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Abstract

Summary: In modern microscopy, the field of view is often increased by obtaining an image mo-

saic, where multiple sub-images are taken side-by-side and combined post-acquisition. Mosaic

imaging often leads to long imaging times that can increase the probability of sample deformation

during the acquisition due to, e.g. changes in the environment, damage caused by the radiation

used to probe the sample or biologically induced deterioration. Here we propose a technique,

based on local phase correlation, to detect the deformations and construct an artifact-free image

mosaic from deformed sub-images. The implementation of the method supports distributed com-

puting and can be used to generate teravoxel-size mosaics. We demonstrate its capabilities by

assembling a 5.6 teravoxel tomographic image mosaic of microvasculature in whole mouse brain.

The method is compared to existing rigid stitching implementations designed for very large data-

sets, and observed to create artifact-free image mosaics in comparable runtime with the same

hardware resources.

Availability and implementation: The stitching software and Cþþ/Python source code are avail-

able at GitHub (https://github.com/arttumiettinen/pi2) along with an example dataset and user

instructions.

Contact: arttu.miettinen@psi.ch

1 Introduction

In most commonly used forms of microscopy the routinely achiev-

able resolution has been steadily increasing during the last years.

Usually, the field of view of the microscope decreases with increas-

ing resolution, often severely limiting the region of the sample that

can be seen in one high-resolution image. In order to increase the

size of the imaged region, automated acquisition of multiple images

side-by-side, with small overlap, is often done. This procedure leads

to the problem of stitching or mosaicing, i.e. connecting the sub-

images taken side-by-side into one large image. Typically, the stitch-

ing algorithm finds optimal location for each sub-image based on

image content in the overlapping regions. This procedure ensures

that the final mosaic is free of geometrical artifacts (such as blurred

or repeated details) in the overlapping regions, despite inaccuracies

in the initial position estimates of the sub-images.

A particular type of microscopy where image mosaicing is often

applied is X-ray microtomography (CT). It is a type of microscopy

that results in a 3D image of the sample mathematically recon-

structed from 2D X-ray projection images (Kak and Slaney, 1988).

Recent developments in CT have enabled fast acquisition of high-

resolution images, making creation of large 3D image mosaics pos-

sible in reasonable imaging time. For example, acquisition of a 10�
10� 10 mosaic using equipment described in Mokso et al. (2017)

would be possible in <1 day with image resolution in the single-digit

micrometer range. The size of a single sub-image would be near
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(2000 voxels)3, and the total data size would be �15 TB, assuming

16-bit voxels. It is obvious that such amount of data cannot be easily

stitched without an efficient workflow that is optimized for datasets

that do not fit into the random access memory (RAM) of a typical

workstation.

Many biologically interesting materials tend to show small

changes and deformations in their local structure as a function of

time, caused by processes such as heating or cooling, drying, chem-

ical reactions and radiation damage. In principle these deformations

could be avoided by keeping the sample in a stable environment, but

that is often not possible, in particular in the case of CT where the

sample is probed with X-radiation. Generally the magnitude and

probability of the deformations increases with time, and therefore

the total time used to image a sample must be limited such that the

reconstructed image shows no artifacts due to the deformations.

When acquiring a large image mosaic the total acquisition time of

the whole mosaic should be set similarly. This severely limits the

time available for acquiring large image mosaics, and in practice the

total acquisition time is often set such that each individual sub-

image is free of artifacts. The sub-images that are to be placed next

to each other might be taken some time between them (e.g. the first

image in the first row and the first image in the second row).

Consequently, the sample may have accumulated deformations such

that the overlapping regions of the two sub-images are not geomet-

rically congruent, i.e. the image details do not overlap correctly

when the images are overlaid. If not accounted for, stitching of such

sub-images leads to stitching artifacts like discontinuous structures

and blurred details at the boundaries of the sub-images.

