1	Evaluation of the associations between circulating microRNAs and kidney
2	function in coronary angiography patients
3	
4	
5	Axel Muendlein ^{1*} , Kathrin Geiger ¹ , Andreas Leiherer ^{1,2,3} , Christoph H. Saely ^{1,3,4} , Peter
6	Fraunberger ² , Heinz Drexel ^{1,3,5,6}
7	
0	
8	¹ Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT) Feldkirch Austria
5	2 Volume of the second investigation and Treatment (VIVII), I clocklich, Austria
10	² Medical Central Laboratories, Feldkirch, Austria
11	³ Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
12	⁴ Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch,
13	Austria
14	⁵ Division of Angiology, Swiss Cardiovascular Center, University Hospital of Bern, Bern,
15	Switzerland
16	⁶ Drexel University College of Medicine, Philadelphia, PA, USA
17	
18	* Corresponding author:
19	Axel Muendlein; Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT),
20	Carinagasse 47, 6800 Feldkirch; Austria
21	E-Mail: axel.muendlein@vivit.at
22	

23 St
24
25 St

Supplemental Material available at:

- 5 Supplemental Fig. S1
- 26 DOI: https://doi.org/10.6084/m9.figshare.9785456
- 27 URL: https://figshare.com/s/11a89d83cd4a155a4ce0
- 28
- 29 Supplemental Table S1
- 30 DOI: https://doi.org/10.6084/m9.figshare.10248260
- 31 URL: https://figshare.com/s/1b9bc2db8663148fd866
- 32
- 33 Supplemental Table S2
- 34 DOI: https://doi.org/10.6084/m9.figshare.10248272
- **35** URL: https://figshare.com/s/421426642b0b6945fcaa
- 36
- 37 Supplemental Table S3
- 38 DOI: https://doi.org/10.6084/m9.figshare.10248308
- 39 URL: https://figshare.com/s/e94c6c01ff971d48ec8d
- 40
- 41 Supplemental Table S4
- 42 DOI: https://doi.org/10.6084/m9.figshare.10248314
- 43 URL: https://figshare.com/s/f211f7997b86c5581d7d
- 44
- 45 Supplemental Table S5
- 46 DOI: https://doi.org/10.6084/m9.figshare.10248323
- 47 URL: https://figshare.com/s/2366e2c0348fbbb790db
- 48
- 49 Supplemental Table S6
- 50 DOI: https://doi.org/10.6084/m9.figshare.10248332
- 51 URL: https://figshare.com/s/6b352c4cf58c9d799573
- 52
- 53

- 54 Supplemental Table S7
- 55 DOI: <u>https://doi.org/10.6084/m9.figshare.10248353</u>
- 56 URL: https://figshare.com/s/28306336bd564616c4a5

57 ABSTRACT

58

59 Circulating microRNAs (miRNAs) have been linked to chronic kidney disease. Little is 60 known about the association between circulating miRNAs and kidney function in patients at high cardiovascular risk. We therefore investigated the association between a huge panel of 61 62 candidate miRNAs and kidney function, based on estimated glomerular filtration rate (eGFR), 63 in two independent cohorts of patients undergoing coronary angiography. The present study totally included 438 coronary angiography patients, who were divided into a discovery cohort 64 65 (n=120) and a validation cohort (n=318). A candidate miRNA panel comprising 50 renal 66 miRNAs were selected from the literature and expression levels of circulating miRNAs were 67 determined by real-time PCR. Out of initially tested candidate-miRNAs, 38 were sufficiently 68 detectable in plasma. Their association with kidney function was evaluated in the discovery 69 cohort. Associations of seven out of these miRNAs with eGFR were significant after multiple 70 testing correction via false discovery rate (FDR) estimation. To verify obtained results, 71 miRNAs with significant FDR were further analysed in the validation cohort. MiRNAs miR-72 106b-5p, miR-16-5p, miR-19b-3p, miR-20a-5p, miR-25-3p, and miR-451a proved to be 73 significantly associated with eGFR also in the validation cohort (all p-values <0.001). 74 Association between identified renal miRNAs and kidney function was confirmed by 75 ANCOVA adjusting for age, gender, type 2 diabetes, hypertension, and albumin-to-creatinine ratio. In conclusion, our study showed that miR-16-5p, miR-19b-3p, miR-20a-5p, miR-25-3p, 76 77 miR-106b-5p, and miR-451a are significantly linked to kidney function in coronary angiography patients. 78

79

81 INTRODUCTION

82

88

Chronic kidney disease (CKD) is increasing worldwide and is strongly linked to an elevated risk of cardiovascular and all-cause mortality (31, 36). CKD is characterized by a progressive loss of kidney function over months or years typically showing a long latent period when the disease is clinically silent (18). Therefore, early detection of reduced kidney function is essential to improve risk prediction, particularly in high-risk patients.

