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Abstract: Nicotinamide adenine dinucleotide (NAD) has a critical role in cellular metabolism and
energy homeostasis. Its importance has been established early with the discovery of NAD’s therapeutic
role for pellagra. This review addresses some of the recent findings on NAD physiopathology and
their effects on nonalcoholic fatty liver disease (NAFLD) pathogenesis, which need to be considered
in the search for a better therapeutic approach. Reduced NAD concentrations contribute to the
dysmetabolic imbalance and consequently to the pathogenesis of NAFLD. In this perspective,
the dietary supplementation or the pharmacological modulation of NAD levels appear to be an
attractive strategy. These reviewed studies open the doors to growing interest in NAD metabolism
for NAFLD diagnosis, prevention, and treatment. Future rigorous clinical studies in humans will be
necessary to validate these preliminary but promising results.
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1. Introduction

The global diabesity (diabetes and obesity) [1] epidemic has dramatically increased the prevalence
of nonalcoholic fatty liver disease (NAFLD), such that it is the most frequent cause of chronic liver
disease. NAFLD is considered to be the liver manifestation of the metabolic syndrome, because of its
frequent association with dyslipidemia, cardiovascular disease, obstructive sleep apnea, vitamin D
deficiency, and other components of the metabolic syndrome, and insulin resistance is central to its
pathogenesis [2,3].

Liver steatosis is the hallmark histologic feature of NAFLD, and it is the result of triglyceride
accumulation in the hepatocytes cytoplasm. Liver lipid accumulation arises from an imbalance
between lipid accumulation and removal, which is linked to increased liver lipogenesis, increased lipid
uptake, and/or reduced triglyceride export or β-oxidation [4,5]. Liver secretion of triglycerides as very
low-density lipoprotein (VLDL) particles for delivery to peripheral tissues is a crucial pathway for the
mobilization of hepatic fat. Defects in VLDL processing are directly linked to hepatic steatosis. Jiang et
al. showed that non-alcoholic steatohepatitis (NASH) was related to an increment in VLDL particle
size, while hepatic fibrosis was related to a reduction in the concentration of small VLDL particles [6].
Moreover, there is a relationship between choline deficiency and accumulation of liver lipid, which is
why choline-deficient diets are often used to induce NAFLD in animal models. Within hepatocytes,
choline may be oxidized for phosphatidylcholine synthesis. Liver phosphatidylcholine is used to build
the monolayers of VLDL, and its deficiency increases de novo hepatic lipogenesis [7].

The present model for NAFLD pathophysiology, called “the multiple-hit hypothesis”, defines
NAFLD as the manifestation of environmental and genetic factors, including the dysfunction of
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different organs and organelles, together with the intricate interaction between hepatocytes and other
cells (such as stellate cells and Kupffer) in the liver [8]. Additionally, the liver is a hub for several
metabolic pathways defining NAFLD as a multistep, progressive systemic disease.

2. NAD: Behind Its Metabolism

Nicotinamide adenine dinucleotide (NAD) is a hydride acceptor producing the reduced NADH,
as well as the derivate phosphorylated dinucleotide pair NADP/NADPH, which is required for
many cellular biosynthetic pathways and for protecting cells from reactive oxygen species (ROS).
The keystone function of NAD is to facilitate hydrogen transfer in metabolic pathways as enzyme
cofactors dealing with hydrogen transfer in reductive or oxidative metabolic reaction. So, it plays
a central role in basic energy metabolism such as assisting with mitochondrial electron transport,
glycolysis, the oxidation of fatty acids and amino acids in mitochondria, and the citric acid cycle. NAD
is also a substrate for signaling enzymes such as poly (ADP ribose) polymerase (PARP), sirtuins (SIRTs),
and ADP ribosyl transferases, called “NAD consumers” [9] (Figure 1). For example, it is involved in
repairing and maintaining genomic integrity, thanks to PARP, which transfers ADP-ribose from NAD
to itself, histones, and other proteins at sites of DNA damage.
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Figure 1. NAD synthesis pathways. NA, nicotinic acid; NAD, nicotinamide adenine dinucleotide; NAM,
nicotinamide; NAMN, nicotinic acid mononucleotide; NAPT, nicotinic acid phosphoribosyltransferase;
NMN, nicotinamide mononucleotide; NMNAT, nicotinamide nucleotide adenylyltransferase; NR,
nicotinamide riboside; NRK, NR kinase; NNMT, nicotinamide-N-methyltransferase; PARP, poly
(ADP ribose) polymerase; NNMT, nicotinamide N-methyltransferase; NAMPT, nicotinamide
phosphoribosyltransferase; SIRT, sirtuin.

