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Abstract

Purpose Vertebroplasty restores stiffness and strength of

fractured vertebral bodies, but alters their stress transfer.

This unwanted effect may be reduced by using more

compliant cements. However, systematic experimental

comparison of structural properties between standard and

low-modulus augmentation needs to be done. This study

investigated how standard and low-modulus cement aug-

mentation affects apparent stiffness, strength, and endplate

pressure distribution of vertebral body sections.

Methods Thirty-nine human thoracolumbar vertebral

body sections were prepared by removing cortical

endplates and posterior elements. The specimens were

scanned with a HR-pQCT system and loaded in the elastic

range. After augmentation with standard or low-modulus

cement they were scanned again and tested in two steps.

First, the contact pressure distribution between specimen

and loading plates was measured with pressure-sensitive

films. Then, they were loaded again in the elastic range and

compressed until failure. Apparent stiffness was compared

before and after augmentation, whereas apparent strength

of augmented specimens was compared to a non-

augmented reference group.

Results Vertebral body sections with fillings connecting

both endplates were on average 33% stiffer and 47%

stronger with standard cement, and 27% stiffer and 30%

stronger with low-modulus cement. In contrast, partial

fillings showed no significant strengthening for both

cements and only a slight stiffness increase (\16%). The

averaged endplate pressure above/below the cement was on

average 15% lower with low-modulus cement compared to

standard cement.

Conclusion Augmentation connecting both endplates

significantly strengthened and stiffened vertebral body

sections also with low-modulus cement. A trend of reduced

pressure concentrations above/below the cement was

observed with low-modulus cement.

Keywords Vertebroplasty � Low-modulus � PMMA �
Cement � Vertebral body � Mechanical properties

Introduction

Vertebroplasty is able to restore vertebral body stiffness

and strength [1, 2], and most importantly leads to imme-

diate and lasting pain relief [3]. Of concern is the increased

risk of adjacent vertebral body fractures observed in clin-

ical [4, 5] and experimental studies [6–8]. Although a

recent randomized controlled trial comparing vertebropl-

asty to conservative treatment [9] found no significant

difference in adjacent-level fracture incidence, clinically

used poly-methyl-methacrylate (PMMA) cements caused

marked changes in load transfer. A pressure increase in the

nucleus pulposus and a reduced inward deflection of the
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augmented endplate were observed following augmenta-

tion [10, 11]. One reason is that the elastic modulus of

standard PMMA bone cements is one order of magnitude

larger than the apparent elastic modulus of osteoporotic

trabecular bone [12, 13], whereas low-modulus cement has

a stiffness comparable to trabecular bone [14].

Such adapted cement materials better preserved the

failure strength of augmented functional spine units com-

pared to standard PMMA [7], because failure mostly

occurred in the adjacent level. Chevalier et al. [15] showed

numerically that a decreased elastic modulus of the cement

reduced the stresses above/below the cement region while

still strengthening the vertebral body. Shortcomings of this

study were the purely numerical nature without experi-

mental validation of the augmented finite element models

and that only standard cement was injected. Both studies

indicated advantages of more compliant cement materials,

which could be beneficial in case of moderate fractures or

prophylactic vertebroplasty where less strength increase is

required. A systematic experimental comparison of

strength, stiffness, and measured endplate load transfer

between standard and low-modulus cement augmentation

has not been published so far and is important for char-

acterizing their biomechanical differences.

This requires well-designed testing setups to mimic the

in vivo situation, because in vivo measurements are prac-

tically not possible. Several experimental setups were

presented that allowed rotation of the upper loading plate

during compression [16–18], which produces uniform

loading of the specimen and better reproduces in vivo

loading conditions than compression between parallel

plates. However, in most studies [1, 15, 16, 18–20] the

endplates were embedded, whereby experimental uncer-

tainties in the measured displacements and stiffness values

were introduced due to the compliance of the embedding

material and its contact conditions with the bone. These

uncertainties can be minimized by using vertebral body

sections [17], which requires the removal of the endplates,

but also allows measuring the load transfer near the

endplate.

