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Abstract
Vole-associated hantaviruses occur in the Old and New World. Tula orthohantavirus (TULV) is widely distributed throughout 
the European continent in its reservoir, the common vole (Microtus arvalis), but the virus was also frequently detected in 
field voles (Microtus agrestis) and other vole species. TULV and common voles are absent from Great Britain. However, 
field voles there harbor Tatenale and Kielder hantaviruses. Here we screened 126 field voles and 13 common voles from 
Brandenburg, Germany, for hantavirus infections. One common vole and four field voles were anti-TULV antibody and/or 
TULV RNA positive. In one additional, seropositive field vole a novel hantavirus sequence was detected. The partial S and 
L segment nucleotide sequences were only 61.1% and 75.6% identical to sympatrically occurring TULV sequences, but 
showed highest similarity of approximately 80% to British Tatenale and Kielder hantaviruses. Subsequent determination of 
the entire nucleocapsid (N), glycoprotein (GPC), and RNA-dependent RNA polymerase encoding sequences and determina-
tion of the pairwise evolutionary distance (PED) value for the concatenated N and GPC amino acid sequences confirmed a 
novel orthohantavirus species, tentatively named Traemmersee orthohantavirus. The identification of this novel hantavirus 
in a field vole from eastern Germany underlines the necessity of a large-scale, broad geographical hantavirus screening of 
voles to understand evolutionary processes of virus–host associations and host switches.
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Introduction

Hantaviruses (order Bunyavirales, family Hantaviridae) 
have been identified in various small mammal reservoirs, 
including murine and cricetid rodents, shrews, moles, 
and bats [1]. Rodent-borne hantaviruses are distributed 
worldwide and can cause hemorrhagic fever with renal 
syndrome (HFRS) in humans in the Old World [2, 3]. The 
hantavirus genome is divided into three segments. The 
large (L) segment encodes the viral RNA-dependent RNA 
polymerase (RdRP). The medium (M) segment encodes 
the glycoprotein precursor (GPC) that is co-translationally 
cleaved into the amino terminal Gn and the carboxy-termi-
nal Gc parts. The small (S) segment encodes the structural 
nucleocapsid (N) protein [4]. The S segment of Cricetidae-
associated hantaviruses encodes in an overlapping open 
reading frame (ORF) a short putative nonstructural protein 
(NSs) that functions as an interferon antagonist [5].

There is a high diversity of vole-borne hantaviruses 
in the Old and New World. Sin Nombre orthohantavirus 
(SNV) strain Convict Creek, El Moro Canyon orthohanta-
virus (EMCV), Isla Vista hantavirus (ISLAV), and Pros-
pect Hill orthohantavirus (PHV) have been associated with 
the California vole (Microtus californicus), montane vole 
(Microtus montanus), prairie vole (Microtus ochrogaster), 
and meadow vole (Microtus pennsylvanicus) reservoirs in 
the New World [6–11]. Several vole-borne hantaviruses 
are distributed in Asia and mainland Europe including 
Khabarovsk orthohantavirus (KHAV) in reed vole (Micro-
tus fortis), Maximowicz’s vole (Microtus maximowiczii), 
and tundra vole (Microtus oeconomus), KHAV strain 
Topografov in reed vole, Fusong orthohantavirus (FUSV) 
in reed vole, and Yakeshi orthohantavirus in Maximow-
icz’s vole [11–13].

Tula orthohantavirus (TULV) has a broad geographical 
distribution that ranges from France in the west to Russia 
in the northeast and Turkey in the south [14–20]. In depth 
analyses of TULV and its rodent hosts in Europe have 
recently led to the identification of independently evolv-
ing TULV clades associated with the evolutionary line-
ages Central (CEN) or Eastern (EST) in the common vole 
(Microtus arvalis) [19]. Within each of these host lineages, 
two deeply divergent TULV clades occur named after their 
nonoverlapping geographical ranges TULV Central North 
(CEN.N) and Central South (CEN.S) or Eastern North 
(EST.N) and Eastern South (EST.S) [18, 20]. TULV has 
also been detected in other vole species, i.e., field vole 
(Microtus agrestis), narrow-headed vole (Microtus grega-
lis), East-European vole (Microtus levis formerly Micro-
tus rossiaemeridionalis), Altai vole (Microtus obscurus), 
European pine vole (Microtus subterraneus), Major’s pine 
vole (Microtus majori), and water vole (Arvicola spp.) 

[12–15, 17, 21, 22]. However, the long-term evolution of 
TULV appears to be associated with the common vole as 
suggested by the isolation-by-distance (IBD) relationship 
between virus strains across Europe that is driven by the 
genetic diversity of TULV found in this reservoir species 
[20].