In this work a method to stitch images with arbitrary small local

deformations between them is presented. In the following, the term

‘non-rigid’ stitching is used to refer to such methods, and the term

‘rigid’ to denote methods or transformations that do not incorporate

arbitrary local deformations. In contrast to many previous non-rigid

stitching algorithms (Castanheira de Souza et al., 2012; Yan et al.,

2017; Yeung et al., 2008), the proposed method is readily suitable

for stitching both 2D and 3D image mosaics. It is based on comput-

ing the local deformation field between the overlapping regions of

the sub-images non-iteratively using (local) phase correlation

(Kuglin and Hines, 1975; Tajima et al., 2012). The local deforma-

tions are post-processed in order to filter out cases where the initial

computation failed. The subsequent results are then used to position

and deform the sub-images optimally. This process is formulated as

a simple non-iterative algorithm that is easy to parallelize and opti-

mize for very large images (compare e.g. to Gao et al. 2019;

Wachinger et al., 2008; Yigitsoy et al., 2015).

As a showcase, we assembled a tomographic image mosaic of the

entire micro-vascular network in a whole mouse brain sample with

0.65mm voxel size. The stitched mosaic, consisting of 5.6 teravoxels,

is, to the best of our knowledge, one of the largest synchrotron-

based tomographic microscopy datasets to date (compare to Vescovi

et al., 2018). Such images offer an unprecedented possibility to ana-

lyze biological systems in high detail. Previously, analysis methods

for images of comparable size have been demonstrated, e.g. in mate-

rials science (Mattila et al., 2016), albeit only for artificially gener-

ated data. Additionally, we show the efficiency of the stitching

method on smaller datasets showing microstructure of mouse lung.

Finally, the stitching results and computation time are compared to

those of TeraStitcher (Bria and Iannello, 2012) and BigStitcher (Hörl

et al., 2018). The proposed non-rigid method effectively eliminates geo-

metrical stitching artifacts that the rigid stitching methods are unable

to remove. A freely available implementation of the method supporting

distributed processing in a computer cluster environment is given.

2 Algorithm

The proposed non-rigid stitching algorithm consists of three main

parts (see Fig. 1):

1. Pairwise matching, where corresponding points in each overlap-

ping sub-image pair are determined.

2. Determination of coordinate transformation between stitched

mosaic and each sub-image such that all the overlapping regions

of the sub-images become geometrically congruent.

3. Assembly of the stitched mosaic.

In the following, each of the three parts is discussed separately.

2.1 Pairwise matching
The first step in the stitching process is pairwise matching. The goal

of this step is to find corresponding locations in two partially over-

lapping sub-images. The correspondences are later used to deform

the sub-images such that the overlapping region is geometrically

congruent in both of them. In this step each pair of overlapping sub-

images in each coordinate direction is considered separately. It is

assumed that initial estimates of the relative positions (and overlaps)

of the images are available from the stage position data read from

the microscope.

Consider two overlapping images I1 and I2. The overlapping re-

gion between them is assumed to be rectangular in the coordinates

of I1. A rectangular grid of points with user-specified spacing in

each coordinate direction is placed to the overlapping region in I1

and denoted by x
!1

i . Initially, estimates of the corresponding loca-

tions in I2 are determined from the positions of the two images and

denoted by x
!2

i . Spacing between the points is chosen such that sam-

ple deformations can be approximated to be linear in between the

points (see also Sections 3.2 and 4 for further discussion).

Fig. 1. Schematic representation of the stitching process. The example is

given in 2D for simplicity and clarity of presentation. The same principles

apply for the 3D case. Notice that in Step 3 the overlapping regions do not

fully match, and therefore assembling a mosaic without accounting for local

deformations would introduce artifacts

2 A.Miettinen et al.
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The location of each x
!2

i is refined by a multiresolution phase cor-

relation process (Kuglin and Hines, 1975; Tajima et al., 2012) on

rectangular blocks of I1 and I2 around points x
!1

i and the last esti-

mate of x
!2

i , respectively. The blocks are downscaled by a factor of

n, where typically n¼N in the first resolution step and n¼1 in the

last resolution step, with N being the number of steps. The estimate

of x
!2

i at step n is given by

x
!2

i;n ¼ x
!2

i;n�1 þ n arg max
x
!
ðrnðx

!ÞÞ; (1)

where the cross-correlation rn is defined by

rn ¼ F�1
G1�G2

�

jG1�G2
�j

( )
: (2)

Here, Gj ¼ FðSðgj; nÞÞ is the Fourier transform of a downscaled

block of image Ij. The operator Sðgj; nÞ scales gj by a factor of 1=n,

and gj denotes a block of Ij around x
!j

i or its previous estimate. The

operator� denotes elementwise product (Hadamard product), and �
denotes complex conjugation.