89	Recently, circulating microRNAs (miRNAs) have emerged as novel diagnostic biomarkers in
90	many diseases including kidney disease (20, 21). MiRNAs are small non-coding RNAs of
91	approximately 22 nucleotides in length that usually function as repressors of target genes by
92	either inhibiting translation or promoting degradation of mRNA (5, 30). Currently,
93	approximately 2700 mature miRNAs have been identified in humans according to database
94	miRbase, release 22.1 (15). Many of them are expressed in a tissue and/or cell-specific
95	manner playing important regulatory roles in virtually all cellular processes inclusive of
96	kidney development and function (1, 37). Notably, miRNAs can also be detected outside
97	cells, including circulating cell-free body fluids such as plasma, serum, or urine in a
98	remarkably stable form (41). It is hypothesized that miRNAs are not only passively released
99	by necrotic or injured cells but are actively secreted in membrane-bound vesicles (exosomes,
100	microvesicles) (9, 13), in apoptotic bodies (42), or in vesicle-free but protein-protected
101	protein-miRNA complexes (3). These mechanisms of miRNA packaging may protect
102	circulating miRNAs from degradation. Their highly extracellular stability together with their
103	often tissue-specific expression patterns and their feasible measurability by current techniques
104	makes circulating miRNAs highly attractive as biomarkers in biomedical research.
105	

106	Several recent studies have investigated circulating miRNAs in patients with severe chronic
107	kidney disease (27, 29), end stage renal disease (10, 39), or acute kidney injury (19, 24, 38).
108	However, little is known about the association between circulating miRNAs and kidney
109	function in patients at high cardiovascular risk, such as coronary patients.
110	
111	Therefore, we (i) determined the expression of 50 miRNAs, previously associated in the
112	literature with kidney function or kidney disease in a set of plasma samples obtained from
113	coronary angiography patients, (ii) identified those circulating miRNAs putatively related to
114	kidney function and (iii) validated their diagnostic value in a further independent cohort of
115	coronary angiography patients.
116	
117	
118	
119	METHODS
120	
121	Study subjects
122	Patients were selected from a Caucasian patient cohort totally comprising 1048 subjects
123	referred to elective coronary angiography for the evaluation of established or suspected stable
124	coronary artery disease (CAD) at the academic teaching hospital Feldkirch.
125	The Ethics Committee of the University of Innsbruck approved the present study and written
126	informed consent was given by all participants. Detailed information on the recruitment
127	protocol and the determination of subjects characteristic has been described previously (26,
128	32). In brief, venous blood samples were collected after an overnight fast of 12 h before
129	angiography was performed. Height and weight were recorded, and body mass index (BMI)
130	was calculated as body weight (kg)/height ² (m ²). Hypertension was defined according to the

Treatment of High Blood Pressure (34) and type 2 diabetes mellitus (T2DM) was diagnosed 132 according to American Diabetes Association (ADA) guidelines (2). Coronary angiography 133 134 was performed with the Judkin's technique and the severity of stenosis was assessed by visual inspection by a team of two investigators, who were blinded to serologic assays as described 135 136 previously (8). Estimated glomerular filtration rate (eGFR) was assessed by the 'Mayo Clinic Quadratic' (MQ) equation, if not otherwise noted. The MQ equation is based on sex, age, and 137 serum creatinine and has been shown to give an accurate estimate of the glomerular filtration 138 rate in patients with nearly normal renal function (33). Additionally, the 'Chronic Kidney 139 140 Disease Epidemiology Collaboration' (CKD-EPI) equitation (17) was used to estimate 141 glomerular filtration rate. Renal function was classified as normal kidney function in subjects with eGFR \geq 90 mL/min/1.73 m², mild impairment of kidney function in subjects with eGFR 142 60-89 mL/min/1.73 m², and chronic kidney disease in subjects with eGFR<60 ml/min/1.73m² 143 144 (28). Urinary albumin excretion was expressed as the albumin/creatinine concentration ratio 145 (ACR) in a random fresh morning urine specimen.

146

147 Study design

148 In a first pre-selecting step, a candidate miRNA panel consisting of 50 miRNAs previously associated in the literature with renal function and/or involved in the development and 149 150 progression of kidney disease (Supplemental Table S1) was analyzed in 60 plasma samples 151 obtained from patients with angiographically proven CAD to identify those miRNAs, which 152 were sufficiently detectable in plasma. MiRNAs sufficiently detectable in plasma were 153 defined as miRNAs showing raw ct-values <39 cycles in at least 70% of samples. MiRNAs 154 miR-24-3p, miR-92a-3p, and miR-222-3p were selected as endogenous reference miRNAs 155 based on previously performed experiments at our institution and proposed as normalizers in 156 other reports (22, 35, 40).

158	MiRNAs being detectable below selected cutoff were analyzed in 60 additional coronary
159	patients. In doing so, a final discovery set was generated totally comprising 120 patients,
160	which was used to evaluate the association between selected miRNAs and renal function.
161	
162	MiRNAs providing significant association with renal function after multiple testing correction
163	in the discovery study cohort were re-tested in further 318 patients randomly selected out of
164	remaining subjects referred to coronary angiography. Finally, the association of selected
165	miRNAs with kidney function was assessed in the two combined patient cohorts totally
166	including 438 coronary angiography patients.
167	
168	Prospective study
169	Kidney function was re-assessed based on creatinine values obtained at a follow-up visit after
170	3.6±1.2 years.
171	
172	miRNA analysis
173	RNA was isolated from 0.2 ml plasma using the 'miRNeasy Mini Kit' (Qiagen, Hilden,
174	Germany) according the manufactures protocol for the purification of small RNAs from
175	plasma. Isolated miRNAs were reverse transcribed using 'Universal cDNA Synthesis Kit'
176	(Exiqon, Vedbaeck, Denmark) according to the manufactures instructions for plasma derived
177	miRNAs. Subsequently, quantitative real-time PCR was performed using 'Universal SYBR
178	Green master mix' (Exiqon) and miRNA specific LNA [™] PCR primer or 'Pick-&-Mix
179	microRNA PCR Panel' plates (Exiqon) in a 10µl volume on a LightCycler [®] 480 Real-Time
180	PCR System (Roche Diagnostics, Vienna, Austria). Ct values of each candidate miRNA were
181	recorded and normalized by the global mean of all miRNAs (pre-selecting study) or by the
182	mean expression of the selected reference miRNAs miR-24-3p, miR-92a-3p, and miR-222-3p

183 (discovery and validation study).

