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Abstract

■ The representation and processing of numerosity is a crucial
cognitive capacity. Converging evidence points to the posterior
parietal cortex (PPC) as primary “number” region. However, the
exact role of the left and right PPC for different types of numer-
ical and arithmetic tasks remains controversial. In this study, we
used high-definition transcranial direct current stimulation (HD-
tDCS) to further investigate the causal involvement of the PPC
during approximative, nonsymbolic mental arithmetic. Eighteen
healthy participants received three sessions of anodal HD-tDCS
at 1-week intervals in counterbalanced order: left PPC, right PPC,

and sham stimulation. Results showed an improved performance
during online parietal HD-tDCS (vs. sham) for subtraction prob-
lems. Specifically, the general tendency to underestimate the
results of subtraction problems (i.e., the “operational momen-
tum effect”) was reduced during online parietal HD-tDCS.
There was no difference between left and right stimulation.
This study thus provides new evidence for a causal involvement
of the left and right PPC for approximate nonsymbolic arith-
metic and advances the promising use of noninvasive brain
stimulation in increasing cognitive functions. ■

INTRODUCTION

The processing of approximate numerosities is a crucial
cognitive function for both humans and animals. It allows,
for example, to go to the tree that bears the most fruits or
leads to the decision about fight or flight when the num-
ber of enemies has been estimated (e.g., Wilson, Hauser,
& Wrangham, 2001). Given the importance of such a
“number sense” for survival and other cognitive functions
(Dehaene, 2011), it is no surprise that researchers have
tried to reveal its neuronal basis during the last decades.
Neurophysiological recordings in the monkey brain re-
vealed that neurons within the posterior parietal and pre-
frontal cortex are selectively tuned to numerosity (Nieder
& Miller, 2004; Nieder, Freedman, & Miller, 2002). Similar
numerosity-dependent brain activities have later also been
found in the human parietal cortex (Piazza, Izard, Pinel,
Le Bihan, & Dehaene, 2004). Since then, evidence has been
accumulating that the posterior parietal cortex (PPC)—or,
more specifically, the intraparietal sulcus (IPS)—is in-
volved in the processing of numerosity (symbolic and
nonsymbolic) and other magnitude-related quantity infor-
mation (e.g., Bueti & Walsh, 2009).

It has also been argued that higher level cognitive pro-
cesses, such as symbolic number processing and arith-
metic, rely on the innate approximate, nonsymbolic

number system, which has been regarded as “neuro-
cognitive start-up tool” for exact numerical cognition
(Piazza, 2011). In line with this view, it has been shown
that performance in approximate number tasks in chil-
dren correlates with their school math ability (e.g.,
Starr, Libertus, & Brannon, 2013; Halberda, Mazzocco,
& Feigenson, 2008), and nonsymbolic approximate arith-
metic training improves math performance (e.g., Park,
Bermudez, Roberts, & Brannon, 2016; Hyde, Khanum,
& Spelke, 2014). Despite this evidence, the question
whether and to what extent the approximate number sys-
tem is related to mental arithmetic, as well as the nature
of the underlying “number sense,” is still debated (e.g.,
Leibovich, Katzin, Harel, & Henik, 2017; Lindskog &
Winman, 2016; Fazio, Bailey, Thompson, & Siegler,
2014). Nonetheless, there is a general agreement that
nonsymbolic and symbolic numbers activate shared pari-
etal networks (e.g., Eger et al., 2009; Nieder & Dehaene,
2009; Piazza, Pinel, Le Bihan, & Dehaene, 2007) and that
these brain areas are also activated during mental arith-
metic (for a meta-analysis, see Arsalidou & Taylor, 2011).
Most of the studies mentioned so far relied on neuro-

imaging techniques. This approach allows to assess
whether certain brain areas are involved in the task at
hand but leave open the functional relevance of the
activated brain area for the task, which is an important
question for the understanding of the brain–behavior re-
lationship. In contrast to neuroimaging, noninvasive1University of Bern, 2Swiss Distance University Institute
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brain stimulation techniques such as TMS or transcranial
direct current stimulation (tDCS) directly interfere with
neuronal activity, allowing to study the causal involve-
ment of the stimulated area. Single-pulse (or inhibitory
repetitive) TMS “inhibits” the neural activity of the stim-
ulated area, leading to a temporary “virtual brain lesion”
in healthy participants. TMS over the PPC impaired per-
formance in both symbolic and nonsymbolic number
comparison tasks (Dormal, Andres, & Pesenti, 2008,
2012; Andres, Seron, & Olivier, 2005) and also in mental
arithmetic (Montefinese, Turco, Piccione, & Semenza,
2017; Salillas, Semenza, Basso, Vecchi, & Siegal, 2012;
Andres, Pelgrims, Michaux, Olivier, & Pesenti, 2011). In
contrast to these TMS-induced interference effects, ex-
citatory (anodal) tDCS can lead to an increase in cortical
excitability (e.g., Romero Lauro et al., 2014) and conse-
quently boost performance, which could have an impor-
tant impact on the fields of learning, education, and
rehabilitation (see Iuculano & Cohen Kadosh, 2014;
Cohen Kadosh, Soskic, Iuculano, Kanai, & Walsh, 2010).
There is (limited) evidence for increased performance in
symbolic number comparison and exact arithmetic with
this technique (Hauser et al., 2016; Artemenko, Moeller,
Huber, & Klein, 2015; Grabner, Rütsche, Ruff, & Hauser,
2015; Hauser, Rotzer, Grabner, Mérillat, & Jäncke, 2013;
for a minireview, see Schroeder et al., 2017). Moreover,
a recent study assessed the enhancing effect of tDCS on
symbolic approximate averaging—a specific case of intui-
tive mental arithmetic (Brezis, Bronfman, Jacoby, Lavidor,
& Usher, 2016). In their task, participants were presented
with a series of two-digit numbers for which they had to
estimate the average without calculating. Brezis et al.
(2016) found that participants’ estimates were more
precise during right parietal anodal tDCS. Numerical
averaging involves multiple arithmetic steps (several
additions and a division)—thus, it remains unclear why
exactly estimates became more precise during parietal
stimulation in Brezis et al.’s study.
In this study, we therefore further investigated the

functional contribution of the parietal cortex for approx-
imate mental addition and subtraction. Previous fMRI
studies showed activity in the IPS during both symbolic
and nonsymbolic arithmetic (e.g., Venkatraman, Ansari,
& Chee, 2005). We therefore hypothesized that stimulat-
ing this target region facilitates approximate mental arith-
metic. We used anodal high-definition tDCS (HD-tDCS).
HD-tDCS is a new modification of traditional tDCS that
uses smaller “high-definition” electrodes (instead of the
larger pad electrodes of traditional tDCS), allowing for a
more focal stimulation of the target region (Kuo et al.,
2013; Datta et al., 2009). We applied HD-tDCS to either
the left or right IPS, which allowed us to assess hemi-
spheric specialization, which so far has led to conflicting
results. Particularly, some studies found a left hemi-
spheric parietal specialization of number processing and
arithmetic (e.g., Hauser et al., 2013; Sasanguie, Göbel, &
Reynvoet, 2013; Dormal et al., 2008; Andres et al., 2005;