Currently, little is known about the role of the field 
vole as hantavirus reservoir. TULV RNA detection in field 
voles is discussed as a result of spillover infection from 
sympatric common vole reservoir [17, 18]. Field voles 
from the British Isles were found to be a reservoir for Tat-
enale hantavirus, a virus only distantly related to TULV 
[23]. A related sequence was detected more recently in 
field voles from Kielder Forest in England, 230 km from 
the area where Tatenale hantavirus was initially detected 
[24]. To test for the potential role of field voles as reservoir 
of TULV and its host specificity in sympatry, we collected 
field voles and common voles in Brandenburg, eastern 
Germany, including regions where TULV was previously 
almost exclusively detected in field voles [17].

A total of 126 field voles and 13 common voles were 
collected in 2006, 2007, 2008, and 2018 at four trapping 
sites in Brandenburg (Fig. 1a) and dissected according to 
the standard protocol [25]. Enzyme-linked immunosorb-
ent assay (ELISA) screening of chest cavity fluids (CCF) 
was performed in parallel with Saccharomyces cerevisiae-
produced N proteins of two TULV strains, strain Thuringia 
[26], and strain Moravia [19, 22, 27]. Here, four of 126 
field voles and one of 13 common voles from two trap-
ping sites were detected in both ELISAs as seropositive 
(Table 1).

Screening of lung tissue-derived RNA by conventional 
reverse transcription-polymerase chain reaction (RT-PCR) 
assays targeting the S segment [22], M segment [28], and 
L segment [29] resulted in specific amplification products 
in three of 126 field voles and one of 13 common voles 
(Table 1). The common vole and one field vole were anti-
TULV antibody and TULV RNA positive. Two field voles 
were exclusively anti-TULV positive, but RT-PCR negative, 
whereas an additional field vole was only TULV RNA posi-
tive (Table S1).

For phylogenetic analysis, additional 12 S, 31 M, and 
32 L segment TULV sequences were generated for TULV 
strains that were identified in a previous study (Ref. [18]; 
Table S2). Direct sequencing of the S and M segment RT-
PCR products of three voles of the current study resulted 
in the identification of sequences from the TULV-CEN.N 
clade in two field voles collected at Stadtsee and in one 
common vole from Traemmersee (Fig. S1A and B). The 
novel partial L segment sequences also clustered within the 
TULV-CEN.N clade (data not shown). Cytochrome b (cytb) 
analysis revealed that the TULV RNA-positive common vole 
belongs to the evolutionary lineage Central in this species 
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which is consistent with large-scale phylogeographic pat-
terns (Refs. [19, 30]; Table S1, Fig. S2A).

Interestingly, S and L segment sequences from a single 
seropositive field vole from Traemmersee were highly diver-
gent to TULV, but similar to the British field vole-associated 
Tatenale and Kielder hantaviruses (Fig. 1b, c, Table S3). In 
addition, RT-PCR amplified partial GPC-encoding sequence 
was also highly divergent from TULV M segment sequences 
(identity of 75–80%; Fig. S1B); M segment sequences from 
Tatenale and Kielder hantaviruses are not available so far.

The complete coding sequences of S, M, and L segments 
were generated by a primer-walking approach (for primers 
used see Table S4). The encoded N protein, GPC, and RdRP 
are 433, 1148, and 2154 amino acids in length, respectively. 

A moderate similarity to TULV and a higher similarity to 
the sequences of other vole-borne hantaviruses were identi-
fied by pairwise comparison of the nucleotide and amino 
acid sequences as well as in the phylogenetic trees (Table S5 
and Fig. S3A–F). A 270 nucleotide-long NSs ORF overlap-
ping the N ORF was identified; the amino terminal region 
of the putative NSs protein is similar to that of the majority 
of vole-borne hantaviruses, but differs to the amino-termi-
nally extended NSs proteins of KHAV and FUSV (data not 
shown).

The pairwise evolutionary distance (PED) values of the 
concatenated N protein and GPC of Traemmersee virus and 
KHAV, FUSV, Puumala orthohantavirus (PUUV), PHV, and 
TULV vary between 0.14 and 0.66 (Table S5). These values 
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Fig. 1   Map of vole trapping sites and phylogenetic trees of partial S 
and L segment sequences of hantaviruses including the new Traem-
mersee orthohantavirus and the British Tatenale and Kielder hanta-
viruses. a Map of the trapping sites of field voles (Microtus agres-
tis) and common voles (Microtus arvalis) in Brandenburg, eastern 
Germany. Trapping sites of hantavirus-RNA-positive field voles and 
common voles are indicated by filled circles. b Consensus phyloge-
netic tree of the partial S segment sequences (alignment length 393 
nucleotides (nt), positions 622–1003, counting according to Tula 
orthohantavirus (TULV) S segment, accession number NC_005227). 
c Consensus phylogenetic tree of partial L segment sequences (align-
ment length 333 nt, positions 2983–3309, counting according to 
TULV L segment, accession number NC_005226). Phylogenetic 
trees for partial S and L segment sequences were constructed because 
for Tatenale and Kielder hantaviruses only partial sequences are 