The size of the blocks I1 and I2 determines the maximal local

shift that can be recognized. Consequently, the multiresolution pro-

cess enables computationally efficient use of spatially large (but

downscaled) blocks to find large shifts. The accuracy of the estimate

is then improved by using smaller blocks taken around the last esti-

mate of the shift.

Depending on the ratio between resolution and pixel size of the

sub-images, it may be possible to stop refining x
!2

i before reaching

n¼1, or it may be necessary to continue the refining process to sub-

pixel accuracy by using real values in range 0 < n < 1. In all the

cases sub-pixel accurate estimation of x
!2

i;n may be used to improve

accuracy (see e.g. Foroosh et al., 2002; Feng et al., 2012). Such algo-

rithms are particularly favorable over direct upscaling, and enable

use of smaller number of resolution steps in Equation (1) or skip the

highest-resolution steps altogether. Selection of proper number of

resolution steps depends on the content of the images and magni-

tudes of the shifts, but in many practical cases it seems to be enough

to use one low-resolution step that captures large shifts followed by

one high-resolution step for increased accuracy.

Near the edges of a sub-image some regions of the block gj might

fall outside the sub-image. In such situations the missing pixel values

are replaced by the nearest valid value at the edge of the sub-image.

This choice of boundary condition suppresses spurious maxima in

the cross-correlation rn caused by the edges of the blocks.

Before further processing, the set of correspondences consisting

of point pairs ðx!1
i ; x
!2

i Þ is filtered to remove unrealistic values of x
!2

i .

Such values can be encountered when the phase correlation process

fails to find the correct position. This usually happens in regions

where there are only few corresponding details visible in the sub-

images. To that end, first define shift s
!

i as

s
!

i ¼ x
!2

i � x
!1

i � hx
!2

j � x
!1

j i; (3)

where the average is taken over all point pairs. All si whose some

component sik satisfies

jsik �Mðsik; rÞj > T (4)

are removed. The function Mðsik; rÞ is the median of all sk in a sphere

of radius r around sik, and T is a user-specified threshold value. The

value of the parameter T can be chosen, e.g. based on the measure

of the repeatability of the microscope stage as shown in Chalfoun

et al. (2017). The removed s
!

i are replaced by values interpolated

from the surrounding non-removed points using method introduced

in Garcia (2010) and Wang et al. (2012). Finally, filtered values of

x
!2

i are calculated by inverting Equation (3).

2.2 Determination of stitched-to-local transformations
In this second step, the correspondences between overlapping sub-

images determined with the phase correlation process (see Section

2.1) are used to find the coordinate transformation between the final

stitched mosaic and each sub-image. In the following, we will call

such coordinate transformation stitched-to-local transformation

(StL-T).

In order to determine StL-Ts for all sub-images, the optimal rigid

transformation is first found for each of them using the algorithm

discussed in Hörl et al. (2018). To this end, let us denote a rigid

transformation from the coordinates of the stitched mosaic to the

coordinates of sub-image n by

x
!n ¼ Tnðx

!Þ ¼ Rn x
!þ D

!
n; (5)

where Rn is a rotation matrix and D
!

n is a translation vector. The op-

timal Tn are determined by minimizing the value of the weight

function X
ðn;mÞ

X
ðx
!

i ;x
!

jÞ2Cnm

jjTn
�1ðx!iÞ � Tm

�1ðx!jÞjj2 (6)

over Tn (practically, over rotation matrices Rn and translations Dn),

keeping T1 constant. The first sum is taken over all overlapping sub-

image pairs (n, m), and the second sum is taken over Cnm, the set of

all filtered corresponding points between images n and m as deter-

mined using the phase correlation process.