Pesenti, Thioux, Seron, & De Volder, 2000), whereas
others found a right hemispheric specialization (e.g.,
Artemenko et al., 2015; Li et al., 2015; Cohen Kadosh,
Bien, & Sack, 2012). Moreover, some studies found a
contribution of both the left and right parietal cortex
(Artemenko, Soltanlou, Ehlis, Nuerk, & Dresler, 2018; Klein
et al., 2013; Salillas et al., 2012; Andres et al., 2011) or
operation-dependent hemispheric specialization (e.g.,
Montefinese et al., 2017; Semenza, Salillas, De Pallegrin, &
Della Puppa, 2017; Salillas et al., 2012; Arsalidou & Taylor,
2011; Chochon, Cohen, van de Moortele, & Dehaene,
1999). In the only previous tDCS study on approximate
arithmetic, Brezis et al. (2016) applied right-sided stim-
ulation only. Our study will thus be the first brain stimulation
study allowing to assess hemispheric specialization for
approximatemental arithmetic. Given themixed findings re-
garding lateralization of mental arithmetic in general and the
absence of brain stimulation studies that specifically com-
pared left and right parietal stimulation for approximate
mental arithmetic, we did not specify an a priori hypothesis
about differential effects of left and right parietal HD-tDCS.

In contrast to Brezis et al. (2016), we used nonsymbolic
stimuli, because it is difficult to study approximate addi-
tion and subtraction with number symbols. Particularly,
it is difficult for participants to suppress exact calculation
strategies even when they are told to perform approxi-
mate arithmetic (Venkatraman et al., 2005). The estima-
tion of results from nonsymbolic arithmetic is typically
biased in an operation-specific way: Results from addition
tend to be overestimated, and those from subtraction tend
to be underestimate (McCrink, Dehaene, & Dehaene-
Lambertz, 2007). The origin of this so-called “operational
momentum” (OM) effect is still unclear (e.g., Knops,
Zitzmann, & McCrink, 2013). It has, for example, been hy-
pothesized that the OM effect reflects a “forward bias”
when moving along a mental number line during arith-
metic (McCrink et al., 2007). Specifically, such a forward
bias leads to an overestimation of addition results (moving
too far toward larger numbers on the number line) and to
an underestimation of subtraction results (moving too far
toward smaller numbers on the number line). However,
more recent studies (using a similar task than the one
employed in this study) found that results for both addi-
tion and subtraction were underestimated, with a stron-
ger underestimation for subtraction (Knops, Dehaene,
Berteletti, & Zorzi, 2014; Knops, Viarouge, & Dehaene,
2009). Based on these latter findings, we expected a “rela-
tive” OM effect (stronger underestimation for subtraction
than for addition) in this study. The hypothesized enhanc-
ing effect of parietal HD-tDCS could therefore manifest
itself in a reduction of the underestimation of results.

To summarize, we investigated the causal contrib-
ution of the left and right parietal cortex by means of
HD-tDCS in nonsymbolic approximate mental addition
and subtraction. We expected an increase in arithmetic
performance during parietal anodal HD-tDCS. This study
thus evaluated for the first time a possible enhancing
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effect of noninvasive brain stimulation for nonsymbolic
approximate arithmetic, which has—despite its assumed
role as basis for higher numerical cognition—not yet been
assessed.

METHODS

Participants

Eighteen healthy participants (8 women, 10 men) took
part in this study (mean age = 24.5 years, range = 22–30
years). The number of participants was in the same range
than previous brain stimulation studies about numerical
cognition (Brezis et al., 2016; Hauser et al., 2013). Partic-
ipants either received course credit or monetary com-
pensation for their participation. Participants gave written
informed consent before the study, and the study was ap-
proved by the ethics committee of the University of Bern.
All participants confirmed that they had no history of psy-
chiatric and neuronal disorder, did not take any drugs or

abused alcohol, and did not suffer from dyscalculia or any
other impairment in number processing.

Design

We used a single-blind sham-controlled within-participant
design whereby each participant received left parietal,
right parietal, and sham stimulation during nonsymbolic
approximate addition and subtraction.

Stimuli and Task Procedure

Stimuli were selected and created as in Knops et al.
(2009; Experiment 2). Nine different types of solution-
matched addition and subtraction problems were used
(Table 1). For each problem, eight deviant results were
created in addition to the correct result, ranging from
half of the correct result to the double of the correct re-
sult, linearly spaced on a logarithmic scale. From the

Table 1. Operands and Proposed Results for the 18 Arithmetic Problems

Operands Proposed Results (Not Jittered)