Since the comparison of structural properties after aug-

mentation is strongly influenced by the filling pattern [15,

25], experimental results need to be interpreted in consid-

eration of this factor. To quantify the effectiveness of stan-

dard and low-modulus cement augmentation accurately,

increases in stiffness and strength need to be compared either

to the non-augmented state for the same vertebral body or to

a matched non-augmented reference group.

In this sense, our objectives were to compare the men-

tioned structural properties as well as endplate pressure

distributions between augmentation with a clinically used

standard cement and with an experimental low-modulus

cement.

Methods

Specimen preparation

Thirty-nine human thoracolumbar vertebral bodies

(T9–L5) were obtained from five female and six male

donors (age 44–82). All soft tissues and the intervertebral

disks were removed (Fig. 1). The cortical endplates were

removed in small cutting steps perpendicular to the major

trabecular orientation with a diamond-coated band saw

(300 CP, Exakt GmbH, Norderstedt, Germany) until all

cortical bone of the endplate was removed (remaining

height 16.5 ± 2.6 mm). After removing the posterior ele-

ments, the cranial/caudal cutting surfaces were polished

with silicon carbide paper (P1000, PM5, Logitech Ltd,

Glasgow, Scotland) to obtain plane and parallel surfaces.

All procedures were performed under constant water irri-

gation. The prepared vertebral body sections were assigned

to the standard and low-modulus cement groups, such that

the mean bone volume fraction (BV/TV) computed from

the HR-pQCT images as described below, age, gender, and

spinal levels were matched.

Ex vivo vertebroplasty

Standard vertebroplasty cement (Vertecem, Synthes

GmbH, Oberdorf, Switzerland) was prepared according to

the manufacturer’s instructions. The same was used for the

low-modulus cement, but 50% of the liquid monomer

phase was replaced with NMP (1-methyl-2-pyrrolidone,

Sigma Aldrich, Buchs, Switzerland) as described in [21].

The cranial/caudal surfaces were covered with hard plastic

disks. Twenty specimens were augmented with standard

cement and 19 with low-modulus cement via a unipedic-

ular approach by an experienced surgeon under continuous

radiographic monitoring. The cement was injected until

either leakage was observed or a filling connecting both

endplates was achieved. After curing of the cement, the

cranial/caudal surfaces were polished again (\0.1 mm was

removed from each side). The elastic moduli and yield

stress of the pure standard and low-modulus cement were

determined from compression test of 90 cylindrical cement

samples (8 mm diameter, 12 mm height), which were

prepared from the remaining cement.

HR-pQCT scanning

The vertebral body sections were scanned with a HR-pQCT

system (60 kV, 900 lA, 82 lm voxel size, XtremeCT,

Scanco Medical AG, Zürich, Switzerland) before aug-

mentation to obtain the bone morphology and after aug-

mentation to obtain the filling patterns. The specimens

were placed in a custom-made Plexiglas chamber filled
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with 0.9% saline solution. Air bubbles were removed using

a vacuum chamber.

Image processing

HR-pQCT images before augmentation were segmented

(Fig. 2, left) using a Laplace–Hamming filter and a fixed

40% threshold value [22]. Outer and trabecular bone masks

were extracted from the segmented images using closing

and fill operations [23]. Masks of the cement region

(Fig. 2, right) were extracted from the augmented HR-

pQCT images using a fixed threshold value, which was

determined by visual inspection. All images were regis-

tered using the software ITK to be able to overlay them

(Fig. 2f). Cement volume was defined as the volume of the

cement mask minus the included bone volume. The total

BV/TV was computed for each specimen from the seg-

mented HR-pQCT image and the outer bone mask.

Mechanical tests

Specimens were immersed in 0.9% saline solution for at

least 2 h before testing and were carefully positioned on

the machine. Positioning sheets containing the projected

frontal and sagittal plane as well as the shape of the ver-

tebral body sections (Fig. 3b) were prepared. The projec-

tions of the frontal and sagittal planes were aligned with

reference markers on the loading plate, such that the

loading axis was shifted 5% of the anterior–posterior

dimension (h) from the projected center of mass in the

anterior direction. This shift is sufficient to produce ante-

rior wedge-shaped fractures [17]. The same set of posi-

tioning sheets was used for all testing steps. Further details

are given in [17].

