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Abstract
Introduction Non-targeted metabolic profiling using high-resolution mass spectrometry (HRMS) is a standard approach for 
pathway identification despite technical limitations.
Objectives To assess the performance of combining targeted quadrupole (QQQ) analysis with HRMS for in-depth pathway 
profiling.
Methods Serum of exercising patients with type 1 diabetes (T1D) was profiled using targeted and non-targeted assays.
Results Non-targeted analysis yielded a broad unbiased metabolic profile, targeted analysis increased coverage of purine 
metabolism (twofold) and TCA cycle (three metabolites).
Conclusion Our screening strategy combined the benefits of the unbiased full-scan HRMS acquisition with the deeper insight 
into specific pathways by large-scale QQQ analysis.

Keywords Targeted · Non-targeted · Pathways · Metabolism

1 Introduction

The new generation of high-resolution mass spectrometers 
(HRMS) delivering unbiased full-scan information with high 
mass accuracy (< 3–10 ppm) has promoted non-targeted 
metabolic profiling by liquid chromatography coupled to 
mass spectrometry (LC–MS) to a gold standard for iden-
tifying regulated pathways in biological samples. This sta-
tus has been gained as no prior knowledge of the regulated 
metabolites is required. Non-targeted metabolic profiling 
with HRMS has also demonstrated excellent robustness and 

hundreds of samples can be profiled if appropriate internal 
standards or quality control samples are used (Lewis et al. 
2016). However, non-targeted LC–MS metabolomics suf-
fers from major limitations: an ease of detector saturation, 
limited linear range and a complex integration pipeline influ-
enced among other parameters by the peak picking algo-
rithms (Myers et al. 2017). In contrast, the integration of the 
chromatographic ion signals measured on a triple quadru-
pole (QQQ) in a selected reaction monitoring (SRM) mode 
is relatively straightforward and measuring up to hundreds 
of metabolites in a single run is nowadays possible (Cai 
et al. 2015; Yuan et al. 2012). This performance is usually 
achieved by restricting the acquisition time of the metabolite 
to its elution window and by using the increased polarity 
switch capacity of QQQ.

Until recently, a major drawback for the implementation 
of such large-scale SRM assays on QQQ was the need to 
optimize the fragmentation conditions for each metabo-
lite separately (e.g., m/z of the fragments, collision energy, 
transfer voltage), a process which often required metabo-
lite standards and manual effort. The recent introduction of 
METLIN-MRM (Domingo-Almenara et al. 2018), a data-
base containing the transitions of more than 15000 mole-
cules, the numerous published protocols in literature and the 
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introduction of data-independent acquisition (DIA) of MS/
MS spectra currently allows for an accelerated development 
of SRM methods without the need of metabolic standards 
(Chen et al. 2013; Zha et al. 2018). Targeted acquisition on 
QQQ has also shown improved sensitivity, reproducibility 
and lower dependency to signal normalization compared to 
non-targeted acquisition on HRMS (Chen et al. 2013; Shao 
et al. 2015). Hence, large-scale targeted assay could become 
an interesting addition to non-targeted analysis for in-depth 
characterisation of multiple metabolic pathways.

In this study, we will demonstrate that the combination 
of full-scan non-targeted Q-TOF and targeted QQQ analysis 
improves the characterisation of metabolic profiles, and thus, 
the understanding of biochemical processes in pathways dur-
ing metabolomics studies. As a proof of concept, we profiled 
serum samples from a previously described crossover study 
with T1D patients in which energy metabolic pathways were 
modulated by physical exercise (Bally et al. 2017). T1D is 
an important metabolic disease affecting many young and 
active people and is known for its complex interplay of met-
abolic processes during exercise (Dube et al. 2013).

2  Materials and methods

2.1  Study design and sample preparation

For the evaluation of the LC–MS methods, we used the 
serum of 12 male patients with T1D undergoing 90 min of 
isoenergetic exercise with (intermittent high-intensity, IHE) 
and without (continuous moderate intensity, CONT) inter-
spersed sprints as previously described (Bally et al. 2017). 
Serum was collected before (0 min), during (80 min) and 
after (210 min) exercise. Metabolites were extracted by pro-
tein precipitation with organic solvent. Details of the extrac-
tion protocol are provided in the supplementary informa-
tion. To evaluate the linear range, we additionally pooled the 
serum from healthy volunteers and analysed in triplicates a 
dilution series of the extracted serum (undiluted, 1:3, 1:9, 
1:27, 1:81 and 1:243 dilution).