185 Statistical analysis

186	MiRNA expression levels are given as $2^{-\Delta Ct}$ values, such that increased values reflect
187	increased miRNA concentration. Normal distribution was assessed using Kolmogorov-
188	Smirnov and Shapiro-Wilk test, respectively, showing that miRNA expression levels were not
189	normally distributed. Association between miRNAs and continuous clinical/laboratory
190	parameters were explored using non-parametric Spearman's rank correlation tests. Benjamini
191	and Hochberg false discovery rate correction was used for correcting multiple testing (4). In
192	addition, analysis of covariance models (ANCOVA) were built using a general linear model
193	approach. Statistically significant differences between miRNAs and categorical variables
194	were determined by the Kruskal-Wallis test and the Mann-Whitney U test, respectively. P-
195	values <0.05 were considered significant. Statistical analyses were performed with SPSS 25.0
196	for Windows (SPSS, Inc., Chicago, IL).
197	
198	
199	
200	RESULTS
201	
202	Patients' characteristics
203	Clinical and biochemical baseline characteristics of patients included in the discovery cohort,
204	the validation cohort as well in the combined patient cohorts are given in table 1. Study
205	cohorts showed a high proportion of patients with male sex, the metabolic syndrome, T2DM,
206	hypertension, and significant coronary artery stenoses. The discovery cohort and the
207	validation cohort showed similar eGFR values (p=0.791). Approximately 10% of patients
208	showed eGFR values below 60 mL/min/1.73 m ² . Consequently, most patients had normal
209	kidney function.

211 Evaluation of miRNAs levels in plasma samples

212 A pre-selection study performed in 60 patients of the discovery study cohort showed that 12 miRNAs out of 50 analysed candidate miRNAs showed raw ct-values \geq 39 cycles in at least 213 214 30% of samples and therefore were excluded from further investigations (Supplemental Table S1). Expression data of miRNAs either normalized by the global mean or by the mean 215 expression of selected reference miRNAs miR-24-3p, miR-92a-3p, and miR-222-3p were 216 highly correlated (mean correlation coefficient = 0.950). Furthermore, selected reference 217 218 miRNAs were not associated with kidney function in the pre-selection set (all p-values 219 >0.05). Therefore, miR-24-3p, miR-92a-3p, and miR-222-3p were found to be appropriate 220 endogenous reference miRNAs and were used as references in the further study. In a next step, miRNAs with sufficient expression were analysed in additional 60 patients generating a 221 222 discovery cohort totally comprising 120 patients. Plasma levels of individual miRNAs are 223 shown in Supplemental Fig. S1. MiRNA-451a showed highest expression levels, followed by 224 miR-16-5p.

225

226 Associations between miRNAs and eGFR in the discovery and validation cohort

227 Associations between individual candidate miRNAs and eGFR are given in Supplemental

Table S2. Out of 38 miRNAs of the discovery set, 15 miRNAs were significantly associated

229 with eGFR at a nominal level of significance. Associations of seven out of these miRNAs

230 (miR-16-5p, miR-19b-3p, miR-20a-5p, miR-25-3p, miR-106b-5p, miR-320a, and miR-451a)

- with eGFR remained significant after multiple testing correction via false discovery rate
- 232 (FDR) estimation. To verify obtained results, miRNAs with significant FDR and additionally
- miR-320b showing borderline FDR significance with eGFR were further analysed in the
- validation cohort (n=318). Table 2 shows correlation between these miRNAs and eGFR in the
- validation study. MiRNAs miR-106b-5p, miR-16-5p, miR-19b-3p, miR-20a-5p, miR-25-3p,

and miR-451a, but not miR-320a and miR-320b, proved to be significantly associated with
eGFR also in the validation study cohort.

238

significant (Supplemental Table S6).

255

256 To further elucidate the impact of the identified renal miRNAs on kidney function, the

association between identified renal miRNAs and parameters, which were associated with

kidney function, was assessed. Results of correlation analysis are given in table 3. The

259 identified renal miRNAs were significantly associated with age and established renal markers

260 including ACR, urea, and FGF23 serum levels. However, after adjustment for eGFR in

ANCOVA, the associations between miRNAs and these variables did not remain significant

262 (all p-values >0.05).

263

264 Associations between identified renal miRNAs and future kidney function

- 265 Creatinine serum concentrations and eGFR assessments were available from 271 subjects out
- of the 438 initially included patients from a follow-up visit after 3.6 ± 1.2 years. All baseline

267 miRNAs were significantly associated with eGFR also at follow up (Supplemental Table S7).

