 160× speed-up).
This subsumes the runtime of the BrainScaleS software stack,
hardware configuration and the network emulation. The runtime
of the software-stack includes the translation from a PyNN-based
network description to a corresponding hardware configuration.
As before, the difference between the nominal acceleration factor
and the effective speed-up stems from the I/O and initialization
overhead of the hardware system.
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FIGURE 7 | Generated images during guided dreaming. The visible state space, along with the position of the generated images within it, was projected to two

dimensions using t-SNE (Maaten and Hinton, 2008). The thin lines connect consecutive samples. (A) rMNIST; (B) rFMNIST.

To test the generative properties of our emulated SSNs, we set
up two scenarios requiring them to perform pattern completion
(Supplementary Video 2). For each class, 250 incomplete images
were presented as inputs to the visible layer. For each image, 25%
of visible neurons received no input, with the occlusion following
two different schemes: salt&pepper (upper row in Figure 6I) and
patch (lower row in Figure 6I). Each image was presented for
500ms. In order to remove any initialization bias resulting from
preceding images, random input was applied to the visible layer
between consecutive images.

Reconstruction accuracy was measured using the mean
squared error (MSE) between the reconstructed and original
occluded pixels. For binary images, as in our case, the
MSE reflects the average ratio of mis-reconstructed to total
reconstructed pixels. Simultaneously, we also recorded the
classification accuracy on the partially occluded images. After
stimulus onset, the MSE converged from chance level (≈ 50%)
to its minimum (≈ 10%) within 50ms (Figures 6E,F). Given
an average refractory period of ≈ 10ms (Figure 3C), this
suggests that the network was able to react to the input with
no more than 5 spikes per neuron. For all studied scenarios,
the reconstruction performance of the emulated SSNs closely
matched the one achieved by the reference RBMs. Examples
of image reconstruction are shown in Figures 6I,J for both
datasets and occlusion scenarios. The classification performance
deteriorated only slightly compared to non-occluded images and
also remained close to the performance of the reference RBMs
(Figures 6G,H). The temporal evolution of the classification
error closely followed that of the MSE.

As a further test of the generative abilities of our hardware-
emulated SSNs, we recorded the images produced by the visible

layer during guided dreaming. In this task, the visible and hidden
layers of the SSN evolved freely without external input, while the
label layer was periodically clamped with external input such that
exactly one of the label neurons was active at any time (enforced
one-hot coding). In a perfect model, this would cause the visible
layer to sample only from configurations compatible with the
hidden layer, i.e., from images corresponding to that particular
class. Between the clamping of consecutive labels, we injected 100
ms random input to visible layer to facilitate the changing of the
image. The SSNs were able to generate varied and recognizable
pictures, within the limits imposed by the low resolution of the
visible layer (Figure 7). For rMNIST, all used classes appeared
in correct correspondence to the clamped label. For rFMNIST,
images from the class “Sneakers” were not always triggered by the
corresponding guidance from the label layer, suggesting that the
learnedmodes in the energy landscape are too deep, and sneakers
too dissimilar to T-shirts and Trousers, to allow good mixing
during guided dreaming.

4. DISCUSSION

This article presents the first scalable demonstration of
sampling-based probabilistic inference with spiking networks
on a highly accelerated analog neuromorphic substrate. We
trained fully connected spiking networks to sample from target
distributions and hierarchical spiking networks as discriminative
and generative models of higher-dimensional input data. Despite
the inherent variability of the analog substrate, we were able
to achieve performance levels comparable to those of software
simulations in several benchmark tasks, while maintaining a
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significant overall acceleration factor compared to systems that
operate in biological real time. Importantly, by co-embedding
the generation of stochasticity within the same substrate, we
demonstrated the viability of a fully embedded neural sampling
model with significantly reduced demands on off-substrate I/O
bandwidth. Having a fully embedded implementation allows the
runtime of the experiments to scale as O(1) with the size of
the emulated network; this is inherent to the nature of physical
emulation, for which wall-clock runtime only depends on the
emulated time in the biological reference frame. In the following
sections, we address the limitations of our study, point out links
to related work and discuss its implications within the greater
context of computational neuroscience and bio-inspired AI.