2.2  LC–MS analysis

Briefly, metabolic profiling of extracted serum was per-
formed by a non-targeted and targeted approach using 
Q-TOF and QQQ mass spectrometers, respectively. The 
serum metabolites were separated by reversed-phase chro-
matography with water and methanol acidified with 0.1% 
(v/v) formic acid as mobile phases. The samples were ana-
lysed in the positive (+) and negative (−) electrospray ioni-
zation (ESI) mode. The scheduled QQQ method covered 
114 metabolites involved in multiple core energy pathways 
(Table S1). The non-targeted Q-TOF method was slightly 

adapted from the previously published one (Rindlisbacher 
et al. 2018). Details of the LC–MS methods are provided in 
the supplementary information.

2.3  Data processing and analysis

The targeted evaluation of the data collected with the non-
targeted Q-TOF and targeted QQQ approaches were pro-
cessed with Skyline (MacCoss Lab, version 4.1.0) (MacLean 
et  al. 2010). The raw data from the Q-TOF were noise 
reduced with the Waters Compression, Noise Reduction and 
Archival Tool software (noise reduction 5, FWHM 25000, 
version 1.10). For the non-targeted metabolic profiling, Pro-
genesis QI (version 2.3, Nonlinear Dynamics, Newcastle, 
UK) was used for chromatographic alignment, peak pick-
ing and ion pattern deconvolution as previously described 
(Rindlisbacher et al. 2018). Metabolites solely detected by 
targeted QQQ approach were also searched in the raw non-
targeted Q-TOF data using Skyline for masses of the most 
probable adducts ([M + H]+, [M + Na]+, [M + H–H2O]+, 
[M + K]+, [M–H]−, [M–]−, [M + HCOO]−, [M–H2O–H]−). 
Among them, xanthosine detected by Q-TOF was below the 
abundance-filtering threshold of ≥ 200 for each metabolic 
feature and was thus excluded from analysis. All non-tar-
geted metabolic features were searched against the Human 
Metabolome Database (HMDB, version 4.0) (Wishart et al. 
2018) based on exact mass (≤ 8 ppm) and against an in-
house database containing retention times of authentic 
standards in addition to exact mass for identification. Fea-
tures identified against our in-house database with a reten-
tion time deviation < 0.4 min were accepted as potential 
identity. Conformation of identity was evaluated using MS/
MS spectra information from traveling wave ion-mobility 
mass spectrometry (TWIM-MS) or  MSE data. The level of 
confidence in identification (Sumner et al. 2007) was 1 for 
all mentioned metabolites (Table S2). Univariate statisti-
cal analysis was performed in Skyline or Progenesis QI 
using Student’s t test and false discovery rate was estimated 
according to Benjamini Hochberg (threshold set at q ≤ 0.05).

3  Results and discussion

We first established a targeted LC–MS method for 114 
metabolites involved in various core energy pathways and 
implemented a consolidated metabolite extraction pro-
cedure which minimized the amount of sample required 
for analysis (i.e., typically 50 µL serum). To evaluate the 
repeatability of our targeted QQQ and non-targeted Q-TOF 
methods, we analysed the repeated injections of the quality 
control (QC, n = 10) sample inter-spread during measure-
ment of the 72 serum samples from patients with T1D on 
both devices. Overall, 33 and 17 metabolites were detected 
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with both approaches in ESI + and ESI− mode, respectively. 
The coefficient of variation (CV) of the peak area was low 
with median CV ≤ 6% for both approaches, indicating high 
intra-assay precision and reliable data acquisition with both 
MS platforms (Fig. 1a). Compared to the Q-TOF instru-
ment, the QQQ was 2.2-fold and 1.5-fold more precise in 
repeated measurements of the QC sample in ESI + mode 
(median CV of 4.2% for Q-TOF and 1.9% for QQQ) and 
ESI− mode (median CV of 6% for Q-TOF and 4.1% for 
QQQ), respectively. The lower technical variability of the 
QQQ assay improves the detection of smaller differences 
between groups. Our findings are in line with previous work 
reporting improved reproducibility of QQQ compared to 
HRMS instruments (Chen et al. 2013; Shao et al. 2015).