The cellular NAD pool is created by a balance between the activity of NAD-consuming and
synthesizing enzymes [10–12]. NAD concentrations display the cell energy state and are modulated by
physiological processes. In fact, during fasting, caloric restriction, and exercise, NAD levels increase.
Conversely, caloric excess and aging diminish NAD levels [13].
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NAD is synthesized from four distinct biosynthetic precursors in two different pathways
(Figure 1). De novo synthesis (the deamidated pathway) uses as precursor the dietary amino
acid tryptophan, which is metabolized to create biosynthetic intermediates. In particular, the creation
of unstable α-amino-β-carboxymuconate-ε-semialdehyde (ACMS) forms a branching point of the
deaminated pathway. The ACMS is subjected to both non-enzymatic cyclization or complete enzymatic
oxidation to quinolinic acid, and this is the first limiting step [14]. The second limiting mechanism
involves the catalytic conversion of quinolinic acid to nicotinic acid mononucleotide (NAMN) by
quinolinate phosphoribosyl transferase. Next, NAMN is transformed into NAD by the nicotinamide
mononucleotide adenylyltransferase (NMNAT) enzyme. This pathway is recognized as the minor
contributor to the total NAD pool [14].

Dietary vitamin B3 compounds, including nicotinic acid (NA), also known as niacin, NAM, and
nicotinamide riboside (NR), supply as NAD biosynthetic precursors and are rescued from the diet (the
amidated pathway) for generating cellular NAD. This salvage pathway is the most relevant for NAD
homeostasis [15]. NA is converted to NAMN by nicotinic acid phosphoribosyltransferase (NAPT),
which is afterward converted to NAD by NMNAT. The NAM and NR are transformed into NMN
by nicotinamide phosphoribosyltransferase (NAMPT) and NR kinase (NRK) enzymes, respectively.
Finally, NMN is enzymatically transformed into NAD by NMNAT [15].

NAMPT, also known with the name visfatin, is a highly conserved protein with cytokine functions,
which is expressed in almost all tissues and cells (Figure 1) [16]. In particular, it is an essential regulator
of the intracellular NAD pool by catalyzing the formation of nicotinamide mononucleotide (NMN) from
nicotinamide and 5′-phosphoribosyl-1-pyrophosphate, which is the limiting step in the NAD salvage
pathway [17]. NAMPT has both intracellular and extracellular forms in mammals. The extracellular
NAMPT (eNAMPT) is secreted from adipocytes [18], hepatocytes [19], and leucocytes [20] and circulates
in the blood where, additionally to its enzymatic function, it has also cytokine-like actions [16,21,22].
In virtue of its NAD biosynthetic activity, intracellular NAMPT (iNAMPT) controls the activity of
NAD-dependent and consuming enzymes, such as SIRTs [23], the NADase CD38 (a cyclic ADP-ribose
synthesis) [24], and PARPs [25], by which it controls mitochondrial biogenesis, cellular metabolism [26],
and adaptive responses to oxidative, inflammatory, genotoxic, and proteotoxic stress [27]. Genotoxic
stress and nutrient deprivation activate NAMPT, which protects cells from these stresses through the
maintenance of the mitochondrial NAD level [23].

The NAD levels are also regulated by the cytosolic enzyme nicotinamide-N-methyltransferase
(NNMT), which methylates nicotinamide to produce N1-methyl nicotinamide (MNAM) toward the
universal methyl donor S-adenosylmethionine as a methyl donor (Figure 1). NNMT is mainly expressed
in the liver, but also in other organs such as muscle, adipose tissue, and heart. An increase of NNMT
expression has been observed in obesity and diabetes [28–30].