Op1 Op2 1/2 1/1.7 1/1.4 1/1.2 1/1 1.2/1 1.4/1 1.7/1 2/1

Addition

14 5 10 11 13 16 19 23 27 32 38

14 7 11 12 15 18 21 25 30 35 42

14 11 13 15 18 21 25 30 35 42 50

28 7 18 21 25 29 35 42 49 59 70

28 13 21 24 29 34 41 49 58 69 82

28 21 25 29 35 41 49 58 69 82 98

56 13 35 41 49 58 69 82 98 116 138

56 28 42 50 59 71 84 100 119 141 168

56 42 49 58 69 82 98 117 139 165 196

Subtraction

32 13 10 11 13 16 19 23 27 32 38

32 11 11 12 15 18 21 25 30 35 42

32 7 13 15 18 21 25 30 35 42 50

64 29 18 21 25 29 35 42 49 59 70

64 23 21 24 29 34 41 49 58 69 82

64 15 25 29 35 41 49 58 69 82 98

128 59 35 41 49 58 69 82 98 116 138

128 44 42 50 59 71 84 100 119 141 168

128 30 49 58 69 82 98 117 139 165 196

The actual problems presented to the participants were jittered by a small random amount, so that the correct outcome was never presented. Only
seven of the nine possible results were selected, and the 1/1 result was never the middle of the range of the proposed solutions. Boldface highlights
the correct result.
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resulting nine proposed solutions, only seven were se-
lected for each trial and presented in a circular spatial ar-
rangement (see Figure 1). In half of the trials, the lower
range of proposed results was chosen (from 1/2 to 1.4/1),
and in the other half, the upper range of proposed results
was chosen (from 1/1.4 to 2/1) so that participants could
not use a strategy of always selecting the middle of the
proposed solutions. Each of the 18 different problems
was presented 14 times, resulting in a total of 252 trials.
To prevent participants from learning, the problems and
their proposed solutions were jittered differently for each
trial, so that each of the 14 repetitions of the same prob-
lem represented a unique trial. The first operand was jit-
tered by a random value from 0 to ±2, and the second
operand by −1 times the jitter of the first operand, so
that the correct result remained unchanged by the jitter
of the operands. Moreover, all of the seven proposed
results were jittered by the same amount (fixed for a
given trial). For each trial, the jitter for the proposed results
was selected from a range of ± half of the numerical interval
between the correct result and the first deviant above or
below it in a logarithmic space (proposed result × 2(r/i),
where r was a random number between −0.5 and +0.5
and i was a random number between 0 and 4; see Knops
et al., 2009). Thus, themaximum value of the jitter increased
as a function of the result size. As in Knops et al. (2009), the
jitter for the proposed results was never 0, so that the cor-
rect solution would never appear as a response alternative.
Stimuli were created using a custom MATLAB (The

MathWorks, Inc.) script. For each array, an image file
was created with a black circle of 730 × 730 pixels con-
taining the specified amount of white smaller dots. As in
previous studies (Knops et al., 2009, 2014), stimuli were
matched for total occupied area of the white dots so that
participants could not rely on this visual feature for nu-
merosity estimation. Positions of the white dots were ran-
domly drawn with the restriction that they do not overlap
or collapse with the contour of the outer circle.

Participants were instructed to estimate as precisely
and quickly as possible the outcome of an arithmetic ad-
dition or subtraction problem. Participants were in-
formed that they are not supposed to count the dots
but rather intuitively select the solution that appears to
be most correct. A trial started with the information
about the arithmetic operation. The word “addition” or
“subtraction” appeared for 1400 msec at the center of
the screen (black on a white background). After a short
blank screen (150 msec), the first operand appeared at
the center of the screen for 1500 msec, immediately
followed by the second operand that was also presented
for 1500 msec. After another short blank (100 msec),
seven possible solutions appeared on the screen in a cir-
cular arrangement (see Figure 1). At 1520 msec after the
onset of the solution screen, the mouse cursor appeared
at the center of the screen, and participants clicked at
one of the seven proposed solutions. The delay between
solution onset and mouse cursor onset was introduced
so that participants view all solutions before they can
make a selection. The next trial started 1250 msec after
response. An example for a trial (without the blank
screens) is illustrated in Figure 1. The operands and
the seven proposed solutions had a size of 7° × 7° of
visual angle.

Twelve practice trials were presented at the beginning
of the experiment to familiarize participants with the
task. The 252 experimental trials were divided into six
blocks containing 42 trials, separated by a short break.
Three blocks were presented during stimulation (online),
and the remaining three blocks were presented after
stimulation (offline). Experimental trials were presented
in random order with the restriction that each of the 18
problems was presented seven times, with the 1/1 pro-
posed result presented once at each of the seven possible
positions within each half of the experiment. Three differ-
ent sets of stimuli were created for the three experimental
sessions. In Set 2, stimuli from Set 1 were taken but ro-
tated by 90°, and in Set 3 by 180°, so that participants
did not encounter identical visual stimuli during the three
experimental sessions. The three sets were administered
in a counterbalanced order across participants. Stimuli
were presented using PsychoPy (Peirce, 2007).

High-definition tDCS

A one-anode, four-cathode electrode setting was used (4 ×
1). HD-tDCS was administered using a battery-driven,
constant-current generator with an HD-tDCS distributor
(DC-Stimulator MC, neuroConn GmbH). All electrodes
had a size of 1 cm in diameter and were attached to ordi-
nary EEG-caps (Easycap GmbH). Participants’ hair under
the electrode casings were moved aside to expose the scalp
skin, and a conductive gel was injected into the electrode
casings (Signa Gel, Parker Laboratories).

The anodal stimulation was set to 2 mA, and consequently,
the cathodal stimulation was 0.5 mA per electrode. Previous

Figure 1. Example of a trial (addition, 14 + 11 = 25; jitter for
operands = 0, proposed solutions jittered by −2).
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studies also used 2 mA to modulate parietal activity during
mental arithmetic (Houser, Thoma, Fonseca, O’Conner, &
Stanton, 2015; Clemens, Jung, Zvyagintsev, Domahs, &
Willmes, 2013), and the agreeableness of a 2-mA anodal
stimulation with a 4× 1 electrode setting has been confirmed
(Nikolin, Loo, Bai, Dokos, & Martin, 2015; Kuo et al., 2013).
Each participant underwent an anodal left IPS, anodal right
IPS, and one sham HD-tDCS session in counterbalanced
order and with 1 week in between the sessions.

To stimulate the left and right IPS, the anodal elec-
trode was placed over P3 and P4 of the international
EEG 10–20 system (Klein et al., 2013; Klein, Nuerk,
Wood, Knops, & Willmes, 2009). The optimal electrodes
montage was determined by means of software (“HD-
Explore,” “HD-Target”) that simulate the current flow
into the brain depending on the given parameters (Soterix
Medical). In a first step, electrode positions were deter-
mined by the software for selective maximal stimulation
of BA 7, and then the proposed positions were manually
modified in a way that lead to the highest selective stim-
ulation of the IPS (MNI coordinates 40,−64, 48 according
to Preuschhof, Schubert, Villringer, & Heekeren, 2010).
These were the positions F5, F2, and PO4 for left parietal
stimulation and F6, F1, and PO3 for right parietal stimula-
tion. This stimulation configuration resulted in an electric
field over the target region (IPS) of 0.32 V/m, with lower
electric field sizes in the surrounding areas (see Figure 2).
Previous studies reported tDCS effects for field sizes typ-
ically in the range of 0.3–0.4 V/m (Bikson et al., 2016), and
some authors implied 0.2 V/m as threshold for neuronal
interferences (Zito et al., 2015). We specifically assessed
the electric field sizes in several other areas outside IPS, con-
firming that values were below 0.2 V/m (e.g., V1: < 0.12 V/m,
visual association areas BA 18, BA 19: < 0.17 V/m, medial
parietal BA 31: < 0.13).