A servohydraulic testing machine (Mini-Bionix, MTS

system, Eden Prairie, MN, USA) was used to compress the

specimens. Rotation of the upper loading plate was allowed

by means of a ball joint (Fig. 3a) and both loading surfaces

were sandblasted to increase friction. Three displacement

sensors (LVDTs, WA20, HBM, Darmstadt, Germany)

recorded the axial displacements at three points of the

loading plate. The axial force was measured by means of a

100 kN load cell (U3 force transducer, HBM, Darmstadt,

Germany).

Before augmentation, the specimens were monotoni-

cally compressed (rate 2.5 mm/min) in the elastic range

with a maximum force of 800–1,200 N (depending on the

specimen size) after ten low-load preconditioning cycles

(amplitude 60 N). After augmentation, all specimens were

tested again in two steps. During the first step, pressure-

sensitive colour films (Prescale LLW, Fujifilm, Düsseldorf,

Germany) were placed between the specimens and both

loading plates and a constant load of 1,000 N was applied

for 10 s (manufacturer’s instruction). In a second step, the

specimens were preconditioned as before augmentation

and then compressed monotonically until failure using the

same rate.

Axial displacement of the loading plate was obtained by

averaging the three LVDTs displacements. The mean

cross-sectional area (mean CSA) of each specimen was

(a) vertebral body
after removing soft tissue

(b) removing of endplates
and processes

(d) compression testing
before augmentation

(c) HR-pQCT scanning chamber 
and image before augmentation

(g) compression testing
after augmentation

(f) HR-pQCT image 
after augmentation

(e) augmentation with standard (n=20) and 
low-modulus cement (n=19): specimen covered
with plastic plates (left) and radiograph (right)
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Fig. 1 Overview of the specimen preparation, mechanical testing and CT scanning steps
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defined as the volume of the outer bone mask divided by

the height. Apparent stiffness was computed as the maxi-

mum slope (Fig. 4) in the linear range of the ‘‘load-dis-

placement’’ curve multiplied by the specimen height

divided by the mean CSA. Apparent strength was com-

puted as the first load maximum divided by the mean CSA.

Non-augmented reference group

Since the 39 specimens were only tested in the elastic range

before augmentation to obtain the stiffness, augmented

apparent strength had to be compared to a non-augmented

reference group from another study [17]. In this previous

study 37 thoracolumbar vertebral body sections (T12–L5,

age 44–82) from seven male and three female spines were

compressed until failure using the same testing and

preparation procedure. From these 37 specimens, 25 were

selected such that the regression equation of non-

augmented apparent stiffness over BV/TV was matched to

the current study (slope: p = 0.958, intercept: p = 0.965).

In addition, mean apparent stiffness (p = 0.584), age, and

gender were matched between the two groups. Since

apparent strength and stiffness were well correlated

(R2 = 0.835) for the reference group, this matching of

regression equations and mean apparent stiffness provided

similar apparent strength distributions in both groups.

Pressure-sensitive films

Specimens with partial fillings or others presenting insuf-

ficient surface quality were excluded from the film analy-

sis. The cranial/caudal films of the remaining 30 specimens

were scanned as grey-value images (300 dpi, 8 bit grey-

value bitmap image, HP Scanjet G2710, Hewlett-Packard,

Palo Alto, CA, USA). Since the colour intensity of the film

corresponds to the contact pressure level, a calibration

function between pressure and grey value was determined

as follows. A calibration sheet with 15 calibration points

(applied pressure levels 0.6–3.9 MPa) was prepared by

loading the pressure-sensitive film on the servohydraulic

testing machine with a polished aluminium rod at constant

load for 10 s. The calibration sheet was scanned as grey-

value image. Applied pressure values and average grey

values were determined for each calibration point using the

software GODAV (Klaus Hoffmann, IKL, Vienna Uni-

versity of Technology, Vienna, Austria). The calibration

function was defined as a piecewise-linear function

connecting the determined values. The cranial/caudal grey-

value images were calibrated to obtain pressure

HR-pQCT

(a) non-augmented (d) augmented

HR-pQCT

Laplace/Hamming filter
+ 40% threshold

(b) segmented bone (e) cement mask

fixed threshold

closing + fill
operation

fill operation overlay

registered

(c) outer bone mask   trabecular bone mask (f) segmented bone
+ outer bone mask
+ cement mask

Fig. 2 Image processing steps performed on the HR-pQCT images of

non-augmented (left) and augmented (right) vertebral body sections.