4.1. Limitations and Constraints
The most notable limitation imposed by the current
commissioning state of the BrainScaleS system was on the
size of the emulated SSNs. At the time of writing, due to
limited software flexibility, system assembly and substrate yield,
the usable hardware real-estate was reduced to a patchy and
non-contiguous area, thereby strongly limiting the maximum
connectivity between different locations within this area. In
order to limit synapse loss to small values (below 2%), we
restricted ourselves to using a small but contiguous functioning
area of the wafer, which in turn limited the maximum size of our
SSNs and noise-generating RNs. Ongoing improvements in post-
production and assembly, as well as in the mapping and routing
software, are expected to enhance on-wafer connectivity and
thereby automatically increase the size of emulable networks, as
the architecture of our SSNs scales naturally to such an increase
in hardware resources.

To a lesser extent, the sampling accuracy was also affected by
the limited precision of hardware parameter control. The writing
of analog parameters exhibits significant trial-to-trial variability;
in any given trial, this leads to a heterogeneous substrate, which
is known to reduce the sampling accuracy (Probst et al., 2015).
Most of this variability is compensated during learning, but
the 4 bit resolution of the synaptic weights and the imperfect
symmetry in the effective weight matrix due to analog variability
of the synaptic circuits ultimately limit the ability of the SSN
to approximate target distributions. This leads to the “jumping”
behavior of the DKL(p ‖ p∗) in the final stages of learning
(Figure 4A). In smaller networks, synaptic weight resolution is a
critical performance modifier (Petrovici et al., 2017b). However,
the penalty imposed by a limited synaptic weight resolution is
known to decrease for larger deep networks with more and larger
hidden layers, both spiking and non-spiking (Courbariaux et al.,
2015; Petrovici et al., 2017a). Furthermore, the successor system
(BrainScaleS-2, Aamir et al., 2016) is designed with a 6-bit
weight resolution.

In the setup we used shared bias neurons for several
neurons in the sampling network. This helped us save hardware
resources, thus allowing the emulation of larger functional
networks. Such bias neuron sharing is expected to introduce
some small amount of temporal correlations between the
sampling neurons. However, this effect was too small to observe
in our experiments for several reasons. First, the high firing

rate of the bias neurons helped smooth out the bias voltage
induced into the sampling neurons. Second, the different delays
and spike timing jitter on the hardware reduces such cross-
correlations. Third, other dominant limitations overshadow
the effect of shared bias neurons. In any case, the used
training procedure inherently compensates for excess cross-
correlations, thus effectively removing any distortions to the
target distribution that this effect might introduce (Bytschok
et al., 2017; Dold et al., 2019).

In the current setup, our SSNs displayed limited mixing
abilities. During guided dreaming, images from one of the
learned classes were more difficult to generate (Figure 7).
Restricted mixing due to deep modes in the energy landscape
carved out by contrastive learning is a well-known problem
for classical Boltzmann machines, which is usually alleviated by
computationally costly annealing techniques (Desjardins et al.,
2010; Salakhutdinov, 2010; Bengio et al., 2013). However, the
fully-commissioned BrainScaleS system will feature embedded
short-term synaptic plasticity (Schemmel et al., 2010), which
has been shown to promote mixing in spiking networks (Leng
et al., 2018) while operating purely locally, at the level of
individual synapses.

Currently, the execution speed of emulation runs is dominated
by the I/O overhead, which in turn is mostly spent on setting up
the experiment. This leads to the classification (section 3.2) of one
image taking 2.4 to 3.9 ms, whereas the pure network runtime is
merely 50µs. A streamlining of the software layer that performs
this setup is expected to significantly reduce this discrepancy.

The synaptic learning rule was local and Hebbian, but updates
were calculated on a host computer using an iterative in-
the-loop training procedure, which required repeated stopping,
evaluation and restart of the emulation, thereby reducing the
nominal acceleration factor of 104 by two orders of magnitude.
By utilizing on-chip plasticity, as available, for example, on
the BrainScaleS-2 successor system (Friedmann et al., 2017;
Wunderlich et al., 2019), this laborious procedure becomes
obsolete and the accelerated nature of the substrate can be
exploited to its fullest extent.