At the beginning of the stimulation, current was in-
creased slowly during the first 30 sec until the stimulation
threshold of 2 mA was reached (ramp-up). After 25 min
of constant direct current, current was decreased to 0 mA
during 30 sec (ramp-down). In the sham condition, cur-
rent was ramped-up during the first 30 sec as well, until
the stimulation threshold was reached. After 30 sec of full
stimulation, the current was ramped down to 0 mA during
30 sec and stayed off until the end of the session. This pro-
cedure ensured that, in both real and sham stimulation,
participants experienced the initial tickling sensation of
the current and made both conditions indistinguishable
(as confirmed by questionnaires, see Results section).
For the sham condition, the left parietal stimulation setting
was used for half of participants, and the right parietal
stimulation setting was used for the other half. Impe-
dance values were examined during the stimulation
and were all below 10 kΩ for the duration of the entire
session (typically around 4–7 kΩ).

Participants started with the task immediately after the
ramp-up. tDCS is not effective at the beginning of stimu-
lation (Nitsche et al., 2008; Nitsche & Paulus, 2000), and

several minutes of delay between stimulation onset and
onset of critical task is employed in most studies (e.g.,
Artemenko et al., 2015; Martin, Liu, Alonzo, Green, &
Loo, 2014; Klein et al., 2013). We therefore considered
the first block (42 trials) as “warm-up” block that was
not included in data analysis. It took about 6 min from
stimulation onset until the critical trials started.
At the end of each session, participants were asked to in-

dicate on a paper–pencil questionnaire how comfortable/
uncomfortable the stimulation appeared to them (ranging
from −3 = very uncomfortable to 3 = very comfortable)
and how much pain they perceived during the stimulation
(ranging from 0 = no pain to 10 = very strong pain).
Moreover, after the last session, participants were informed
that real brain stimulation was applied only in two out of
the three sessions and that a control stimulation (sham)
was applied in one of the sessions. They were asked to
guess which of the three sessions was the sham condition
and to indicate their confidence in this guess (ranging
from 1 = very unsure to 5 = very sure).

Data Analysis

It has been repeatedly shown that mental calculation with
nonsymbolic numerosities follows Weber’s law (Knops
et al., 2009; McCrink et al., 2007; Barth, Kanwisher, &
Spelke, 2003). This means that both the mean number
chosen by the participants and the variability of the chosen
numbers increase with increasing result size. We therefore

Figure 2. The top panel shows the electrode placement for right
parietal anodal HD-tDCS. The lower panel shows the result of the
computer simulation for this setting for the coronal (left, right), sagittal
(front, back), and axial (left, right) slice.
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followed Knops et al.’s (2009) suggestion and used the
logarithms of the numbers involved. Specifically, for each
trial, the deviation between the log of the chosen and the
log of the correct result was computed and served as de-
pendent variable (Knops et al., 2009). Negative values in-
dicate underestimation, and positive values indicate
overestimation of the correct result.

Preliminary Analyses

Two preliminary analyses were conducted before the main
analysis of HD-tDCS effects. First, participants’ task compli-
ance was assessed. To this end, we computed for each par-
ticipant and session a Pearson correlation between the log
correct solution and the log solution selected by the partic-
ipants (see Brezis et al., 2016). Second, to assess potential
training effects due to the repetition of the task, we com-
puted a repeated-measures ANOVA with Session (1, 2, 3)
as within-subject variable on the log deviation values
(averaged across all trials per participant and session).

Main Analysis

In the main analysis, the influence of HD-tDCS on approx-
imate arithmetic was tested by means of a repeated-
measures ANOVA with the variables HD-tDCS (left, right,
sham), Operation (addition, subtraction), and Phase (on-
line, offline). Phase was included in the analysis because
Brezis et al. (2016) found selective effects of tDCS on ap-
proximate arithmetic only in the online (vs. offline) phase
of stimulation. Pairwise comparisons (simple main effect
t tests) were complemented by Bayes factors (BFs). Spe-
cifically, BFs10 are reported to quantify the evidence of data
for H1. According to conventions, a BF10 > 3 can be inter-
preted as evidence for H1, whereas a BF10 < 1/3 can be
interpreted as evidence for H0. Values between 1/3 and 3
provide inconclusive evidence for H1 or H0. Because we
expected improved performance under stimulation, H1
was defined as “log deviation during stimulation < log
deviation during sham” when computing BFs.
Statistical analyses were conducted using the free

software JAMOVI (JAMOVI Project, 2017) and JASP using
default priors for BFs (JASP Team, 2016).

RESULTS

Data that deviated more than ± 3 SD from the individual
log deviation means were excluded from analysis, as well
as very long responses (+ 10 sec). This procedure led to
the exclusion of 1.4% of responses.

Preliminary Analysis

Task Compliance

The Pearson correlation between the log “correct” solu-
tion and the log “selected” solution was highly significant

for all participants in all three session (all ps < .001), with
correlations ranging from .78 to .94 (M = .87). This con-
firms that participants’ responses were not at random
and that all participants complied to the task in all three
sessions.

Training Effect

The repeated-measures ANOVA with Session (1, 2, 3) as
within-subject variable on the log deviation values re-
vealed neither a main effect of Session, F(2, 34) = 0.30,
p = .742, ηp

2 = .02, nor a linear contrast effect of Session,
F(1, 17) = 0.60, p = .450, ηp

2 = .03. This shows that par-
ticipants did not increase their approximate arithmetic
performance as a function of task repetition. We there-
fore did not consider the variable session in all further
analyses.

Main Analysis

The mean log deviation values for left, right, and sham
HD-tDCS for addition and subtraction problems in the
online and offline phase of stimulation are shown in
Figure 3. The repeated-measures ANOVAwith the variables
HD-tDCS (left parietal, right parietal, sham), Operation
(addition, subtraction), and Phase (online, offline) re-
vealed a significant main effect of Operation, F(1, 17) =
61.62, p < .001, ηp

2 = .78, and a by trend significant three-
way interaction, F(1, 17) = 2.98, p = .064, ηp

2 = .15 (see
Table 2 for complete statistical report). The main effect of
Operation indicated that deviation values were larger for
subtraction (M = −0.13, SEM = 0.01) than for addition
problems (M = −0.04, SEM = 0.01). The fact that solu-
tions were generally underestimated and that the under-
estimation was larger for subtraction is in line with the
expected OM effect.