After the optimal Tn has been found for each sub-image, the

StL-T for sub-image In is determined from the StL-Ts of those over-

lapping sub-images Im whose StL-Ts have been determined so far.

The processing order is discussed later. The transformation is

defined differently in separate regions of the image In (see Fig. 2).

In the region where no Im overlaps with In (region A in Fig. 2),

the StL-T equals to the Tn.

In the region where one or more sub-images Im overlap with In

(regions B and C in Fig. 2), the StL-T is calculated using the filtered

point correspondences. In this region

x
!n ¼ hf ðx!mðx!Þ; fðx!m

i ; x
!n

i ÞgÞi; (7)

where the function f performs cubic interpolation of data points

fðx!m
i ; x
!n

i Þg at x
!mðx!Þ. The point x

!mðx!Þ is position x
!

in the coordi-

nates of the stitched mosaic converted to coordinates of sub-image

Im. The average is taken over all m, i.e. over all sub-images that

overlap with sub-image n. In the example shown in Figure 2, this

process results the StL-T being determined from point correspond-

ences between In and one overlapping sub-image in regions B. In re-

gion C the StL-T will be average of the three transformations

calculated from the point correspondences between In and the three

overlapping sub-images.

The transformation defined above by Equations (5) and (7)

might not be smooth at the boundary between the two regions

(dashed region in Fig. 2). Such abrupt changes in the transformation

may exhibit themselves as artificially stretched strips in the stitched

mosaic. In order to mitigate such artifacts, the boundaries between

the regions are smoothed by replacing a strip of values near the

boundary (in region A) by values interpolated from the surroundings

using Garcia, (2010) and Wang et al. (2012).
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Determination of the StL-Ts requires that the sub-images are

processed in a certain order. A consequence of the ordering is that

the local deformations applied to a sub-image make it match to all

the overlapping sub-images processed before it. The selection of the

processing order can be made arbitrarily, and it does not affect

the general shape of the stitched mosaic as that is controlled by the

transformation optimization step described above (Equation 6).

As the amount of local deformations may increase with increasing

acquisition time (see Section 1), it seems natural to determine the

StL-Ts of the sub-images in chronological order.

2.3 Mosaic assembly
The final stitched mosaic is assembled by transforming each sub-

image using its StL-T, and adding the transformed sub-image to the

stitched mosaic. In the regions where multiple sub-images overlap,

the sub-images are blended linearly, i.e. the pixel values of a sub-

image are weighted by the distance to the nearest edge of the sub-

image. The total weight accumulated per pixel of the stitched mosaic

is stored in a separate image, having the same size as the stitched

mosaic. After all the sub-images have been processed, each pixel of

the stitched mosaic is divided by the total weight accumulated to

that pixel.

3 Implementation

The proposed method is particularly suitable for distributed process-

ing on a computer cluster. All the pairwise matching tasks are inde-

pendent and can be done in parallel. The determination of the StL-T

for a sub-image is independent of other non-overlapping sub-images.

The mosaic assembly can be done for a selected region of the final

stitched mosaic per process as the sub-images and the corresponding

StL-Ts are completely independent. Additionally, the tasks them-

selves contain parts that use the same input data but can be proc-

essed in parallel, e.g. the pairwise matching process for each grid

point, and the determination of the StL-T of each pixel of the final

mosaic.

Given the two levels of parallelism it seems to be natural to div-

ide the independent tasks to multiple computing nodes with add-

itional thread parallelism in each node. If multiple computing nodes

are not available, the independent tasks can be executed sequentially

on the local workstation. Notice that there is no need for communi-

cation between the parallel tasks.

The computationally intensive parts of the algorithm, i.e. phase

correlation, determination of coordinate transformations and mo-

saic assembly, are implemented in Cþþ using OpenMP (Dagum and

Menon, 1998) and FFTW libraries (Frigo and Johnson, 2005).