SIRTs are NAD-dependent deacylases [31]. SIRTs have key roles in response to environmental and
nutritional perturbations, such as DNA damage, oxidative stress, and fasting. For this reason, SIRTs
have to be considered as nutritional sensors that operate in regulating glucose and lipid homeostasis,
inflammatory responses, and cell death [23,32–34]. Additionally, SIRTs influence cells’ metabolism
through the regulation of the circadian clock machinery with the deacetylation of central clock
components in the liver [35,36]. Accordingly, NAD synthesis is controlled by the circadian machinery
to furnish a crucial link from the clock oscillator to metabolic pathways [37]. NAD is synthesized with
circadian oscillations, leading to a circadian schedule of SIRT activation and mitochondrial metabolism,
such as the oxidation of fatty acids [38]. SIRTs’ activity is dependent on its cofactor NAD and it
is sensitive to the cellular NAD levels [39], designating NAD as a rate-limiting substrate for their
reactions [32,40,41]. As NAM is the product of SIRT-catalyzed deacetylation reactions, high levels
of NAM have been used as a SIRTs inhibitor [42]. This drives speculation that enzymes involved in
NAD synthesis could control SIRTs’ activity. For example, an increment in NAD was proposed by
Lin et al. to mediate the health span and extension of life by dietary restriction [43], and recently,
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studies demonstrated that the activity of SIRTs declines with aging by a systemic reduction in NAD
levels [44,45].

3. NAD Involvement in NAFLD Pathogenesis

In the last years, an emerging role of NAD metabolism in protection against NAFLD stimulated a
growing interest. Von Shönfels et al. performed a small-molecule metabolite screen of human hepatic
tissue to find metabolic markers related to NASH histology. According to its concentration in liver
tissue, they suggested a protective effect of NA, which was subsequently verified in a nutritional
animal model of NAFLD showing a marked effect on steatosis and transaminases levels with NA
supplementation [46]. NAD deficiency decreases the oxidation of fatty acids, promoting steatosis [47].
Usually, the triglycerides are broken down into glycerol and fatty acids, so they can enter into the
mitochondria and proceed on with fatty acid oxidation. Fatty acids shift in this pathway as Coenzyme
A (CoA) derivatives utilizing NAD. The acetyl groups created by the β-oxidation of the fatty acid
take part in the activity of the Krebs cycle, causing the formation of NADH. The reduced coenzyme
(NADH) is oxidized by leaving the protons and electrons to oxygen in the mitochondria to synthesize
ATP in the electron transport system [48]. So, NAD deficiency causes a reduction of β-oxidation, and
consequently the accumulation of triglycerides in the hepatocytes (steatosis).

The control of rate-limiting enzymes of NAD biosynthesis avoids the negative effects of high-fat
diet (HFD) and keeps up insulin sensitivity and glucose homeostasis. Penke et al. [49] reported
increased hepatic NAD levels in mice under HFD thanks to increased NAMPT expression. So, it seems
that NAD deficiency is a crucial risk factor for NAFLD resulting from having compromised the
NAMPT-controlled NAD salvage pathway in liver [50]. Plasma levels of eNAMPT may be closely
linked to NAFLD, obesity, diabetes, and atherosclerosis [51–54]. Moreover, decreased NAMPT
expression in NAMPT +/−mice, which reduced circulating NMN levels and decreased NAD levels in
brown adipose tissue, impaired glucose-stimulated insulin secretion [22]. This event can be rescued
by NMN supplementation, suggesting that the maintenance of NAD concentrations is critical for
pancreatic function [22].