268

269

270 **DISCUSSION**

271

In the present work we report a strong correlation of the six plasma-derived miRNAs miR-16-5p, miR-19b-3p, miR-20a-5p, miR-25-3p, miR-106b-5p, and miR-451a with kidney function in coronary patients. Our findings are based on a multi-step strategy, including a discovery study to identify circulating miRNAs significantly associated with kidney function as well as an independent validation study to verify obtained results. Identified renal miRNAs were even able to significantly discriminate between normal and mildly impaired eGFR.

278

279 Our observations are in line with previous studies also demonstrating a significant reduction

of circulating miRNAs in patients with CKD. In this regard, Neal et al. (29) showed that in

281 patients with severe chronic kidney disease, circulating levels of total and specific miRNAs,

- including miR-16-5p, are reduced in comparison to patients with mild renal impairment or
- normal renal function. Furthermore, Lee et al. (16) reported that circulating miR-20a-5p and

miR-106b-5p were significantly lower in CKD patients than in healthy subjects. Notably, the

- association between plasma-derived miR-19b-3p, miR-25-3p, and miR-451a and kidney
- function in humans, as described in our study, is new.

288	That said, it remains unclear whether the identified circulating renal miRNAs are directly
289	involved in kidney function or are a result of impaired kidney function. MiR-20a-5p together
290	with miR-19b-3p and several other miRNAs belongs to the miR-17~92 cluster, which is
291	highly conserved in vertebrates. MiR-106b-5p and miR-25-3p are members of the
292	miR106b~25 cluster, a paralog of the miR-17~92 cluster originated by gene duplication and
293	deletion events during vertebrate evolution (7). Both clusters are essential for development
294	and homeostasis promoting cell division and resistance to apoptosis (7). Apoptosis promotes
295	loss of renal epithelial cells that characterizes acute and chronic kidney disease. Therefore, it
296	may be hypothesized that the observed reduced circulating levels of miRNAs miR-19b-3p,
297	miR-20a-5p, miR-25-3p, and miR-106b-5p as members of the miR-17~92 cluster family
298	reflect an increase in apoptotic processes in the kidneys accelerating renal dysfunction. The
299	supposed impact of the 17~92 cluster family on renal function is supported by animal studies.
300	In this regard, Marrone et al. showed that the miR-17~92 cluster is essential in renal
301	development and that its loss leads to the development of renal disease in mice (23).
302	However, the individual mechanisms by which low plasma levels of members of the miR-
303	17~92 cluster family contribute to renal function remain to be elucidated.
304	
305	Interestingly, renal miRNAs of the miR-17~92 cluster family were not only highly correlated
306	to each other but also to miR-16-5p and miR-451a, which belong to the miR-15 \sim 16 cluster
307	and the miR-144~451 cluster, respectively. The high correlation between circulating miR-16-
308	5p and miR-19b-3p has also been observed by Zhang et al., linking low levels of plasma-
309	derived miR-16-5p and miR-19b-3p to gastric cancer (43). In this regard, the association
310	between miR-16-5p and renal function was no longer significant after adjusting for other
311	identified renal miRNA. Therefore, the significant association between circulating miR-16-5p

- and eGFR observed in our study and by others (29) appears to be mediated by other miRNAs,
 closely correlated to miR-16-5p, such as miR-19b-3p.
- 314

315	However, a direct impact of circulating miR-451-5p on kidney function cannot be excluded.
316	Animal studies showed that miR-451-5p is downregulated in diabetic kidney disease
317	suggesting a protective role of miR-451-5p in kidney tissue (25, 44). It has been shown that
318	overexpression of miR-451-5p inhibits glomerular mesangial cell hypertrophy (44), a key
319	event occurring at a very early stage of diabetic nephropathy. That said, in the present study
320	the association between circulating miR-451-5p and kidney function was independent from
321	the presence of T2DM.
322	
323	Notably, miR-16-5p together with miR-451-5p showed highest expression levels among the
324	investigated candidate miRNA panel (Supplemental Fig. S1), indicating that miR-16-5p and
325	miR-451-5p account for a significant proportion of total circulating miRNA. Low levels of
326	miR-16-5p or miR-451-5p may therefore reflect reduced levels of total circulating miRNA,
327	which by itself has been associated with reduced kidney function (29). However, the
328	biological background behind the association between reduced miRNA levels and reduced
329	kidney function is still unclear. In this context, it has been shown that subjects with renal
330	dysfunction show enhanced levels of RNases (12, 14) probably leading to increased
331	degradation and, consequently, reduced levels of circulating miRNAs. That said, this
332	hypothesis has been rejected by several authors due to the given protection of circulating
333	miRNAs from degradation by different mechanisms of miRNA packaging such as the
334	incorporation of miRNAs into vesicles or the formation of protein-miRNA complexes (11,
335	29). Also, the question remains, why some plasma miRNAs are associated with eGFR while
336	others are not.