A high-level Python driver routine calls the Cþþ submodules. The

Python routine sets the initial positions of the sub-images based on

the sample position data recorded during imaging, and separates in-

dividual jobs to run independently. The jobs are monitored and

failed jobs are re-run (e.g. in the case of hardware problem on single

compute node). The system reads the sub-images from 3D TIFF files,

TIFF or PNG sequences, or flat binary files (RAW format, various

pixel data type possibilities) and outputs a single file containing the

stitched mosaic in RAW format. Various input arguments are stored

in a separate human-readable text file. The implementation is kept

as simple and lightweight as possible in order to enable extensions

and improvements by third parties.

3.1 Test cases
Validation of the proposed method by comparing stitched image to

ground truth is challenging as the method does not correct for defor-

mations in the sub-images, but merely deforms the sub-images such

that they correspond to each other. Therefore, even though the

stitched image is sharp and details visible in the sub-images overlap

correctly, it may not be similar to the ground truth. Instead of a dir-

ect comparison between images, a comparison of measurements

made from ground truth and stitched images are made. To this end,

images of size 1500� 1500 pixels were generated by plotting ran-

dom 2 pixels thick lines to an empty image until the fraction of the

area covered by lines was �0.2. This image was taken to be the

ground truth. It was cut into tiles of size 400� 400 pixels with 190

pixels overlap, and each of the tiles were individually deformed

using random displacement field generated from OpenSimplex noise

(see https://github.com/lmas/opensimplex). Average and maximal

displacements were �3.0 pixels and 6.7 pixels, respectively. Noise

with SD of 8% of the full intensity range was added to all the

images. The generated sub-images were stitched using rigid (transla-

tions and rotations only) stitching and the proposed non-rigid stitch-

ing methods. The lines were segmented from the ground truth and

the stitched images by simple thresholding, and lengths of branches

between intersecting lines were determined using skeleton analysis.

Branches <4 pixels in length were pruned as those did not seem to

correspond to the plotted lines. The average branch length distribu-

tions over 100 test images is shown in Figure 3, where it can be seen

that non-rigid stitching resolves the original branch length distribu-

tion more accurately than rigid stitching. Kolmogorov–Smirnov test

statistic between the true and the measured branch length probabil-

ity distributions is 0.048 and 0.0067 for rigid and non-rigid stitch-

ing, respectively.

The practical performance of the proposed method is demon-

strated by applying it to two CT volume image mosaics acquired at

the TOMCAT beamline of the Swiss Light Source at Paul Scherrer

Institute. The ‘brain’ dataset shows whole mouse brain and it

consists of 9� 9� 15 sub-images of 20483 voxels each. Individual

Fig. 2. Various regions encountered while determining the StL-T. The image

In is depicted by a rectangle with black border, and images that overlap with it

and whose StL-Ts have been determined are depicted by rectangles with

gray border. In region A the StL-T of In equals its globally optimized rigid

transformation. In regions B and C the transformation is calculated from the

point correspondences determined in the pairwise matching phase. In the

dashed region the two transformations are interpolated in order to ensure a

smooth change between the regions
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sub-images overlap 30% of their diameter in directions perpendicu-

lar to the rotation axis, and �10% in the direction parallel to the ro-

tation axis. Each of the sub-images has been reconstructed from

1001 X-ray projection images with the GridRec algorithm (Marone

and Stampanoni, 2012), applying Paganin phase retrieval method

(Paganin et al., 2002) before reconstruction. The projection images

have been acquired with 20 keV monochromatic X-ray beam,

0.65mm voxel size and 50 ms exposure time. The total acquisition

time was �57 h. The ‘lung’ dataset shows mouse lungs in fresh post-

mortem state, and it consists of 2� 2 sub-images, each having

20163 voxels reconstructed from 1500 projection images with simi-

lar procedure as the ‘brain’ dataset. Here, X-ray beam energy was

21 keV, voxel size was 1.1mm, exposure time was 5 ms and

Moosmann filtering was used instead of Paganin. The total image

acquisition time was �1 min.