The mechanisms of NAMPT protecting the liver from HFD are depicted in Figure 2. NAMPT
induces the production of NAD by activating the NAD salvage pathway, and consecutively,
the augmented NAD (as a substrate) activates the SIRT 1 and 3 signaling pathways, alleviating
HFD-induced hepatic steatosis. De novo lipogenesis (DNL) is known to be high in individuals with
NAFLD, and provides about 26% of hepatic lipids [55,56]. The NAMPT is critical for the formation of
acetyl-CoA and for the increase of fatty acid oxidation by providing NAD for SIRT3 with the activation
of acetyl-CoA synthetase (ACS) [57]. At the same time, the activation of SIRT1 by NAMPT promotes
the deacetylation of sterol regulatory element-binding protein 1 (SREBP1), which inhibits SREBP1
activity, resulting in the lower expression of lipogenesis genes, including fatty acid synthase (FAS)
and acetyl-CoA carboxylase (ACC). Additionally, SIRT 1 directly activates AMP-activated protein
kinase (AMPK), which further inhibits SREBP1 activity. All together, these results show that NAMPT
modulates processes involved in NAFLD pathogenesis (such as de novo lipogenesis and fatty acid
oxidation). Accordingly, Zhou et al. showed that dominant negative-NAMPT transgenic mice, under
normal chow, display systemic NAD decrease and had a moderate NASH phenotype, with enhanced
oxidative stress, lipid accumulation, impaired insulin sensitivity, and triggered inflammation in liver.
These features deteriorate further under HFD [50].
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NNMT has also been associated to the development of diabetes, obesity, and metabolic
syndrome [28–30]. An increase of NNMT expression has been observed in obesity and diabetes [28–30],
probably because NNMT controls lipid, cholesterol, and glucose metabolism by stabilizing SIRTs [58].
In humans, adipose tissue NNMT expression and its product MNAM correlate positively with insulin
resistance. Kannt et al. [29] showed an increased expression of NNMT in the adipose tissue of diabetic
patients according to the insulin resistance severity, suggesting that NNMT could be a “bad actor”
limiting fuel oxidation and promoting fat storage. NNMT protein levels are upregulated in the liver
and adipose tissue of mouse models of insulin resistance and obesity, and NNMT knockdown has
a protective effect against the metabolic consequences of HFD [28], suggesting that NNMT may
have a critical role in NAFLD pathogenesis. The dietary regulation of liver NNMT expression,
the site of its major expression, shows some interesting patterns. The ketogenic diet suppresses
liver NNMT expression, contributing to the increased liver and serum cholesterol levels in this
model [59]. Conversely, caloric restriction increased NNMT liver expression, promoting SIRT1 protein
stability, which mediates several metabolic effects of caloric restriction [60]. Liver NNMT expression
inversely correlates with serum triglycerides (TGs), cholesterol, and free fatty acid levels, suggesting
that increased liver NNMT expression is associated with a better metabolic profile, contrary to its
expression in adipose tissue [28,29]. Furthermore, a genome-wide association study showed significant
associations between the risk of developing NASH and a specific single-nucleotide polymorphisms
(SNPs) in the NNMT gene (rs694539) [61]: in this case, subjects with the AA genotype showed a
statistically significant increased NASH risk, while the GG genotype seemed to be protective. Similarly,
Hasan et al. showed that the AA genotype correlates with the degree of steatosis as detected by the
controlled attenuation parameter, even if it does not correlate with the degree of fibrosis detected by
FibroScan [62].

4. NAD as Biomarker for NAFLD Diagnosis

The identification of non-invasive biomarkers has become a major focus of interest in NAFLD.
Since the diagnosis of NASH is still a histological one, the dramatic increase in the prevalence of
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NAFLD and its severity spectrum mean that liver biopsy is not feasible for all patients. Current plasma
biomarkers include predictive models for diagnosing or grading steatosis (such as the fatty liver index)
or staging fibrosis (such as the NAFLD fibrosis score), and other ones specific to NAFLD (such as the
BARD and NAFLD fibrosis scores), even if some have been initially developed in a hepatitis C setting
(AST/ALT ratio, APRI, FIB-4) [63].

Several studies evaluated the relationship between NAD metabolism and NAFLD [29,64–68]
(Table 1). Human studies investigated how plasma and liver NAMPT protein levels are affected in
subjects with steatosis and NAFLD [64–68]. Gaddipati et al. [64] showed that a significant reduction in
the NAMPT levels of the visceral adipose tissue is associated to degree of steatosis in NAFLD patients.
Similarly, Amirkalali et al. [68] showed that higher serum NAMPT is associated with lower liver DNL
in female subjects (probably associated with a higher adipose tissue DNL according to the higher
fat mass), while the only significant association in male subjects was between serum NAMPT and
liver fat content, probably for the inflammatory role of NAMPT. Thus, the plasma NAMPT levels
could have a different meaning for each sex because of the opposing effects of liver and adipose tissue
DNL on NAFLD pathogenesis. Conversely, Kannt et al. [29] showed that NNMT mRNA in adipose
tissue and 1-methylnicotinamide serum concentrations are higher in patients with insulin resistance
and correlate with insulin resistance severity. An additional interesting result is that improvements
of insulin sensitivity obtained with exercise and bariatric surgery are associated with a reduction of
NNMT expression in adipose tissue and of 1-methylnicotinamide serum levels [29].