The non-augmented images (a) were segmented (b). Outer and

trabecular bone masks were extracted (c). From the augmented

images (d) masks for the cement (e) were segmented using a fixed

threshold. All images were registered to overlay the segmented

images and the masks (f)

(b)

(c)

(a)

5%
h

projected
center of mass

loading axis

reference
markers

ball joint

displacement
sensors

Fig. 3 Compression testing setup for vertebral body sections (a). The

upper loading plate was allowed to rotate by means of a ball joint and

its position was measured with three displacement sensors. Specimens

were aligned to reference markers (b) of the setup with positioning

sheets (c). The loading axis was moved 5% of the width (h) from the

projected center of mass in the anterior direction. The contrast of the

reference markers was increased to improve visibility
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distributions and were overlaid with the cement and tra-

becular bone mask. The endplate pressure within the

cement region (Fig. 2e) and the trabecular bone region

(Fig. 2c) were averaged inside their respective mask.

Statistical analysis

Correlation coefficients and regression equations were

determined by using orthogonal regression [24]. Paired

two-tailed Student’s t-tests were performed to compare the

mean apparent stiffness before and after augmentation. All

other comparisons of means were based on unpaired two-

tailed Student’s t-tests. Statistical tests were performed at a

probability level of 95%.

Results

Injected cement volumes

Cement distributions were classified for the standard/low-

modulus cement group into fillings connecting both end-

plates (endplate-to-endplate filling: 15/16 specimens) and

fillings touching only one endplate (partial filling: 5/3

specimens). Cement volumes ranged from 8 to 31%

(1.9–6.0 ml) of the total specimen volume for endplate-to-

endplate fillings and from 8 to 21% (2.0–4.4 ml) for partial

fillings. Average cement volumes were significantly dif-

ferent (p = 0.017) between standard (3.4 ± 0.8 ml) and

low-modulus cement (4.0 ± 0.9 ml), due to better injec-

tability of the low-modulus cement.

Cement samples

The tested elastic moduli of the pure standard and low-

modulus cement were 2,306.0 ± 89.1 and 969.6 ±

70.2 MPa, respectively. The measured yield stress was

29.2 ± 2.6 MPa for the standard cement and 11.5 ±

1.3 MPa for the low-modulus cement.

Vertebral body stiffness and strength

Typical load-displacement curves with slopes and maxi-

mum force are shown in Fig. 4 for two specimens before

(left) and after augmentation (right) with standard (top) and

low-modulus cement (bottom).

Apparent stiffness after augmentation was marginally

larger with standard cement than with low-modulus cement

(p = 0.99, power = 0.52). Specimens with endplate-to-

endplate fillings were 33 and 27% stiffer compared to the

non-augmented state (p \ 0.014) with standard and

low-modulus cement, respectively (Fig. 5). Only insignif-

icant increase in stiffness was observed for partial fillings

(standard cement: 8%, low-modulus cement: 16%).

Good correlations between apparent stiffness and

BV/TV (Fig. 6) were found before augmentation (R2 =

0.67 for standard cement and R2 = 0.75 low-modulus

cement) and after augmentation (R2 = 0.91 for standard and

R2 = 0.78 low-modulus cement). The increase in apparent

stiffness was not correlated with the degree of filling and the

degree of filling was not correlated with BV/TV.

While partial fillings did not increase apparent strength,

specimens with endplate-to-endplate fillings were 47 and
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30% stronger than the non-augmented reference group for

standard and low-modulus cement, respectively (Fig. 7).

The increase in apparent strength was significant in both

groups for endplate-to-endplate fillings, but somewhat

smaller (p = 0.60, power = 0.50) with low-modulus

cement compared to standard cement.

Endplate pressure

The calibrated pressure-sensitive films (Fig. 8) clearly

showed that the highest pressure occurred above/below the

posterior wall and the cement region. The anterior cortical

shell and trabecular bone near the cement were only

non-augmented

partial filling

endplate filling
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minimally loaded. The ratio between the averaged pressure

within the cement region and trabecular bone mask (Fig. 9)

showed a pressure increase above/below the cement com-

pared to the trabecular region. This pressure ratio was on

average lower with the low-modulus cement (caudal film:

13.6%, p = 0.17; cranial film: 16.0%, p = 0.09) compared

to the standard cement, but differences were not significant.