Figure 4 shows small parts of the ‘brain’ and the ‘lung’ datasets,

and a comparison with rigid (translations only) stitching calculated

using TeraStitcher. In the ‘brain’ dataset, the rigidly stitched mosaics

show the same details multiple times side-by-side in the regions

where multiple sub-images overlap. The same artifact is visible also

in the ‘lung’ dataset as blurred parenchyma (bright walls between

airways). The artifacts have been completely eliminated in the

results obtained with our proposed non-rigid stitching method.

Notice that despite the artifacts, some parts of the overlapping

regions in the rigidly stitched images are sharp and well-stitched.

This indicates that the sub-images have been locally deformed be-

tween acquisitions and are thus impossible to stitch with strictly

rigid deformations without producing artifacts. There is thus a def-

inite need to use a non-rigid stitching method with these datasets.

Finally, Figure 5 shows visualizations of the full ‘brain’ dataset high-

lighting the multiple length scales that can be probed simultaneously

using mosaic imaging.

The magnitude of the local deformations can be analyzed in vari-

ous ways using the StL-Ts. For example, the StL-Ts can be used to

calculate the Biot finite strain tensor field, whose eigenanalysis gives

the maximal local absolute normal strain j�maxj and maximal local

shear strain cmax (Lubliner, 2008). The distributions of j�maxj and

cmax are shown in Figure 6. Despite filtering of deformation fields as

described in Section 2.1, the maximal strains seem to often occur in

regions outside of the sample or on the edge of it. The maximal

strains inside the sample are better depicted by the 99th percentiles

of the strain distributions that are 0.16 and 0.25 for j�maxj and cmax,

respectively. These values indicate that any short linear structure in

Fig. 3. Branch length distributions (bar plots, left axis) and the corresponding

cumulative distributions (line plots, right axis) in artificially generated test

images containing a network of lines. The distributions are normalized to the

total number of detected branches in all the 100 test images of 15002 pixels

each. The inset shows small parts of images stitched with non-rigid and rigid

(translations þ rotations) methods

Fig. 4. Comparison of the proposed non-rigid stitching method to rigid (trans-

lation-only) stitching (Bria and Iannello, 2012). The top and bottom rows

show small parts of slices through 3D CT image of mouse brain and mouse

lung, respectively. The sub-images overlap between the yellow lines. The left

and right columns show the results of the proposed non-rigid stitching

method and rigid stitching made with TeraStitcher, respectively. Stitching

artifacts are visible as doubled details and blur in the rigid stitching results in

the regions where the sub-images overlap (right, between yellow lines), but

not in the non-rigid stitching results (left). Some artifacts have been marked

with red ellipses. Regions marked with blue dashed ellipses are well-stitched,

indicating that no rigid transformation will result in good stitching every-

where in the slice. Contrast of the images has been scaled to show the details

well (Color version of this figure is available at Bioinformatics online.)

Fig. 5. Maximum intensity projection of a stitched 9� 9� 15 CT mosaic show-

ing blood vessels in a whole mouse brain (top), and details of a selected loca-

tion at two different scales (bottom)

Non-rigid stitching of terapixel-scale volumetric images 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btz423/5497257 by U

niversitaetsbibliothek Bern user on 12 D
ecem

ber 2019



the stitched image is at most 16% longer or shorter than in any indi-

vidual sub-image, and that any small cube in a sub-image is sheared

at most 25% of its edge length in the stitched image. The average

values of j�maxj and cmax are 0.018 and 0.041, respectively, indicat-

ing that the local deformations are generally relatively small.

Furthermore, Figure 6 shows that almost one half of the total vol-

ume of the sub-images has approximately zero strain, indicating the

volume that is not locally deformed or is not overlapping with any

other sub-image.

3.2 Runtime and memory requirements
The computational complexity of the pairwise matching process is

OðnMlogðMÞÞ, where n is the number of grid points and M is the

count of pixels in the blocks used in the phase correlation algorithm.

The complexity of the StL-T calculation is OðNlogðNÞÞ, where N is

the number of pixels in a sub-image, due to Discrete Cosine

Transforms taken in the interpolation process. The mosaic assembly

is an O(N) process.