5. NAD Supplementation for NAFLD Prevention

The evidence for using dietary supplementation to prevent chronic disease is a longstanding
issue of debate. Several evidences are emerging to support the hypothesis that supplementation with
NAD precursors could protect against metabolic imbalance and liver steatosis (Table 2) [12,49,69–71].
A supplementation study with NMN showed its property to restore NAD levels either in nuclear
and mitochondrial cells compartments and to prevent diet-induced and age-induced diabetes in
C57BL/6 mice [12]. Tao et al. showed that NAMPT gives resistance to hepatic steatosis through
NAD synthesis [69], and NR supplementation gives protection against steatosis in mice under
high-fat/high-sucrose diet [70,71]. NAM supplementation protects hepatocytes from palmitate-induced
cell death, and autophagy induction contributes to the anti-lipotoxic property of NAM through SIRT1
activation in hepatocytes. Additionally, NAM prevents hepatic alterations in glucose-6-phosphate
dehydrogenase and the redox state, and attenuates increased serum FFA, oxidative stress, inflammation,
and hepatic damage in high fructose or high glucose consumption-induced liver steatosis in rats [72].
Lastly, Komatsu et al. showed that NNMT and NAM supplementation causes liver steatosis and
fibrosis, although increased lipid metabolism and decreased adiposity. NNMT overexpression induces
genes for liver steatosis and fibrosis by decreasing tissue NAD content and methylation pool, suggesting
that NNMT connects NAD and methionine metabolism and causes NAFLD progression [73]. Thus,
NAD supplementation may represent a preventive treatment for metabolic dysfunctions such as
diabetes, and NAFLD spectrum disease, from steatosis to NASH.

6. NAD Supplementation for NAFLD Treatment

The relevance of dietary NAD precursors in health is well known, thanks to the historical use of
NA and NAM in the treatment of dietary tryptophan deficits (pellagra) and hyperlipidemia, although
high-dose NA use is limited by painful flushing, while high-dose NAM is hepatotoxic [74,75]. In fact,
the use of NA is associated with a flush of face and chest and a sensation of warmth or burning.
NA causes flushing principally by releasing prostaglandins D2 and E2 from skin cells, which afterwards
dilates skin arterioles [76,77]. The precursors NA, NMN, and NR, but also PARP or CD38 inhibitors,
rise NAD levels in different mice cells and tissues [12,13,70]. Boosting NAD concentrations can be
therapeutic in metabolic diseases such as diabetes [12,53] and NAFLD [70], and potentially protects
against obesity [51] and age-related disorders (Table 3).
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Due to its ability to increase NAD synthesis without inducing side effects [44,70], NR has been used
in mice to increase NAD metabolism and improve health in models of metabolic stress, showing that
NR abolishes DNA damage in HFD-fed mice [70,78]. Canto et al. [70] treated mice with NR (400 mg/kg
animal weight per day), demonstrating an increase of NAD levels in muscle and liver. Mice under
HFD were protected from body weight increase and showed an improvement of mitochondrial
function and fatty acids oxidation as a fuel source. In accordance with increases in tissue NAD levels,
SIRT1 and SIRT3 were upregulated [70]. NR also ameliorated insulin sensitivity in weight-matched
mice [70]. Similarly, Zhou et al. [50] demonstrated that the oral administration of NR corrects NAFLD
phenotypes induced by NAD deficiency alone or combined with HFD. Trammell et al. [79] performed
a clinical study enrolling 12 healthy subjects receiving three single doses of NR, demonstrating that NR
supplementation safely induces NAD metabolism at all doses. They also demonstrated that NR is
more orally bioavailable than NAM, which is more orally bioavailable than NA. The capability of NR
to increase ADPR is threefold higher than NAM. This validates NR as the preferred NAD precursor
vitamin for boosting NAD and NAD-consuming activities in liver. No dose-dependent side effects
of NR have been reported, contrary to high-dose NAM, which may lead to liver damage [15]. Shi
et al. [80] carried out a dose–response dietary intervention mice study using a wide range of NR (from
5 to 900 mg NR per kg of an obesogenic diet), concluding that 30 mg/kg diet constitutes the best
concentration to reinforce metabolic health. These studies showed the powerful biological effects of
NR in mitigating the negative consequences of HFDs [70,71,81,82], suggesting that NAD substrates
supplementation may be a promising therapeutic strategy for preventing and treating NAFLD/NASH.