In biological samples, metabolite concentrations vary 
strongly and can span multiple orders of magnitude. Exceed-
ance of the linear range and detector saturation with high 
abundant metabolites is an often encountered obstacle 
with Q-TOF instruments operating in full scan mode. An 
improved linearity is usually reached with QQQ, which may 
exceed four to five orders of magnitude without detector 
saturation in contrast to two to three orders of magnitude 
for Q-TOF instruments (Vrhovsek et al. 2012). We evaluated 
the linear range of both mass spectrometers by analysing a 
dilution series made from pooled serum from healthy vol-
unteers. Among the 114 metabolites analysed with the QQQ 
method, 83 metabolites were detected by both the targeted 
and non-targeted approaches. Peak areas of the commonly 
detected metabolites were extracted and the linearity of the 
dilution series was assessed by linear regression (Fig. 1b). 
The majority of the metabolites detected by the QQQ (61%) 
had an excellent linear correlation with  r2 > 0.99. In contrast, 
only 29% of the metabolites detected by the Q-TOF achieved 
similar linearity. Whereas 96% of the metabolites detected 
by the QQQ had an  r2 > 0.95, only 68% of the metabolites 
detected by the Q-TOF reached this linear correlation. 
Metabolites with poor linear correlation (i.e.,  r2 < 0.90, 16%) 
were only measured on the Q-TOF. These results endorse 

previously published reports, which show improved linear-
ity of QQQ compared to Q-TOF instruments (Chen et al. 
2013; Holcapek et al. 2012). The wider linear range obtained 
with the QQQ was especially advantageous for detecting of 
very low abundant metabolites. These metabolites, which 
were overseen by full-scan analysis using Q-TOF, may reveal 
a deeper insight into specific metabolic pathways. Subse-
quently, a combination of full-scan non-targeted Q-TOF 
and targeted QQQ analysis as a new screening strategy for 
metabolomics data could be highly beneficial for in-depth 
generation of metabolic profiles.

To confirm this hypothesis, we further profiled serum 
samples of exercising patients with T1D using both 
approaches. After peak integration and filtration of the full 
scan Q-TOF data, 1220 features were detected in ESI + and 
540 features in ESI− mode. The full-scan data revealed a 
comprehensive exercise-associated metabolic profile for 
patients with T1D and was used for discovery of discrimi-
native features between the groups. Potential clinical impli-
cations were extensively discussed in our previous publica-
tion (Bally et al. 2017). A fraction of the features detected 
with Q-TOF was assessed by the targeted QQQ method: 71 
and 33 metabolites in ESI + and ESI− mode, respectively. 
In total, 22 metabolites measured by the QQQ were signifi-
cantly regulated between CONT and IHE during (80 min) 
and after (210 min) exercise and are documented together 
with the fold changes in Table S3. These commonly detected 
metabolites showed consistent fold changes with both meth-
odological approaches, underlying the reproducibility of 
results generated with both the QQQ and Q-TOF approach.

In line with previously reported results, the most promi-
nent changes were detected in β-oxidation and purine metab-
olism (Bally et al. 2017). The coverage of acylcarnitines 
derived from fatty acid oxidation was similar for both pro-
filing approaches. Acetylcarnitine (p = 0.003 for targeted, 
p = 0.004 for non-targeted) was significantly upregulated in 
IHE compared to CONT in both MS-based approaches at 
80 min. Hexanoylcarnitine (p = 0.002 for targeted, p = 0.001 

Fig. 1  Repeatability and linear-
ity of response determined for 
the targeted QQQ and non-
targeted Q-TOF methods for the 
commonly detected metabolites. 
a Coefficient of variation (CV) 
of the peak area calculated from 
metabolites in QC samples of 
the exercising patients with T1D 
(n = 10 injections). b  r2 distribu-
tion of linear regression analysis 
of the dilution series made from 
pooled serum. QQQ analysis 
is shown in dark grey, Q-TOF 
analysis in light grey
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for non-targeted), octanoylcarnitine (p = 0.001 for targeted, 
p < 0.001 for non-targeted), decanoylcarnitine (p = 0.001 
for targeted, p < 0.001 for non-targeted), dodecanoylcar-
nitine (p = 0.002 for targeted, p = 0.001 for non-targeted) 
were due to the increased energy consumption significantly 
downregulated in IHE at 80 min. Myristoylcarnitine/tet-
radecanoylcarnitine was detected by both approaches, but 
was solely discriminative between IHE and CONT at 80 min 
using the QQQ approach (p = 0.04 for targeted, p = 0.07 for 
non-targeted). For the purine metabolism profiled with the 
targeted QQQ approach, adenosine monophosphate (AMP, 
p = 0.002), inosine (p = 0.01), hypoxanthine (p < 0.001 
in ESI− and ESI +), xanthosine (p < 0.001), xanthine 
(p = 0.04) and uric acid (p = 0.002 in ESI− and ESI +) levels 
were increased at 80 min during IHE compared to CONT 
(Fig. 2a). Furthermore, xanthosine (p < 0.001) and uric acid 
(p = 0.001 in ESI− and p < 0.001 in ESI +) remained ele-
vated after exercise at 210 min in the IHE group, indicating 
increased purine turnover during IHE compared to CONT. 
The discriminative features from the purine metabolism 
isolated by the QQQ approach were partly confirmed by 
the Q-TOF analysis: hypoxanthine (t = 80 min, p = 0.009 in 
ESI− and p = 0.002 in ESI +), xanthine (t = 80 min, p = 0.08 
in ESI− and p = 0.02 in ESI +) and uric acid (t = 80 min: 
p = 0.009 in ESI− and p = 0.03 in ESI + ; t = 210  min: 
p = 0.007 in ESI− and p = 0.04 ESI +) were increased in 
IHE compared to CONT. Inosine was detected as not sig-
nificantly changed at 80 min (p = 0.09 in ESI− and p = 0.07 
in ESI +) with the Q-TOF approach, but showed increased 
abundance in IHE compared to CONT (Fig. S1a).