4.2. Relation to Other Work
This study builds upon a series of theoretical and experimental
studies of sampling-based probabilistic inference using the
dynamics of biological neurons. The inclusion of refractory times
was first considered in Buesing et al. (2011). An extension to
networks of leaky integrate-and-fire neurons and a theoretical
framework for their dynamics and statistics followed in Petrovici
et al. (2013) and Petrovici et al. (2016). The compensation
of shared-input correlations through inhibitory feedback and
learning was discussed in Bytschok et al. (2017), Jordan et al.
(2017), and Dold et al. (2019), inspired by the early study of
asynchronous irregular firing in Brunel (2000) and by preceding
correlation studies in theoretical (Tetzlaff et al., 2012) and
experimental (Pfeil et al., 2016) work.

Previous small-scale studies of sampling on accelerated
mixed-signal neuromorphic hardware include (Petrovici et al.,
2015, 2017a,b). An implementation of sampling with spiking
neurons and its application to the MNIST dataset was shown in
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Pedroni et al. (2016) using the fully digital, real-time TrueNorth
neuromorphic chip (Merolla et al., 2014).

We stress two important differences between (Pedroni et al.,
2016) and this work. First, the nature of the neuromorphic
substrate: the TrueNorth system is fully digital and calculates
neuronal state updates numerically, in contrast to the physical-
model paradigm instantiated by BrainScaleS. In this sense,
TrueNorth emulations are significantly closer to classical
computer simulations on parallel machines: updates of
dynamical variables are precise and robustness to variability is
not an issue; however TrueNorth typically runs in biological real
time (Merolla et al., 2014; Akopyan et al., 2015), which is 10,000
times slower than BrainScaleS. Second, the nature of neuron
dynamics: the neuron model used in (Pedroni et al., 2016) is an
intrinsically stochastic unit that sums its weighted inputs, thus
remaining very close to classical Gibbs sampling and Boltzmann
machines, while our approach considers multiple additional
aspects of its biological archetype (exponential synaptic kernels,
leaky membranes, deterministic firing, stochasticity through
synaptic background, shared-input correlations etc.). Moreover,
our approach uses fewer hardware neuron units to represent a
sampling unit, enabling a more parsimonious utilization of the
neuromorphic substrate.

4.3. Conclusion
In this work we showed how sampling-based Bayesian
inference using hierarchical spiking networks can be
robustly implemented on a physical model system despite
inherent variability and imperfections. Underlying neuron
and synapse dynamics are deterministic and close to their
biological archetypes, but with much shorter time constants,
hence the intrinsic acceleration factor of 104 with respect
to biology. The entire architecture—sampling network
plus background random network—was fully deterministic
and entirely contained on the neuromorphic substrate,
with external communication used only to represent input
patterns and labels. Considering the deterministic nature
of neurons in vitro (Mainen and Sejnowski, 1995; Reinagel
and Reid, 2002; Toups et al., 2012), such an architecture also
represents a plausible model for neural sampling in cortex
(Jordan et al., 2017; Dold et al., 2019).

We demonstrated sampling from arbitrary Boltzmann
distributions over binary random variables, as well as generative
and discriminative properties of networks trained with visual
data. The framework can be extended to sampling from arbitrary
probability distributions over binary random variables, as it
was shown in software simulations (Probst et al., 2015). For
such networks, the two abovementioned computational tasks
(pattern completion and classification) happen simultaneously,
as they both require the calculation of conditional distributions,
which is carried out implicitly by the network dynamics.
Both during learning and for the subsequent inference tasks,
the setup benefitted significantly from the fast-intrinsic
dynamics of the substrate, achieving a net speedup of 100–210
compared to biology.

We view these results as a contribution to the nascent
but expanding field of applications for biologically inspired

physical-model systems. They demonstrate the feasibility
of such devices to solve problems in machine learning,
as well as studying biological phenomena. Importantly,
they explicitly address the search for robust computational
models that are able to harness the strengths of these
systems, most importantly their speed and energy efficiency.
The proposed architecture scales naturally to substrates
with more neuronal real-estate and can be used for a
wide array of tasks that can be mapped to a Bayesian
formulation, such as constraint satisfaction problems
(Jonke et al., 2016; Fonseca Guerra and Furber, 2017),
prediction of temporal sequences (Sutskever and Hinton,
2007), movement planning (Taylor and Hinton, 2009; Alemi
et al., 2015), simulation of solid-state systems (Edwards
and Anderson, 1975), and quantum many-body problems
(Carleo and Troyer, 2017; Czischek et al., 2018).
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