Another possibility to modulate NAD levels consists of using NMN. Supplementation with NMN,
an enzymatic product of NAMPT, improves diabetes [12,13] and other damages such as vascular
dysfunction, oxidative stress [83], and cognitive impairment [84]. Yoshino et al. demonstrated that
increasing NAD biosynthesis by the intraperitoneal injection of NMN improves glucose homeostasis
in obese mice, and that NAMPT activity is altered by HFD and can cause diabetes [12]. Similarly,
supplementation with MNAM significantly reduces hepatic cholesterol and triglycerides concentrations,
by suppressing fatty acid and cholesterol synthesis and the expression of lipogenic and cholesterol
synthesis genes [58]. MNAM supplementation produces a selective reduction in larger lipoprotein
particles but not high-density lipoprotein, suggesting that MNAM or its derivatives could be used to
reduce low-density lipoprotein levels [58].

Another attractive angle to modulate NAD levels consists in targeting the activity of
NAD-consuming enzymes, such as CD38 [10] and PARPs [11]. Several studies showed that CD38
knockout (KO) mice have higher NAD levels than Wild-type (WT) animals, and are protected against
obesity and metabolic syndrome [10,85]. The treatment of obese mice with CD38 inhibitors augments
intracellular NAD concentrations and improves glucose and lipid homeostasis [86]. Increased
PARP activity causes an elevated consumption of cellular NAD, which is associated to increased
ATP consumption, compromising energy balance and facilitating cell death [87]. Upon persistent
PARP activation, decreased mitochondrial ATP production inhibits NAD re-synthesis, creating a
feed-forward loop in ATP-consuming processes, and resulting in metabolic catastrophe and cell death.
PARP inhibition causes an increase in NAD levels. Rucaparib (a PARP inhibitor) significantly increases
hepatic NAD levels, as previously described with NAM treatment [88], while in PARP1 KO liver, NAD
levels were similar to those in treated PARP1 WT liver. So, CD38 and PARP inhibition combined with
NAD precursors may be an intriguing therapeutic perspective for NAFLD [13].

Finally, Katsiuba et al. presented an additional mechanism for increasing NAD levels toward the
inhibition of the ACMS decarboxylase with a selective inhibitor recently developed, TES-991. ACMS
decarboxylase inhibition in a mouse model of diet-induced NAFLD increased levels of NAD and the
activation of SIRT1 with improvement of the NAFLD phenotype, without systemic side effects [14].
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Table 1. NAD as biomarker for NAFLD diagnosis.

Biomarker Study Design Analyzed Tissue Results Ref.

NAMPT 77 NAFLD patients vs. 38 control patients
(all undergoing diagnostic laparoscopy)

Visceral adipose tissue
(VAT)

Reduction of NAMPT levels in VAT
according to the degree of steatosis Gaddipati et al. [64]

NAMPT 69 obese women with NAFLD vs. 19
obese women vs. 38 healthy women Liver tissue and serum

Serum NAMPT and its liver expression are
higher in obese women with NAFLD,
irrespective of the presence of diabetes

Auguet et al. [65]

NAMPT 58 NAFLD patients vs. 27 healthy
controls Liver tissue and serum

NAFLD patients had decreased NAMPT
expression both in serum and in liver
tissue, with no difference between simple
steatosis and NASH

Dahl et al. [52]

NAMPT 40 severely obese patients with NAFLD Liver tissue Positive association between NAMPT
expression and the fibrosis stage in NAFLD Kukla et al. [67]

NAMPT 62 NAFLD patients (32 males, 30 females) Serum

Higher serum NAMPT in women was
associated with a lower hepatic DNL index,
while in men, it was associated with higher
hepatic fat, and had no association with the
DNL index

Amirkalali et al. [68]

NNMT and
1-Methylnicotinamide

199 patients undergoing abdominal
surgery (111 diabetic and 88
non-diabetic); 60 individuals on a
12-week exercise program (20 diabetic, 20
insulin-resistant, and 20 with normal
glucose tolerance)

Serum and white
adipose tissue (WAT)

Patients with diabetes have a twofold
higher NNMT expression. There is an
inverse correlation between insulin
sensitivity and plasma
1-methylnicotinamide and WAT NNMT
expression.