The results showed that there was no overall effect of
HD-tDCS on approximate arithmetic. However, the by
trend significant three-way interaction suggests that there
might be a more specific effect of HD-tDCS, depending
on operation and phase of stimulation. We therefore fur-
ther disentangled the three-way interaction by com-
puting separate repeated-measures ANOVAs with the
variables HD-tDCS (left parietal, right parietal, sham)
and Operation (addition, subtraction) for the online
and offline phase of the stimulation.

For the online phase, the ANOVA revealed a significant
main effect of Operation, F(1, 17) = 61.62, p< .001, ηp

2 =
.78, but no main effect of Stimulation, F(2, 34) = 0.47,
p = .630, ηp

2 = .03. The main effect showed again that
deviation values were larger for subtraction (M =
−0.14, SEM = 0.01) than for addition problems (M =
−0.04, SEM = 0.01). Most importantly, the two variables
interacted, F(1, 17) = 3.33, p = .048, ηp

2 = .16. We there-
fore ran separate repeated-measures ANOVAs with the
variable HD-tDCS (left parietal, right parietal, sham) for
addition and subtraction. There was no main effect of
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HD-tDCS for addition problems, F(2, 34) = 0.92, p =
.408, ηp

2 = .05, but there was a significant main effect
of HD-tDCS for subtraction problems, F(2, 34) = 3.66,
p = .036, ηp

2 = .18. Pairwise comparisons (paired t tests)
revealed that the underestimationwas significantly reduced
during left parietal versus sham stimulation, t(17) = 2.31,
p = .034, BFs10 = 3.82 (MLeft HD-tDCS = −0.13, SEM =
0.01; MSham HD-tDCS = −0.15, SEM = 0.01) and also dur-
ing right parietal versus sham stimulation, t(17) = 2.12,
p = .049, BFs10 = 2.85 (MRight HD-tDCS = −0.13, SEM =
0.01; MSham HD-tDCS = −0.15, SEM = 0.01). There was no
difference between left and right HD-tDCS, t(17) = 0.76, p
= .461, BFs10 = 0.31. Thus, the data provide (partial) evi-
dence in favor of an increased performance during HD-
tDCS (H1) and also evidence that there is no difference
between left and right HD-tDCS (H0). Given the latter,
we averaged data from the left and right parietal stimula-
tion condition and compared it against sham to assess the
combined effect of stimulation (left and right). This

comparison revealed a significant combined effect of HD-
tDCS for subtraction problems, t(17) = −2.39, p = .028,
BF10 = 4.42 (MHD-tDCS = −0.13, SEM = 0.01; Msham =
−0.15, SEM = 0.01).
For the offline phase, the ANOVA revealed a significant

main effect of Operation, F(1, 17) = 51.71, p < .001, ηp
2 =

.75, but no main effect of HD-tDCS, F(1, 17) = 2.06,
p= .170, ηp

2 = .12, and no interaction, F(1, 17) = 1.49,
p = .239, ηp

2 = .08. The main effect of Operation showed
that, also in the offline-phase, deviation values were larger
for subtraction (M = −0.13, SEM = 0.01) than for addi-
tion problems (M = −0.03, SEM = 0.01).
The results from the main analysis suggest that parietal

HD-tDCS increased performance in approximate mental
arithmetic (by reducing the underestimation) selectively
for mental subtraction during the online phase of stimu-
lation (see Figure 3). This conclusion is further evaluated
by additional analyses.

Additional Analyses

RTs

To assess whether the effect of HD-tDCS on approximate
arithmetic performance during stimulation was associated
with a change in speed–accuracy trade-off, we analyzed
(median) RTs with the same procedure as for accuracy.
The results from the overall analysis is shown in Table 3.
Participants responded faster for subtraction than for addi-
tion problems (MSubtraction = 1289, SEM= 174; MAddition =
1530, SEM = 222), and also faster in the offline than in the
online phase of the experiment (MOffline = 1319, SEM =
170; MOnline = 1499, SEM = 228). Because there was no

Figure 3. Mean log deviation values for all conditions. Note that, for the main analysis, values from the left and right side of stimulation were
averaged and tested against sham. The asterisk indicates a significant difference between parietal and sham HD-tDCS for subtraction in the online
phase of stimulation. Error bars depict ± 1 SEM.

Table 2. Results of the ANOVA (Main Analysis)

Effect F p ηp
2

HD-tDCS 0.18 .839 .01

Operation (O) 61.62 <.001 .78

Phase (P) 0.97 .338 .05

HD-tDCS × O 2.39 .107 .12

O × P 0.01 .931 <.01

HD-tDCS × P 1.63 .210 .09

HD-tDCS × O × P 2.98 .064 .15
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interaction between phase and HD-tDCS, the latter effect
simply reflects a within-session practice effect in response
speed that is not related to stimulation.
As for accuracy, we further decomposed the three-way

interaction by computing separate repeated-measures
ANOVAs with the variables HD-tDCS (left parietal, right
parietal, sham) and operation (addition, subtraction) for
the online and offline phase of the stimulation. There was
no main effect of HD-tDCS or interaction between oper-
ation and HD-tDCS, neither in the online nor in the off-
line phase of stimulation (all Fs < 1.16). These results
show that the effect of HD-tDCS on approximate arith-
metic performance was not due to a stimulation-induced
change in speed–accuracy trade-off.

Operand Size

We used solution-matched problems in this study (e.g.,
14 + 11 = 25; 32 − 7 = 25). Thus, the mean magnitude
of the solution was the same for addition and subtrac-
tion problems. As a consequence of the solution-match
approach, the mean magnitude of operands was smaller
for addition than for subtraction problems (see Table 1).
A possible interpretation of our results would therefore
be that HD-tDCS only improved performance for larger
operands (i.e., when more dots needed to be processed).
Thus, it is not clear whether the selective effect of HD-
tDCS for subtraction is truly related to the mental oper-
ation (subtraction) or rather due to the operand-size
confound (larger operands). If the latter was the case,
an improved performance under HD-tDCS would be ex-
pected for larger operands for both addition and subtrac-
tion. To address this issue, we computed a hierarchical
linear mixed effects model for the log deviation values
from the online phase of stimulation using the mean
log operand size of each problem as continuous predic-
tor at the trial level, along with HD-tDCS and operation
and all interactions between the three variables as fixed
effects. To account for the repeated measurement, we in-
cluded a random intercept for participants and a random
slope for HD-tDCS by participants. To account for other

problem-specific characteristics, we also added a random
intercept for arithmetic problem (1–18). For a straight-
forward interpretation of coefficients, sum coding was ap-
plied for operation (addition = 1, subtraction =−1), and
operand size was mean-centered. Moreover, the con-
trasts for HD-tDCS were set in a way that the fixed effect
coefficient represents the difference between sham and
parietal stimulation (sham = 1, left parietal = −0.5, right
parietal = −0.5). Consequently, the critical interaction
term between HD-tDCS and operation size would reflect
a systematic increase in the effect of parietal HD-tDCS for
increasing operands. This analysis was performed using
the lme4 package in R (Bates, Mächler, Bolker, &
Walker, 2015).