Evidence suggests that different miRNA transport forms are associated with distinct miRNA 338 339 signatures (6). Certain miRNAs were mainly detected in microvesicles, whereas others were 340 associated with the RNA binding protein Argonaute 2 (3), which is part of the RNA-induced 341 silencing complex. It may be hypothesized that the kind of extracellular miRNA stabilization 342 contributes to our observation that a specific signature of abundant plasma miRNAs is 343 associated with eGFR, while other common miRNAs (such as miR-223-3p or miR 486-5p) 344 are not. However, sub-classes of miRNA carriers were not determined in our study and, 345 therefore, any conclusions in that regard remain speculative. 346

347 Our study has strengths and limitations. One strength of our study is the two-step strategy to 348 identify circulating miRNAs associated with renal function. Significant associations between six miRNAs and eGFR found in a discovery study could be confirmed in a further 349 350 independent study cohort. However, limited sample size of the discovery study might have 351 reduced the chance of detecting true associations between other candidate miRNAs and 352 kidney function. Another limitation is that GFR was not measured directly, but was estimated based on serum creatinine levels by the Mayo Clinic Quadratic equation. Notably, the Mayo 353 354 Clinic Quadratic equation has been shown to give an accurate estimate of GFR in patients with nearly normal renal function (33), which was present in the majority our patients. Results 355 356 could also be reproduced employing the more frequently used CKD-EPI equation. Creatinine 357 values used to estimate GFR were based on a single measurement. Consequently, a non-358 steady state of kidney function indicated by varying creatinine levels over time cannot be 359 excluded for all of our patients. However, per study design patients included in our study were 360 not acutely ill or hospitalized. Therefore, a steady state of kidney function making eGFR 361 interpretable appears likely at least in most of our patients. Moreover, identified renal 362 miRNAs were significantly linked with eGFR assessments based on creatinine values determined nearly four years after baseline examination confirming their association with 363

365	coronary angiography for the evaluation of CAD. That said, due to the close correlation
366	between even mild-to-moderate deterioration of kidney function and morbidity or mortality in
367	cardiovascular risk patients, the coronary angiography patients we chose to investigate are of
368	particular clinical interest. The impact of identified renal miRNAs on the incidence of future
369	events has to be investigated in prospective studies.
370	
371	In conclusion, our study showed that decreased circulating levels of miR-16-5p, miR-19b-3p,
372	miR-20a-5p, miR-25-3p, miR-106b-5p, and miR-451a are significantly linked to reduced
373	kidney function in coronary angiography patients. Their close correlation to each other as well
374	as to kidney function should be considered in future studies. Further studies are needed to
375	clarify the pathophysiological background behind the observed association between reduced
376	levels of identified circulating renal miRNAs and kidney dysfunction.
377	
378	Funding sources: The present work has been supported by the "Research Prize" of the
379	Austrian Diabetes Association.
380	
381	Acknowledgements: We are grateful to the Vorarlberger Landesregierung (Bregenz, Austria)
382	for continuously supporting our research institute.
383	
384	
385	

kidney function. Our study participants were a selected group as all of them were referred to

386 **References**

388	1.	Aguado-Fraile E, Ramos E, Conde E, Rodríguez M, Liaño F, García-Bermejo
389		ML. MicroRNAs in the kidney: novel biomarkers of acute kidney injury. Nefrologia
390		33: 826–34, 2013.
391	2.	American Diabetes Association. Standards of medical care in diabetes-2015. Diabetes
392		<i>Care</i> 38: S1–S93, 2015.
393	3.	Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell
394		PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M.
395		Argonaute2 complexes carry a population of circulating microRNAs independent of
396		vesicles in human plasma. Proc Natl Acad Sci USA 108: 5003-8, 2011.
397	4.	Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and
398		Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57 WileyRoyal
399		Statistical Society: 289–300, 1995.
400	5.	Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Relief of
401		microRNA-mediated translational repression in human cells subjected to stress. Cell
402		125: 1111–24, 2006.
403	6.	Boon RA, Vickers KC. Intercellular Transport of MicroRNAs. Arterioscler Thromb
404		Vasc Biol 33: 186–192, 2013.
405	7.	Concepcion CP, Bonetti C, Ventura A. The MicroRNA-17-92 Family of MicroRNA
406		Clusters in Development and Disease. Cancer J 18: 262–267, 2012.
407	8.	Drexel H, Amann FW, Beran J, Rentsch K, Candinas R, Muntwyler J, Luethy A,
408		Gasser T, Follath F. Plasma triglycerides and three lipoprotein cholesterol fractions
409		are independent predictors of the extent of coronary atherosclerosis. [Online].
410		Circulation 90: 2230-5, 1994. http://www.ncbi.nlm.nih.gov/pubmed/7955178 [28 Jun.

411 2018].

412	9.	Eldh M, Ekström K, Valadi H, Sjöstrand M, Olsson B, Jernås M, Lötvall J.
413		Exosomes communicate protective messages during oxidative stress; possible role of
414		exosomal shuttle RNA. PLoS One 5: e15353, 2010.
415	10.	Emilian C, Goretti E, Prospert F, Pouthier D, Duhoux P, Gilson G, Devaux Y,
416		Wagner DR. MicroRNAs in patients on chronic hemodialysis (MINOS study). Clin J
417		Am Soc Nephrol 7: 619–623, 2012.
418	11.	Fourdinier O, Schepers E, Metzinger-Le Meuth V, Glorieux G, Liabeuf S,
419		Verbeke F, Vanholder R, Brigant B, Pletinck A, Diouf M, Burtey S, Choukroun
420		G, Massy ZA, Metzinger L, European Uremic Toxin Work Group-EUTox. Serum
421		levels of miR-126 and miR-223 and outcomes in chronic kidney disease patients. Sci
422		<i>Rep</i> 9: 4477, 2019.
423	12.	Humphrey RL, Karpetsky TP, Neuwelt EA, Levy CC. Levels of serum ribonuclease
424		as an indicator of renal insufficiency in patients with leukemia. [Online]. Cancer Res
425		37: 2015–22, 1977. http://www.ncbi.nlm.nih.gov/pubmed/266415 [22 Jul. 2019].
426	13.	Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, Xiao T, Schafer J, Lee
427		M-LT, Schmittgen TD, Nana-Sinkam SP, Jarjoura D, Marsh CB. Detection of
428		microRNA Expression in Human Peripheral Blood Microvesicles. PLoS One 3: e3694,
429		2008.
430	14.	Karpetsky TP, Humphrey RL, Levy CC. Influence of Renal Insufficiency on Levels
431		of Serum Ribonuclease in Patients With Multiple Myeloma 2. JNCI J Natl Cancer Inst
432		58: 875–880, 1977.
433	15.	Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs
434		using deep sequencing data. Nucleic Acids Res 42: D68-73, 2014.
435	16.	Lee MS, Lee F-Y, Chen Y-L, Sung P-H, Chiang H-J, Chen K-H, Huang T-H,
436		Chen Y-L, Chiang JY, Yin T-C, Chang H-W, Yip H-K. Investigated the safety of