Kannt et al. [29]

NAMPT, nicotinamide phosphoribosyltransferase; NNMT, nicotinamide-N-methyltransferase.
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Table 2. NAD supplementation for NAFLD prevention.

Preventive Supplementation Study Design Results Ref.

NMN C57BL/6, HFD vs. control diet

NMN ameliorates glucose intolerance by restoring NAD levels, enhances
hepatic insulin sensitivity, and restores gene expression related to

oxidative stress, inflammatory response, and circadian rhythm, partly
through SIRT1 activation.

Yoshino et al.
[12]

Nicotinamide

HepG2 cells and alpha mouse liver
(AML)-12 hepatocyte transfected with

human SIRT1 siRNA under
palmitate-elicited hepatotoxicity

Nicotinamide supplementation protects hepatocytes against
palmitate-induced cell death. SIRT1 inhibition abrogates the nicotinamide

anti-lipotoxic effect.
Shen et al. [42]

NR

C57Bl/6J, HFD vs. control diet; murine
C2C12 myoblasts, murine Hepa1.6, and
human HEK293T cells, with or without

deletion of the SIRT3 gene

NR prevents diet-induced obesity by enhancing energy expenditure,
reducing cholesterol levels, and increasing intracellular and mitochondrial

NAD content both in cell and in vivo experiments. NR enhances SIRT1
and SIRT3 activity and energy expenditure, and ameliorates the oxidative

performance of skeletal muscle and brown adipose tissue.

Canto et al. [70]

NR
C57BL/6J mice, high-fat and high-sucrose
diet vs. control diet; primary hepatocytes
from SIRT1 floxed or SIRT3 floxed mice

NR prevents NAFLD by inducing a sirtuin-dependent mitochondrial
unfolded protein response, triggering an adaptive mitohormetic pathway
to increase hepatic β-oxidation and mitochondrial complex content and

activity.

Gariani et al.
[71]

NAM

Male Sprague–Dawley rats were
randomly distributed into six groups

according to the following treatments: (1)
Control; (2) Glucose; (3) Glucose+NAM

0.06%; (4) Glucose+NAM 0.12%; (5)
Fructose; and (6) Fructose+NAM 0.12%.

NAM attenuates increases in levels of FFA, thiobarbituric acid reactive
substances, and markers of hepatic damage induced by high glucose or

fructose. NAM decreases hepatic steatosis. NAM only partially prevented
changes in the glutathione/glutathione disulfide levels and redox potential,

as well as pro-inflammatory conditions. NAM mitigates increases in
hepatic glucose-6-phosphate dehydrogenase mRNA, protein levels, and

specific activity induced by glucose or fructose.

Mejia et al. [72]

NAM
C57Bl/6J transgenic mice overexpressing

NNMT vs. wild type, HFD + water
containing 1% NAM

NNMT overactivation decreases the NAD content in the liver and
decreases gene activity related to fatty acid oxidation by inhibiting SIRT3
and fibrosis by reducing the tissue NAD content and methylation pool.

Komatsu et al.
[73]

NR, nicotinamide riboside; NMN, nicotinamide mononucleotide; HFD, high-fat diet.
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Table 3. NAD supplementation for NAFLD treatment.

Treatment Study design Results ref

NR C57Bl/6J, HFD vs. control diet.
Long-term NR administration in vivo lowers HFD-induced body weight gain

by enhancing energy expenditure, and ameliorates insulin-sensitivity and
cholesterol profiles.

Canto et al. [70]

NR
Dominant negative (DN)-NAMPT

transgenic C57BL/6J, HFD vs. control
diet.

DN-NAMPT mice under control diet displays systemic NAD reduction and
had moderate NAFLD phenotypes, including lipid accumulation, enhanced
oxidative stress, triggered inflammation, and impaired insulin sensitivity in

liver. All these NAFLD phenotypes deteriorate further under HFD challenge.
Oral administration of NR completely corrects these NAFLD phenotypes

induced by NAD deficiency alone or with HFD.