The analysis revealed a significant effect of operation,
estimate = 0.0789, SEM = 0.0165, t = 4.77, p < .001.
Most importantly, the interaction term between HD-
tDCS and operand size was not significant, estimate =
−0.0155, SEM = 0.0152, t = −1.02, p = .307. Thus,
the effect of parietal HD-tDCS did not increase as a function
of operand size. Instead, the interaction term between
HD-tDCS and operation was significant, estimate =
0.0284, SEM = 0.0090, t = 3.17, p = .002, confirming the
results from the main analysis. This interaction was inde-
pendent of operation size, as indicated by the absence of
a three-way-interaction, estimate = 0.0109, SEM= 0.0304,
t=0.36, p= .720. All other effects were also not significant
(all ps > .05).

As shown in Figure 4, parietal HD-tDCS improved the
estimates for subtraction equally for the different operand
sizes. Moreover, inspecting the middle range of operand
size that was used for both addition and subtraction re-
veals a different pattern for addition and subtraction. This
analysis therefore rules out the possible explanation that
operand size was responsible for the selective effect of
tDCS for subtraction. Thus, the effect of HD-tDCS that
we found for subtraction in the main analysis cannot be
attributed to the larger operands but rather reflects some
operation-specific modulation.

Operational Momentum

The general trend for underestimation of results sizes
was expected (see Introduction) and can be traced back
to a general tendency to underestimate the number of
perceived dots in visual displays (e.g., Izard & Dehaene,
2008; Krueger, 1984), possibly as a result of the logarith-
mically compressed representation of non-symbolic mag-
nitudes (differences between adjacent numbers decrease
with increasing magnitudes; e.g., Dehaene, 2003). The
finding that the underestimation was larger for sub-
traction than for addition is in line with the definition
of OM for nonsymbolic approximate arithmetic (Knops
et al., 2009, 2014). To assess more explicitly a possible
effect of HD-tDCS on the OM effect, we computed a
“relative OM effect,” quantified as the difference between
addition and subtraction (log deviation addition − log

Table 3. Results of the Global ANOVA on RTs

Effect F p ηp
2

HD-tDCS 0.61 .550 .04

Operation (O) 19.26 <.001 .53

Phase (P) 5.82 .027 .26

HD-tDCS × O 0.20 .819 .01

O × P 0.01 .980 <.01

HD-tDCS × P 0.49 .618 .03

HD-tDCS × O × P 2.40 .106 .12

Hartmann et al. 869



deviation subtraction; see Knops et al., 2009). We termed
it “relative OM” because positive values reflect underesti-
mation of subtraction “relative” to addition results, inde-
pendent of the absolute deviation values (i.e., ignoring
the general trend for underestimation). A repeated-
measures ANOVA with the variable HD-tDCS (left parie-
tal, right parietal, sham) was computed for the relative
OM values during the online phase of stimulation. There
was a significant main effect of HD-tDCS, F(2, 34) =
3.33, p = .048, ηp

2 = .16. Pairwise comparison revealed
a just significant differences between left parietal HD-
tDCS and sham ( p = .050, BF10 = 1.44) and also a
close-to-significant difference between right parietal HD-
tDCS and sham ( p = .051, BF10 = 1.43). The combined
effect of stimulation (MLeft and right parietal vs. sham) was sig-
nificant, t(17) = 2.3, p = .034, BF10 = 1.94. As shown in
Figure 5, the relative OM is lower during left and right
parietal when compared with sham stimulation, but the
evidence is not conclusive.

Given that all results tended to be underestimated, we
would not expect an effect of HD-tDCS on the relative
OM when stimulation reduces the underestimation for
addition and subtraction to the same extent (log devia-
tion addition–log deviation subtraction would still be
the same). The effect of HD-tDCS on the relative OM
might therefore simply reflect the fact that HD-tDCS only
reduced the underestimation for subtraction and had no
effect on addition.

Stimulation-related Questionnaires (Comfort/
Discomfort, Pain, Recognizing Sham)

A repeated-measures ANOVA with the variable HD-tDCS
(left parietal, right parietal, sham) revealed no difference

in comfort/discomfort across HD-tDCS conditions, F(2,
34) = 0.69, p = .507, ηp

2 = .04 (MLeft = −0.11, SEM =
0.17; MRight = −0.22, SEM = 0.17; MSham = 0.00, SEM =
0.17). Similarly, a repeated-measures ANOVA with the
variable HD-tDCS (left parietal, right parietal, sham) re-
vealed no significant difference in perceived pain across
HD-tDCS conditions, F(2, 34) = 2.71, p = .093, ηp

2 =
.14, and pain ratings were generally low (MLeft = 1.17,
SEM = 0.23; MRight = 1.11, SEM = 0.23; MSham = 0.72,
SEM = 0.23).

Figure 5. The relative OM effect (log deviation addition–log deviation
subtraction) during left and right parietal and sham HD-tDCS. Error
bars depict ± 1 SEM.

Figure 4. The effect of
HD-tDCS as a function of the
log operand sizes of the
arithmetic problems, plotted
separately for addition and
subtraction. Area around the
lines depict 95% confidence
interval.
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When asked to guess which of the three sessions was
sham stimulation, 6 out of 18 participants correctly
guessed the sham session. This proportion (6/18 =
0.33) is equal to the chance level (1/3 = 0.33). More-
over, none of the participants who correctly indicated
the sham session reported strong confidence. In fact,
there was no difference in confidence ratings between
participants who correctly indicated the sham session
and those who did not (Mcorrect = 2.67, SEM = 0.49;
Mincorrect = 2.50, SEM = 0.31). These analyses confirm
the tolerability of the stimulation setting used in this
study and that it was truly a single-blind sham-controlled
design.