Practically, the processing speed is limited also by the read and

write speeds of the hard disk system. Therefore, the total amount of

disk operations is minimized by reading the sub-images only two

times and by avoiding random access to the image files. The pair-

wise matching process requires reading of the overlapping regions of

all the sub-images from the disk, and the mosaic assembly process

requires reading of all the sub-images from the disk and writing the

whole stitched mosaic to the disk. In particular, each pairwise

matching job computes point correspondences for single overlap-

ping image pair and thus reads image data from two images, from

the overlapping region only. Each of the mosaic assembly jobs corre-

sponds to a block of the final stitched mosaic. These jobs read the

images that contribute to the output block one-by-one, and write

the block of the output file they have constructed. The determin-

ation of the StL-Ts does not include reading of the input images.

The most RAM-intensive part of the stitching process is the final

assembly of the stitched image, where one must have at least a single

sub-image, a part of the stitched mosaic, and the corresponding part

of the weight image in RAM at the same time. In the current imple-

mentation, the memory requirement can be tuned by setting the size

of the part of the stitched mosaic that is generated by a single pro-

cess. Minimal practical RAM requirement is thus a few times the

size of one sub-image.

The runtime of the proposed method was compared to

TeraStitcher and BigStitcher on a computer with two Intel Xeon E5-

2690v3 processors (total of 24 physical cores) and 180 GiB of RAM

available to the programs. The proposed method was also tested on

a cluster of 10 computing nodes with the same specifications.

Runtimes of each of the three programs were measured for a 9�
9� 1 block of the ‘brain’ dataset, scaled to four different sizes by a

factor s ¼ 1; 3=4; 1=2 or 1=4, leading to sub-image sizes of

20483; 15363; 10243 and 5123, respectively. The stitching settings

were set to realistic values that a normal user would have chosen to

stitch the images. In particular, for the proposed method, the grid

spacing was set to s� 60 pixels, and block size to s� 120 pixels þ 1

pixels. Single resolution step was sufficient in the phase correlation,

with downscaling factor equal to 4s. Filtering parameter T was set

to s� 12 pixels. TeraStitcher was run with the default settings, out-

putting 2D TIFF slices. For BigStitcher, the sub-image data were first

converted to HDF5 format including a pre-computed downsampled

version with the same scaling factor that was used in the proposed

method, except for image with s ¼ 3=4 where downsampling of

4 was used instead of 3. The stitching was run using the default set-

tings, without the Iterative Closest Point (ICP) option, in ‘virtual’

mode. The stitched image was saved as uncompressed TIFF slices.

Other settings were left to the default values.

The measured runtimes shown in Figure 7 indicate that the run-

times of all the methods scale essentially linearly with the number of

pixels. Notice also that in this benchmark the number of overlap-

ping pixels increases linearly with the total number of pixels.

Additionally it should be noted that the experimental runtimes and

scaling behavior may vary considerably with factors such as stitch-

ing settings, disk system speed or the data format used to store the

sub-images. In particular, BigStitcher runtimes would be shorter if

the sub-images were saved to suitable HDF5 file(s) so that no con-

version would be required, and the runtimes of the proposed method

would be significantly longer if larger block size or smaller grid step

was used.

Fig. 6. Distribution of the local maximal absolute normal strain j�maxj and the

local maximal shear strain cmax between sub-images in the ‘brain’ dataset.

Zero strain corresponds to regions with rigid deformations. Average values

of j�maxj and cmax are 0.018 and 0.041, respectively. The 99th percentiles are

0.16 and 0.25, giving estimates of the maximal normal and shear strains in

the sample

Fig. 7. Comparison of the runtime of the proposed method to those of

TeraStitcher and BigStitcher for images of different size. The stitched mosaic

consists of 9� 9� 1 sub-images. Results for TeraStitcher and BigStitcher are

shown only for a single compute node as they do not support distributed

processing
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Figure 7 also shows that by using a 10-node cluster for the com-

putations, the total computing time required by the proposed

method can be reduced by a factor of 7–8. However, the maximum

count of compute nodes that the proposed method can take advan-

tage of is limited in the present implementation. In the pairwise

matching phase one job is generated for each overlapping image

pair, and thus the number of overlaps limits the count of jobs. When

determining the StL-Ts, one job is generated for each sub-image.