Zhou et al. [50]

NR

C57BL/6JRcc mice, semi-synthetic
obesogenic diet containing 0.14%

l-tryptophan and either 5, 15, 30, 180, or
900 mg NR per kg diet

There is a dose–response effect to NR; in particular, mice fed a 30 mg NR/kg
diet are more metabolically flexible than the wide range of other NR

concentrations. Moreover, in epididymal white adipose tissue, the gene
expression of Peroxisome-proliferator-activated receptor- γ (Ppar- γ),

Superoxide dismutase-2 (SOD2) and Peroxiredoxin 3 (Prdx3) - are significantly
upregulated in mice fed 30 mg NR/kg.

Shi et al. [80]

NR Obese-diabetic KK/HlJ mice, control or
NR group

Total cholesterol concentration in the liver, glucose control, and levels of
serum insulin and adiponectin are improved by NR. At liver histology, NR
rescues the disrupted cellular integrity of the mitochondria and nucleus of
obese–diabetic KK mice. In addition, NR treatment significantly improves
hepatic pro-inflammatory markers, including tumor necrosis factor-alpha,
Interleukin (IL) 6, and IL-1. These results demonstrate that NR attenuates

hepatic metaflammation by modulating the NLRP3 inflammasome.

Lee et al. [81]

NR C57BL/6J, HFD vs. control diet NR improves glucose tolerance, and reduces weight gain, liver damage, and
hepatic steatosis.

Trammell et al.
[82]

MNAM C57BL/6J, HFD vs. control diet

MNAM significantly lowers liver and serum cholesterol and TG levels, while
also suppressing fatty acid and cholesterol synthesis and the expression of

lipogenic and cholesterol synthesis genes. MNAM-supplemented mice have
higher liver SIRT1 protein expression. Consistent with higher SIRT1 protein
expression, liver FoxO1 acetylation is significantly lower. MNAM-fed mice
had significantly lower liver expression of the pro-inflammatory cytokines.

Hong et al. [58]
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Table 3. Cont.

Treatment Study design Results ref

Flavonoid
Apigenin (CD38

inihibitor)
C57BL/6, HFD vs. control diet

Apigenin inhibits CD38 and is associated with increased NAD and decreased
protein acetylation, likely through the activation of SIRT1. Apigenin improves

glucose homeostasis in vivo and promotes fatty acid oxidation in the liver.
Escande et al. [86]

PARP-1 inhibitors

HeLa cells exposed to the
PARP-1-activating agent

N-methyl-N’-nitro-N-nitrosoguanidine
(MNNG) or to PARP-1 inhibitors after

MNNG exposure.

PARP-1 hyperactivity in the nucleus rapidly impairs ATP production in
mitochondria, whereas the release of the pro-apoptotic factors AIF/Cyt-c from
mitochondria only occurs several hours after PARP-1 hyperactivation. PARP-1

inhibitors are able to prevent MNNG-induced nucleotide depletion,
apoptosis-inducing factor (AIF) release, and cell death.

Cipriani et al. [87]

Rucaparib (PARP1
inhibitor)

PARP1 wild-type (WT) and PARP1
knock-out (KO) mice

In PARP1 WT livers, the NAD concentration in the rucaparib-treated group
was significantly higher when compared with the concentration in untreated

mice, and similar to the concentration in KO mice.
Almeida et al. [88]

TES-991 (ACMS
decarboxylase

inhibitor)

C57BL/6J under methionine-choline
deficient (MCD) diet

Supplementing the MCD diet with TES-991 increases hepatic NAD, attenuates
hepatic steatosis and plasma transaminases levels, protects against hepatic

lipid accumulation, attenuates inflammation, recovers hepatic SOD2 activity
and ATP content, and reverses NAFLD changes in the transcription of genes

involved in ROS defense, β-oxidation, inflammation, and mitochondrial
function.

Katsyuba et al.
[14]

NR, nicotinamide riboside; MNAM, N1-methyl nicotinamide; PARP1, poly (ADP ribose) polymerase 1; HFD, high fat diet.
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7. Conclusions

Until now, there is still no approved drug for the treatment of NAFLD, and although lifestyle
modification appears beneficial in patients with NAFLD, no single approach is likely to be suitable for
all patients. NAD reduction might be caused by the imbalance in NAD biosynthesis and depletion,
both of which occur in NAFLD. NAD reduction may induce NAFLD through decreased SIRT activities
in the nucleus and mitochondria. The supplementation of key NAD intermediates, such as NMN and
NR, can ameliorate NAFLD.
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