437		intra-renal arterial transfusion of autologous CD34+ cells and time courses of
438		creatinine levels, endothelial dysfunction biomarkers and micro-RNAs in chronic
439		kidney disease patients-phase I clinical trial. Oncotarget 8: 17750-17762, 2017.
440	17.	Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek
441		JW, Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney
442		Disease Epidemiology Collaboration). A new equation to estimate glomerular
443		filtration rate. Ann Intern Med 150: 604–12, 2009.
444	18.	Lopez-Giacoman S, Madero M. Biomarkers in chronic kidney disease, from kidney
445		function to kidney damage. World J Nephrol 4: 57, 2015.
446	19.	Lorenzen JM, Kielstein JT, Hafer C, Gupta SK, Kumpers P, Faulhaber-Walter R,
447		Haller H, Fliser D, Thum T. Circulating miR-210 Predicts Survival in Critically Ill
448		Patients with Acute Kidney Injury. Clin J Am Soc Nephrol 6: 1540–1546, 2011.
449	20.	Lorenzen JM, Martino F, Thum T. Detection and transport mechanisms of
450		circulating microRNAs in neurological, cardiac and kidney diseases. [Online]. Curr
451		Med Chem 20: 3623-8, 2013. http://www.ncbi.nlm.nih.gov/pubmed/23834179 [18 Jan.
452		2018].
453	21.	Lorenzen JM, Thum T. Circulating and urinary microRNAs in kidney disease. Clin J
454		Am Soc Nephrol 7: 1528–33, 2012.
455	22.	Marabita F, de Candia P, Torri A, Tegnér J, Abrignani S, Rossi RL.
456		Normalization of circulating microRNA expression data obtained by quantitative real-
457		time RT-PCR. Brief Bioinform 17: 204–12, 2016.
458	23.	Marrone AK, Stolz DB, Bastacky SI, Kostka D, Bodnar AJ, Ho J. MicroRNA-
459		17 92 Is Required for Nephrogenesis and Renal Function. J Am Soc Nephrol 25: 1440-
460		1452, 2014.
461	24.	Martino F, Lorenzen J, Schmidt J, Schmidt M, Broll M, Görzig Y, Kielstein JT,
462		Thum T. Circulating MicroRNAs Are Not Eliminated by Hemodialysis. PLoS One 7:
		19

463 e38269, 2012.

- 464 25. Mohan A, Singh RS, Kumari M, Garg D, Upadhyay A, Ecelbarger CM, Tripathy
 465 S, Tiwari S. Urinary Exosomal microRNA-451-5p Is a Potential Early Biomarker of
 466 Diabetic Nephropathy in Rats. *PLoS One* 11: e0154055, 2016.
- 467 26. Muendlein A, Leiherer A, Saely CH, Rein P, Zanolin D, Kinz E, Brandtner E-M,
- 468 Fraunberger P, Drexel H. Common single nucleotide polymorphisms at the NPC1L1
- 469 gene locus significantly predict cardiovascular risk in coronary patients.
- 470 *Atherosclerosis* 242: 340–345, 2015.

471 27. Muralidharan J, Ramezani A, Hubal MJ, Knoblach S, Shrivastav S, Karandish S,

- 472 Scott R, Maxwell N, Ozturk S, Beddhu S, Kopp JB, Raj DS. Extracellular
- 473 microRNA signature in chronic kidney disease. *Am. J. Physiol. Renal Physiol.* (

474 January 2017). doi: 10.1152/ajprenal.00569.2016.

- 475 28. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney
- 476 disease: evaluation, classification, and stratification. [Online]. Am J Kidney Dis 39: S1-
- 477 266, 2002. http://www.ncbi.nlm.nih.gov/pubmed/11904577 [24 Jan. 2018].
- 478 29. Neal CS, Michael MZ, Pimlott LK, Yong TY, Li JYZ, Gleadle JM. Circulating
- 479 microRNA expression is reduced in chronic kidney disease. *Nephrol Dial Transplant*
- 480 26: 3794–3802, 2011.
- 481 30. Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by
- 482 miRNAs: how many mechanisms? *Trends Cell Biol* 17: 118–126, 2007.
- 483 31. Rein P, Saely CH, Vonbank A, Boehnel C, Drexel H. Usefulness of Serial Decline of
- 484 Kidney Function to Predict Mortality and Cardiovascular Events in Patients
- 485 Undergoing Coronary Angiography. *Am J Cardiol* 113: 215–221, 2014.
- 486 32. Rein P, Saely CH, Vonbank A, Fraunberger P, Drexel H. Is albuminuria a
- 487 myocardial infarction risk equivalent for atherothrombotic events? *Atherosclerosis* 240:
- 488 21–25, 2015.