In the mosaic assembly phase the count of jobs is determined by the

amount of RAM available in the compute nodes. Practically, in the

case of the full 9� 9� 15 sub-image ‘brain’ mosaic there are several

thousands of pairwise matching jobs, 1215 StL-T generation jobs

and �500 mosaic assembly jobs. The stitching takes �51 h with 10

compute nodes. Most of the jobs are independent so the total run-

time should decrease considerably if more than 10 compute nodes

are available.

4 Discussion

A parallel non-rigid stitching method for volume images was pro-

posed. The method can account for translations, small rotations and

small local deformations between the sub-images. It is based on esti-

mation of the deformations between the sub-images using local

phase correlation. The deformations are used to calculate position

and orientation of each sub-image in the stitched mosaic, and to de-

form the sub-images such that they are geometrically congruent in

the regions where they overlap. The proposed method was tested on

CT images and it improved the stitching results over traditional rigid

stitching methods. The runtime of the method is not excessively high

compared to existing rigid stitching methods run on datasets of the

same size, while it provides better image quality. The RAM resour-

ces required by the method seem to be reasonable when compared

to existing rigid stitching software.

The proposed method does not generally correct deformations of

the sample but only deforms sub-images more so that the resulting

stitched mosaic is geometrically consistent, i.e. structures are con-

tinuous over the boundaries of the sub-images. There is no guaran-

tee that the mosaic would be geometrically correct, e.g. parallel lines

in the sub-images might not be parallel everywhere in the stitched

mosaic. These distortions originate from the local deformations

applied to the sub-images and their magnitude is bounded by the

magnitude of deformation of the sample occurred during the imag-

ing process. Furthermore, the magnitude can be quantified from the

StL-Ts. In practice the geometrical distortions seem to be small and

the added geometrical consistency in the overlapping regions out-

weighs the distortions in most cases. For example, analysis of the

vascular network in the ‘brain’ test image would be impossible if the

thin blood vessels were discontinuous on the boundaries of the sub-

images as is the case for a mosaic stitched with rigid stitching meth-

ods. A side effect of the possible geometrical distortions caused by

the proposed method is that a quantitative measurement of the ac-

curacy of the stitching is hard, as an artifact-free mosaic might be

geometrically different from a ground-truth image.

A limitation of the proposed method and its current implementa-

tion is that it requires larger overlap between the sub-images than

rigid stitching. If the overlap is too small, there may not be enough

corresponding image details for accurate phase correlation. Practical

observations of the performance of the method indicate that

• the block size in the pairwise matching step (see Section 2.1)

must be set such that most of the blocks contain multiple details

of interest,

• the spacing between the calculation grid points should be deter-

mined so that deformations can be approximated to be linear in

between the grid points and that there are many grid points in all

non-background regions and
• overlap between images must correspond to at least 3 calculation

grid points.

It may not be possible to fulfill all the three requirements if some

of the sub-images contain only small parts of the sample or if the de-

formation gradient is very large in some regions. In these cases the

stitching may fail and lead to local artifacts. The 30% overlap be-

tween sub-images used in the examples in Figure 4 corresponds to

�10 calculation grid points and seems to be sufficient for bulk mate-

rials containing large number of features.

This work was focused on correcting the geometrical mis-

match between deformed sub-images and thus radiometric align-

ment (i.e. contrast matching) has been left as a topic for future

work. Instead of the simple linear blending used in this work,

methods such as graph cuts based ‘puzzling’ proposed in

Oikonomidis et al. (2016) could potentially improve the quality

of the mosaic even further.

The programs and source code used to generate the results are

freely available in GitHub and are licensed under the GNU General

Public License. The source code has been compiled and tested in

Windows 7, Windows 10 and CentOS Linux 7 operating systems

using MSVC 19.12, MSVC 19.16 and GCC 7.3.0 compilers, re-

spectively. Python version 3.6 is required. User instructions and a

small test dataset are also provided in the GitHub repository.
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