DISCUSSION

The aim of this study was to investigate whether ap-
proximate nonsymbolic mental arithmetic could be
improved by means of parietal anodal HD-tDCS. We
found that accuracy of subtraction results increased dur-
ing parietal (vs. sham) HD-tDCS. We showed that the in-
crease in accuracy cannot be explained by a change in
speed–accuracy trade-off. Moreover, the fact that the im-
provement in accuracy was specific for subtraction rules
out that parietal HD-tDCS leads to a domain-unspecific
increase in performance, for example, by attentional en-
hancement (cf. Brezis et al., 2016; Roy, Sparing, Fink, &
Hesse, 2015). This study therefore extends previous
work that found an enhancing effect of parietal tDCS
on number processing and symbolic arithmetic (Hauser
et al., 2013, 2016; Artemenko et al., 2015; Grabner et al.,
2015). Specifically, our study provides first evidence for a
modulation of approximate (subtraction) arithmetic by
means of HD-tDCS and provides further support for a
causal involvement of the IPS in approximate mental
arithmetic (Brezis et al., 2016).
Anodal tDCS is assumed to depolarize the stimulated

neurons’ membrane potential, resulting in lower firing
threshold (Nitsche & Paulus, 2000). Brezis et al. (2016)
proposed that lower thresholds increase the neuronal re-
sponse function of the units in the parietal network.
Specifically, the increase in neuronal response elevates
the population signal-to-noise level of numerosity sen-
sitive neurons, resulting in increased tuning curves and
finally in enhanced sensitivity of the network and im-
proved precision of numerosity perception (Brezis
et al., 2016). Such an explanation might also apply for
the present results. However, if the increase in arithmetic
performance was based on a more precise estimate of in-
put numerosity (numerosity of the operands and of the
proposed results), then a similar improvement in addi-
tion and subtraction could have been expected, which
was not the case in this study. It is therefore likely that
the modulation in parietal activity due to anodal HD-
tDCS influenced the approximate arithmetic computa-
tion process, at least for subtraction.

The selective effect of parietal HD-tDCS for subtraction
was not expected. It is a common finding in mental arith-
metic that subtraction is more difficult than addition
(Campbell, 2005; Ashcraft, 1992). In line with this, there
was a greater deviation from the true solution for subtrac-
tion (vs. addition) problems across all levels of problem
sizes in this study. A possible explanation for the selective
effect of parietal HD-tDCS for subtraction could be that
stimulation only improved performance for more difficult
arithmetic problems. Particularly, one could argue that
there was not enough room for improvement for addi-
tion because participants’ performance was already quite
accurate. This is in line with studies showing enhanced
performance during tDCS for more difficult tasks or for
low performing participants, both providing room for im-
provements (e.g., Arciniega, Gözenman, Jones, Stephens,
& Berryhill, 2018; Gill, Shah-Basak, & Hamilton, 2015;
Tseng et al., 2012). However, this explanation is not en-
tirely satisfying because medium and large addition
problems also yielded reliable deviations from the true
results (see Figure 4) and thus provided room for poten-
tial improvements.

Besides interpreting the results as selective enhance-
ment of the more difficult subtraction problems, we want
to discuss an alternative (or complementary) interpreta-
tion of the results in the sense that parietal HD-tDCS
modulated the OM effect. In general, the OM effect is a
systematic cognitive bias resulting in overestimation of
addition and underestimation of subtraction results
(McCrink et al., 2007), but based on previous research
relying on a similar task, we expected a general tendency
for underestimation in this study and defined the OM ef-
fect as “relative” larger underestimation of subtraction
(vs. addition) results (Knops et al., 2009, 2014). Even
though we only found inconclusive evidence that parietal
HD-tDCS reduced the relative OM effect, it is still pos-
sible that the OM effect played a role for the selective
effect of HD-tDCS on subtraction: In the case of subtrac-
tion, an increase in estimates is equal to a decrease in
underestimation and thus to an increase in accuracy.
However, in light of the general trend for underestima-
tion in this study, the situation is more complex for addi-
tion: A reduction in estimated results for addition was in
contrast to an increase in accuracy, and these two pro-
cesses may have counteracted each other. However, in
other situations (e.g., when operating with smaller mag-
nitudes or symbolic numbers), it is more likely that addi-
tion results are overestimated (Knops et al., 2009;
McCrink et al., 2007), and therefore, a reduction in esti-
mated results may be generally advantageous. It is pos-
sible that stimulating the IPS might trigger a corrective
mechanism, thus leading to a reduction in OM effect
(i.e., an increase in estimates for subtraction and a de-
crease in estimates for addition). Although this inter-
pretation is speculative at this point in time, we think
that it complements the interpretation of the pattern of
results for subtraction and addition. A possible modulating
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effect of parietal HD-tDCS on the OM during mental arith-
metic should be addressed in future studies. Moreover, it
would also be interesting to compare the OM effect and its
modulation by parietal brain stimulation to the represen-
tational momentum effect. The representational momen-
tum effect reflects a “forward bias” in the perception of the
vanishing position of a moving object along its motion
trajectory (Freyd & Finke, 1984). Similar to the physical
space, such a forward bias has also been hypothesized
for movements in the representational number space
(McCrink et al., 2007), leading to the classical OM pattern
(overestimation of addition, underestimation of subtrac-
tion; see Introduction). The parietal cortex does also play
an important role for the processing of spatial information,
and overlapping parietal networks for the processing of
spatial and numerical information are likely to be the neu-
ronal basis for “spatial” biases in the processing of num-
bers (e.g., Fischer & Shaki, 2014; Göbel, Calabria, Farnè,
& Rossetti, 2006; Hubbard, Piazza, Pinel, & Dehaene,
2005). If both the representational momentum and OM
effect rely on a common spatial metric (for a discussion,
see Hubbard, 2014; Knops et al., 2009), parietal stim-
ulation should lead to similar modulations of these two
biases.

In this study, there was no difference between left and
right parietal stimulation. Our results therefore do not
support earlier claims of a predominant role of either
the right parietal cortex (Semenza et al., 2017; Brezis
et al., 2016; Li et al., 2015; Dormal et al., 2012) or the left
parietal cortex (Hauser et al., 2013; Dormal et al., 2008;
Andres et al., 2005) for the processing of numerosity and
arithmetic. Rather, our results are in line with studies that
reported left and right parietal contributions in arithmetic
(Artemenko et al., 2018; Semenza et al., 2017; Salillas
et al., 2012; Andres et al., 2011; Dehaene, Piazza, Pinel,
& Cohen, 2003; Dehaene & Cohen, 1997). For example,
Andres et al. (2011) found bilateral activation of the IPS
during mental subtraction in fMRI and showed that TMS
over either the left or the right IPS impairs arithmetic
performance. It requires more brain stimulation studies
using the same stimulation settings on a variety of arith-
metic tasks (symbolic, nonsymbolic, different operations)
until final conclusions regarding the specific involvement
of the left and right parietal cortex can be drawn. More-
over, future studies could also compare the effect of
bilateral stimulation (left and right anodal stimulation) to
that of left and right unilateral stimulation (see Hauser
et al., 2013; Klein et al., 2013; Andres et al., 2005).