available. The consensus trees are based on Bayesian analyses with 
15,000,000 generations and a burn-in phase of 25%, and maximum-
likelihood analyses, with 1000 bootstraps and 50% cutoff using the 
general time reversible (GTR) substitution model with invariant sites 
and a gamma distributed shape parameter for both algorithms. Poste-
rior probabilities in percent from Bayesian analyses are given before 
the slash and bootstrap values are given after the slash for major 
nodes when they exceeded 70. The tree reconstructions were done via 
CIPRES [37]. Alignments were constructed under Bioedit (V7.2.3.) 
[38] using the Clustal W Multiple Alignment algorithm implemented 
in the program. Names in bold indicate newly generated sequences 
(MK542662 and MK542664) and field vole viruses clustering with 
Traemmersee virus are highlighted by a gray box. Triangles indicate 
compressed branches. Additional accession numbers are listed in 
Table S6
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were higher than the cutoff value (0.1) that was defined 
by the International Committee on Taxonomy of Viruses 
(ICTV) for a hantavirus species using DivErsity pArtitioning 
by hieRarchical Clustering (DEmARC) [31]. According to 
the criteria of the ICTV [31], this suggests a novel virus spe-
cies that was tentatively named according to the trapping site 
of the field vole “Traemmersee orthohantavirus” (TRAV). 
The definition of a novel virus species is also supported by 
the lack of evidence for recombination of the entire S, M, 
and L segment nucleotide sequences of TRAV and corre-
sponding reference sequences in SimPlot and RDP4 analyses 
(Refs. [32, 33]; data not shown). Comparison of the partial N 
protein sequence of Tatenale hantavirus (131 aa) and TRAV 
revealed a PED value of 0.0395, which may indicate that 
Tatenale hantavirus and TRAV represent a single orthohan-
tavirus species.

The paucity of available data on British Tatenale and 
Kielder hantaviruses and TRAV from other locations pre-
vents at present conclusive analyses of their evolutionary 
history. However, field voles colonized the British Isles only 
after the last glaciation less than 15,000 years ago [34–36] 
which suggests a continental origin of the ancestor of these 
British hantaviruses. At present, we can only speculate that 
the evolutionary history of these hantaviruses might be asso-
ciated with the history of the Western cytb lineage in the 
field vole because the British Isles were colonized by this 

lineage [36] and the field vole population at the sampling 
location of TRAV harbors both the Central and Western 
lineages.

In conclusion, we identified a novel orthohantavirus spe-
cies in Germany which is most similar to British hantavi-
ruses detected in the same vole host species. More hanta-
virus data based on large-scale geographical screening will 
be necessary to understand the evolutionary history of this 
system better. However, detailed analyses of TULV clades 
and evolutionary lineages in the common vole have recently 
demonstrated that speciation processes in hantaviruses can 
be triggered by evolutionary divergence in their hosts and 
may even outrun host evolution [19]. It seems thus appro-
priate to explicitly consider not only the presumed reservoir 
host but also related species as potential hosts for a bet-
ter understanding of the role of host association and host 
switches in the evolution of hantaviruses.
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Table 1   Results of the serological and RT-PCR investigations of field voles (Microtus agrestis) and common voles (Microtus arvalis) from four 
trapping sites in eastern Germany

a Amino-terminally his-tagged nucleocapsid (N) protein of Tula orthohantavirus (TULV) strain from Thuringia was produced in yeast Saccharo-
myces cerevisiae and purified by nickel-chelate affinity chromatography under denaturing conditions as described previously [27]

Trapping site 
(see Fig. 1a)

Trapping year Species Total number 
of voles 
trapped

Results (number positive/total number tested) Virus (lineage)

IgG ELISA TULV 
EST.S (Moravia) N 
protein

IgG ELISA TULV-
CEN.N (Thuringiaa) 
N protein

S segment 
RT-PCR

Marzehns 2006 M. agrestis 9 0/9 0/9 0/9
2007 M. agrestis 33 0/33 0/33 0/33

M. arvalis 7 0/7 0/7 0/7
Schwenow 2006 M. agrestis 5 0/5 0/5 0/5

2008 M. agrestis 3 0/3 0/3 0/3
M. arvalis 1 0/1 0/1 0/1

Stadtsee 2006 M. agrestis 12 0/12 0/12 0/12
2007 M. agrestis 14 0/14 0/14 0/14
2008 M. agrestis 39 3/39 3/39 2/39 TULV (CEN.N, 

Central North)
Traemmersee 2008 M. agrestis 8 1/8 1/8 1/8 Traemmersee virus

M. arvalis 5 1/ 5 1/5 1/5 TULV (CEN.N, 
Central North)

2018 M. agrestis 3 0/3 0/3 0/3
Total M. agrestis 126 4/126 4/126 3/126

M. arvalis 13 1/13 1/13 1/13
all Microtus 139 5/139 5/139 4/139
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