489	33.	Rule AD, Larson TS, Bergstralh EJ, Slezak JM, Jacobsen SJ, Cosio FG. Using	
490		serum creatinine to estimate glomerular filtration rate: accuracy in good health and ir	1
491		chronic kidney disease. [Online]. Ann Intern Med 141: 929-37, 2004.	
492		http://www.ncbi.nlm.nih.gov/pubmed/15611490 [15 Dec. 2017].	
493	34.	Scanlon PJ, Faxon DP, Audet AM, Carabello B, Dehmer GJ, Eagle KA, Legako	
494		RD, Leon DF, Murray JA, Nissen SE, Pepine CJ, Watson RM, Ritchie JL,	
495		Gibbons RJ, Cheitlin MD, Gardner TJ, Garson A, Russell RO, Ryan TJ, Smith	
496		SC. ACC/AHA guidelines for coronary angiography. A report of the American Colle	ege
497		of Cardiology/American Heart Association Task Force on practice guidelines	
498		(Committee on Coronary Angiography). Developed in collaboration with the Society	r
499		for Cardiac Angiography and Interventions. [Online]. J Am Coll Cardiol 33: 1756-82	24,
500		1999. http://www.ncbi.nlm.nih.gov/pubmed/10334456 [5 May 2017].	
501	35.	Tay JW, James I, Hughes QW, Tiao JY, Baker RI. Identification of reference	
502		miRNAs in plasma useful for the study of oestrogen-responsive miRNAs associated	
503		with acquired Protein S deficiency in pregnancy. BMC Res Notes 10: 312, 2017.	
504	36.	Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, McAlister F, Garg	
505		AX. Chronic Kidney Disease and Mortality Risk: A Systematic Review. J Am Soc	
506		Nephrol 17: 2034–2047, 2006.	
507	37.	Trionfini P, Benigni A, Remuzzi G. MicroRNAs in kidney physiology and disease.	
508		<i>Nat Rev Nephrol</i> 11: 23–33, 2015.	
509	38.	Vliegenthart ADB, Shaffer JM, Clarke JI, Peeters LEJ, Caporali A, Bateman D	N,
510		Wood DM, Dargan PI, Craig DG, Moore JK, Thompson AI, Henderson NC,	
511		Webb DJ, Sharkey J, Antoine DJ, Park BK, Bailey MA, Lader E, Simpson KJ,	
512		Dear JW. Comprehensive microRNA profiling in acetaminophen toxicity identifies	
513		novel circulating biomarkers for human liver and kidney injury. Sci Rep 5: 15501,	
514		2015.	
			21

515	39.	Wang H, Peng W, Ouyang X, Dai Y. Reduced Circulating miR-15b Is Correlated
516		with Phosphate Metabolism in Patients with End-Stage Renal Disease on Maintenance
517		Hemodialysis. Ren Fail 34: 685–690, 2012.
518	40.	Wang Z, Lu Y, Zhang X, Ren X, Wang Y, Li Z, Xu C, Han J. Serum microRNA is
519		a promising biomarker for osteogenesis imperfecta. Intractable rare Dis Res 1: 81-5,
520		2012.
521	41.	Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang
522		K. The microRNA spectrum in 12 body fluids. Clin Chem 56: 1733–41, 2010.
523	42.	Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov
524		M, Köppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C.
525		Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular
526		protection. Sci Signal 2: ra81, 2009.
527	43.	Zhang J, Song Y, Zhang C, Zhi X, Fu H, Ma Y, Chen Y, Pan F, Wang K, Ni J, Jin
528		W, He X, Su H, Cui D. Circulating MiR-16-5p and MiR-19b-3p as Two Novel
529		Potential Biomarkers to Indicate Progression of Gastric Cancer. Theranostics 5: 733-
530		745, 2015.
531	44.	Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, Zha H, Yao L, He X, Peng H.
532		MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses
533		the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett 586: 20-26, 2012.
534		

535 FIGURE LEGENDS

537 Figure 1: Associations between identified renal miRNAs and kidney function evaluated

- 538 in the total study cohort (n=438). Figure 1 shows relative plasma expression levels of miR-
- 539 16-5p (A), miR-19b-3p (B), miR-20a-5p (C), miR-25-3p (D), miR-106b-5p (E), and miR-
- 540 451a (F) in patients with normal kidney function (eGFR \geq 90 mL/min/1.73 m2), mild
- 541 impairment of kidney function (eGFR <90-60 mL/min/1.73 m²), and kidney disease (eGFR
- 542 <60 mL/min/1.73 m2). Expression levels are given as $2^{-\Delta Ct}$ values (median and interquartile
- range), such that increased y-axis values reflect increased miRNA concentration; Ct values
- were normalized by the mean expression of miR-24-3p, miR-92a-3p, and miR-222-3p.
- 545 Statistically significant differences were determined by the Kruskal-Wallis test and the Mann-
- 546 Whitney U test, respectively. P-values between stages were given either as n.s. (non
- 547 significant): $P \ge 0.05$, *: P < 0.05, **: P < 0.01, or ***: P < 0.001.