Another interesting aspect of our results is that the
effect of HD-tDCS was limited to the online phase of
stimulation. This corresponds to the previous study on
symbolic approximate arithmetic where an increase in ac-
curacy of numerical estimates was only found during the
online delivery of tDCS (Brezis et al., 2016). The timeline
of the effect of tDCS depends on stimulation parameters
(e.g., intensity, location) and also on the task (Stagg et al.,
2011; Nitsche & Paulus, 2000). Aftereffects of tDCS (both

conventional and HD) are typically reported for 30 min or
even longer at the level of motor cortex excitability (e.g.,
Kuo et al., 2013) but have not yet been systematically in-
vestigated for cognitive functions. In some cognitive stud-
ies, only offline performance was analyzed (e.g., Hauser
et al., 2013) or the cognitive task outlasted the stimulation
phase, whereby online versus offline phase was not con-
sidered in the analysis (e.g., Savic, Cazzoli, Müri, & Meier,
2017; Savic, Müri, & Meier, 2017; Artemenko et al., 2015).
Our own study and Brezis et al.’s (2016) study point to-
ward an important role of taking the stimulation phase
(online vs. offline) more thoroughly into account (see
also Martin et al., 2014).

Limitations and Outlook

Numerosity of nonsymbolic stimuli is correlated with var-
ious visual features. For example, when numerosity of
equally sized stimuli changes, the total occupied area
changes, along with convex hull and density. It is there-
fore impossible to dissociate numerosity from all other
continuous visual magnitude features (Salti, Katzin,
Katzin, Leibovich, & Henik, 2017). The stimuli used for
this study were controlled for total occupied area, so that
the perception of numerosity was based on the number
of dots rather than the salient spatial information of the
total occupied area. As a consequence, numerosity was
confounded with other visual features such as dot size.
We decided to use total occupied area-controlled stimuli
because this has been done in most previous nonsym-
bolic arithmetic studies (e.g., Knops et al., 2009, 2014).
Moreover, studies that systematically assessed the effect
of different visual features on approximate number process-
ing concluded that numerosity (i.e., the number of dots) is
the primary feature that most participants rely on (Park,
DeWind, Woldorff, & Brannon, 2016; DeWind, Adams,
Platt, & Brannon, 2015; but see also Gebuis & Reynvoet,
2012a, 2012c). Similarly, in a nonsymbolic numerosity esti-
mation task, a high correlation (r= .89)was found between
numerosity estimates of dots with a constant size (and thus
area covered by the array increased with increasing numer-
osity) and numerosity estimates of dots with a constant
occupied area across all numerosities (and thus dot size de-
creased with increasing numerosity; Reinert, Hartmann,
Huber, & Moeller, 2019). We therefore argue that the con-
found of other visual features did not play a crucial role for
arithmetic performance in this study (see also Knops et al.,
2009). Nevertheless, we acknowledge that more sophisti-
cated methods have been proposed to generate nonsym-
bolic number stimuli that allow for better control of visual
features that could be used in future studies (Salti et al.,
2017; Gebuis & Reynvoet, 2012b).
Additional research is needed to further assess the pos-

sibilities and limits of enhancing exact and approximate
arithmetic by means of noninvasive brain stimulation.
Future studies could, for example, combine brain stimu-
lation with arithmetic learning and/or assess whether
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(stimulation-induced) increased performance in approxi-
mate arithmetic could transfer to exact arithmetic or vice
versa (cf. Popescu et al., 2016; Snowball et al., 2013;
Cohen Kadosh et al., 2010). Such studies will have impli-
cations, especially for people suffering from dyscalculia
(Iuculano & Cohen Kadosh, 2014; Cohen Kadosh et al.,
2010).
This study provided further proof of the feasibility and

agreeableness of a 4 × 1 HD-tDCS setting with 2 mA.
This setting overcomes limitations of conventional tDCS
by stimulating more focal (Datta et al., 2009) and par-
ticularly by removing inhibitory effects of the return
electrode, which is often placed over frontal positions
(Schroeder et al., 2017). Given that mental arithmetic re-
lies on a frontoparietal network (e.g., Artemenko et al.,
2018; Arsalidou & Taylor, 2011), it is crucial to avoid fron-
tal interferences when studying the role of parietal net-
works. The increased focality of HD-tDCS might allow
to test specific contributions of different parts of the pa-
rietal network (and beyond) for numerical cognition in
future studies (e.g., horizontal vs. ventral IPS, angular gy-
rus, superior parietal lobe, supramarginal gyrus; see
Montefinese et al., 2017; Semenza et al., 2017; Salillas &
Semenza, 2015; Dehaene et al., 2003).
In this study, we argued that the modulation in arith-

metic performance due to HD-tDCS was based on in-
creased excitability in the IPS (see Figure 2). However,
given that approximate arithmetic involves a larger pa-
rietal network involving different parts of the IPS and
(among others) the medial frontal and left precentral gy-
rus (Venkatraman et al., 2005), we do not know exactly
whether the effects found in this study were solely based
on the processing of numerosity and arithmetic within
the IPS or whether the higher excitability of the IPS also
modulated processing in other areas with close neuronal
connections to the IPS, which might also have contrib-
uted to the effect. To further clarify the causal role of dif-
ferent areas within the frontoparietal network, future
studies are needed, in which different areas along the
processing pathway of arithmetic are systematically
stimulated. This may require the integration of brain
stimulation with neuroimaging and electrophysiological
methods. Although technically challenging, previous re-
sults showed that such integration could yield valuable
insights into tDCS effects on not only one region but also
whole cortical networks (see Pisoni et al., 2018; Romero
Lauro et al., 2016).

Conclusions

This study provided first evidence for a modulation of
approximate (subtraction) arithmetic by means of anodal
HD-tDCS and provides further support for a causal in-
volvement of the (bilateral) IPS in approximate mental
arithmetic (Brezis et al., 2016). Approximate number pro-
cessing has been discussed as precursor of exact arith-
metic (Park, DeWind, et al., 2016; Hyde et al., 2014;

Park & Brannon, 2014; Gilmore, McCarthy, & Spelke,
2007), and our study therefore advances the promising
use of noninvasive brain stimulation in increasing cogni-
tive functions that are essential for everyday life situa-
tions (e.g., dealing with money). We hope that this
study encourages others to use a HD-tDCS setting to in-
vestigate numerical cognition and that accumulating re-
search findings with this method will eventually untangle
the causal involvement of different brain areas in numer-
ical cognition.
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