Interestingly, AMP, adenosine, adenine and xanthosine 
were exclusively detected by the QQQ, leading to a twofold 

increased purine pathway coverage compared to the non-
targeted Q-TOF analysis. Furthermore, three metabolites of 
the TCA cycle were exclusively detected by the QQQ: malic 
acid, succinic acid, and alpha-ketoglutaric acid (Fig. 2b). 
These metabolites are present at low concentration in serum 
and rapid metabolisation is known to occur. Their detec-
tion by the QQQ reflects the enhanced sensitivity for certain 
specific metabolites by this assay. Malic acid (p < 0.001) and 
alpha-ketoglutaric acid (p = 0.03) were significantly upregu-
lated and succinic acid was detected with non-significant 
(p = 0.25) higher abundance in IHE compared to CONT at 
80 min (Fig. S1b). Our results confirm that the strength of 
the targeted QQQ approach lies in the increased coverage of 
low abundant metabolites involved in core energy pathways.

The present work has a methodological focus applying tar-
geted QQQ analysis in conjunction with Q-TOF to improve 
and consolidate metabolic pathway coverage. Our findings 
with HRMS of differences in acylcarnitine profiles and purine 
metabolites were corroborated by complementary targeted 
approach albeit with a twofold greater coverage of purine 
metabolism. Of note, non-targeted findings were expanded 
by novel discriminative features of TCA metabolism, which 
would have remained unrecognised with the exclusive use of 
HRMS. Higher abundance of TCA candidates such as malic 
acid, alpha-ketoglutaric acid and succinic acid with intermit-
tent high-intensity compared to moderate intensity exercise 
link the increased ATP turnover illustrated by higher purine 
metabolites and differences in acylcarnitines, thereby pro-
viding a more comprehensive insight into specific exercise-
induced metabolic effects. These results are in line with pre-
vious metabolomics-based studies investigating the plasma 

Fig. 2  Comparison of selected metabolites between IHE and CONT 
at each time point (0, 80 and 210 min) illustrated in simplified rep-
resentations of the pathways. a Purine metabolism and b tricarbox-
ylic acid (TCA) cycle using QQQ (upper line of circles) and Q-TOF 
(lower line of circles) methods. Metabolites were comprehensively 

upregulated in IHE compared to CONT. Superscript indices indicate 
measurement in positive or negative ESI mode. Yellow circles illus-
trate adjusted p-values ≤ 0.05; orange, p ≤ 0.01; red, p ≤ 0.001; grey, 
not detected; nt, not tested due to not incorporated in QQQ library 
(Color figure online)
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signature of exercise in individuals with type 1 diabetes and 
healthy controls (Lewis et al. 2010; Brugnara et al. 2012).

The increased coverage of purine metabolism and TCA 
cycle emphasizes the strength of a combined analysis strategy: 
while the non-targeted Q-TOF approach could be used to dis-
cover unknown regulated pathways and metabolites, thereby 
expanding the understanding of biological processes, the tar-
geted QQQ approach provides deeper insights into specific 
pathways. With our combined strategy, the gain in information 
was not at an expense of increased amount of sample due to 
the consolidated metabolite extraction method. The applied 
sample preparation proved suitable for HRMS full-scan pro-
filing as well as targeted analysis with QQQ, and thus, will 
be of advantage for study cohorts with delicate collection of 
samples. Recent advances in databases containing multiple 
fragmentation transitions simplified and accelerated method 
development for targeted analysis and support a combined 
use of QQQ and Q-TOF analysis for metabolite and pathway 
profiling. In conclusion, our metabolomics screening strategy 
combines the benefit of the unbiased full-scan HRMS acquisi-
tion with the deeper insight into specific core energy pathways 
by large-scale QQQ analysis.
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