Baseline characteristics	Discovery cohort n=120	Validation cohort n=318	Total cohort n=438	
Age (years)	67.5 ± 9.8	67.1 ± 9.8	67.2 ± 9.6	
Male gender, n (%)	67 (55.8)	173 (54.4)	240 (54.8)	
Body mass index (kg/m ²)	28.7 ± 5.0	28.0 ± 4.6	28.2 ± 4.7	
Metabolic syndrome, n (%)	65 (54.2)	135 (42.5)	200 (45.7)	
Type 2 diabetes, n (%)	64 (55.3)	131 (42.2)	195 (44.5)	
Hypertension, n (%)	92 (67.7)	247 (77.7)	339 (77.4)	
History of smoking, n (%)	73 (60.8)	173 (54.4)	246 (56.2)	
Significant stenoses, n (%)	81 (67.5)	164 (51.6)	245 (55.9)	
Total cholesterol (mg/dl)	196.1 ± 41.5	196.0 ± 47.6	196.1 ± 46.0	
HDL-cholesterol (mg/dl)	56.0 ± 15.3	58.6 ± 17.4	57.9 ± 16.9	
Triglycerides (mg/dl)	143.5 ± 105.6	135.4 ± 78.7	137.6 ± 86.9	
Statin use, n (%)	60 (50.0)	161 (50.6)	221 (50.5)	
eGFR (ml/min/1.73m ²)	91.8 ± 22.2	91.1 ± 19.8	91.3 ± 20.5	
eGFR 89 - 60 ml/min/1.73m ² , n (%)	42 (35.0)	124 (38.8)	165 (37.8)	
eGFR < 60 ml/min/1.73m ² , n (%)	12 (10.0)	28 (8.8)	40 (9.2)	
ACR (mg/g)	181.7 ± 429.7	71.9 ± 205.8	100.8 ± 285.8	

Table 1: Baseline patients' characteristics

eGFR, estimated glomerular filtration rate; ACR albumin to creatinine concentration ratio.

	rho	p-value
miR-16-5p	0.239	< 0.001
miR-19b-3p	0.301	< 0.001
miR-20a-5p	0.292	< 0.001
miR-25-3p	0.196	< 0.001
miR-106b-5p	0.343	< 0.001
miR-320a	-0.054	0.338
miR-320b	-0.015	0.788
miR-451a	0.361	< 0.001

Table 2: Associations of renal miRNAs identified in the discovery study with eGFR in the validation study

Statistically significant differences were determined by the Spearman's rho correlation test.

DNA	miR-16-5p		miR-1	miR-19b-3p		miR-20a-5p		miR-25-3p		miR-106b-5p		miR-451a	
microkina	rho	p-value	rho	p-value	rho	p-value	rho	p-value	rho	p-value	rho	p-value	
Age	-0.115	0.017	-0.115	0.017	-0.155	0.001	-0.130	0.006	-0.175	<0.001	-0.202	<0.001	
BMI	-0.018	0.701	-0.046	0.341	-0.040	0.408	0.050	0.299	-0.051	0.290	0.012	0.797	
Glucose	0.069	0.148	0.032	0.507	0.031	0.513	0.116	0.015	-0.031	0.513	0.122	0.011	
HbA1c	0.044	0.361	-0.016	0.747	0.027	0.575	0.099	0.038	-0.019	0.691	0.086	0.071	
SBP (mm Hg)	-0.036	0.452	-0.088	0.069	-0.069	0.151	-0.013	0.787	-0.056	0.244	-0.042	0.379	
DBP (mm Hg)	-0.038	0.428	-0.102	0.034	-0.028	0.561	-0.005	0.918	-0.029	0.551	-0.007	0.881	
ACR	-0.215	<0.001	-0.153	0.008	-0.172	0.003	-0.137	0.017	-0.195	0.001	-0.129	0.024	
Urinary albumin	-0.071	0.149	-0.061	0.213	-0.102	0.039	-0.016	0.744	-0.116	0.018	-0.011	0.826	
Serum urea	-0.081	0.089	-0.147	0.002	-0.161	0.001	-0.070	0.144	-0.214	<0.001	-0.154	0.001	
Serum uromodulin	0.009	0.879	-0.012	0.838	0.091	0.114	-0.028	0.627	0.114	0.048	0.037	0.521	
РТН	-0.091	0.067	-0.096	0.055	-0.130	0.009	-0.076	0.126	-0.096	0.053	-0.092	0.064	
FGF23	-0.096	0.071	-0.180	0.001	-0.137	0.010	0.008	0.886	-0.158	0.003	-0.139	0.009	
Klotho	0.014	0.780	0.078	0.125	0.014	0.786	-0.066	0.196	0.041	0.424	0.043	0.395	

Table 3: Associations between identified renal miRNAs and anthropometrics and laboratory parameters

Associations of identified renal miRNAs with anthropometrics and laboratory parameters were evaluated in the total study cohort (n=438).

Statistically significant differences were determined by the Spearman's rho correlation test. Significant associations are indicated in bold. BMI, body

mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; ACR, albumin-to-creatinine ratio; PTH, Parathyroid hormone; FGF23, Fibroblast growth factor 23.

Downloaded from www.physiology.org/journal/ajprenal at Univ Bern Hosp (161.062.252.040) on December 30, 2019.