Pressure distributions for the specimens with partial fill-

ings, which were excluded from the above statistics, are

also shown in Fig. 8.

cranialcaudal
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standard cement with endplate filling

cranialcaudal

low-modulus cement with endplate filling

cranialcaudal

standard cement with partial filling

cranialcaudal

low-modulus cement with partial filling

Fig. 8 Calibrated and masked pressure-sensitive films for endplate fillings (top) and partial fillings (bottom) with standard (left) and low-

modulus (right) cement and Laplace–Hamming filtered HR-pQCT images overlaid with the cement region (white) and the outer bone mask
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Discussion

Apparent stiffness, strength, and endplate pressure distribu-

tion were compared between augmentation with a clinically

used standard cement and with an experimental low-modulus

cement in consideration of filling patterns. Stiffness was

compared to the non-augmented state and strength to a

reference group.

Endplate-to-endplate fillings increased stiffness signifi-

cantly for both cements compared to the non-augmented

state and increased strength significantly compared to the

non-augmented control group. Apparent strength was

smaller with low-modulus cement compared to standard

cement, but further studies are required for sufficient sta-

tistical power. Partial fillings caused less alteration of the

stress transfer, but were not able to increase strength with

both cements because the fracture occurred above or below

the cement.

Increase in strength for endplate-to-endplate fillings

(47% with standard cement and 30% with low-modulus

cement) were similar to previous findings for prophylactic

vertebroplasty (37% in [20] and 38% in [18]). Other studies

reported larger strength and stiffness increases (factor of

2.0–7.8 for stiffness increase and 1.2–11.1 for strength

increase in [15]; 174% increase in stiffness and 195%

increase in strength in [19]), but cement volumes in these

studies were much larger (7.5–10.5 ml in [15] and 5–20 ml

in [19]). The larger increases in strength and stiffness for

endplate fillings compared to partial fillings were compa-

rable to [15], where only minimal strengthening (\20%)

was observed for partial fillings. Differences in strength

increases between the filling groups were also similar to

previous studies (e.g., 40% difference in [25]).

The injected cement volumes varied between 1.9 and

6.0 ml and were similar to clinically used amounts reported

in [11] (average 4.1 ml, ranging from 1.0 to 9.0 ml).

Cement volumes were significantly higher in the low-

modulus cement group due to better injectability, longer

handling, and better coherence which reduced the occur-

rence of leakage. In fact, the macroscopic stiffness differ-

ences between the two cement groups may not reflect the

2.3 times higher stiffness of the standard cement.

Good correlations were found between BV/TV and

apparent stiffness after augmentation for both cement

groups, which agreed with previous results [16]. Apparent

stiffness before and after augmentation were predicted by

BV/TV with comparable R2 but different regression

equations. These correlations show that the pre-existing

bone quality has a strong influence on the stiffness outcome

because a part of trabecular structure is reinforced.

The presence of stiff cement increased the endplate

pressure above/below the cement compared to the trabec-

ular region in case of endplate fillings. This effect was

reduced with low-modulus cement (on average 15%),

although not significantly. The pressure distributions

showed that the cement transmitted stresses between both

endplates. This explains why endplate-to-endplate fillings

were more effective than partial fillings in increasing

apparent strength and stiffness, and confirms the impor-

tance of this bridging mechanism [15, 25]. The pressure
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concentrations above/below the cement correspond to a

high local stiffness and, inversely, to a low deflection of the

endplate. The pressure distributions were in line with

endplate deflection patterns observed in [26]. High pres-

sures corresponded to low deflections of the endplate.

Possible consequences are an increased pressure in the

nucleus pulpous, an altered stress transfer to the adjacent

level [10, 11], and unloading of the surrounding bone

leading to resorption. In case of partial fillings, no such

pressure concentrations occurred. Although this may

reduce the above-mentioned negative effects, strength was

not increased due to the missing endplate bridging. Thus, a

compromise could be the augmentation from endplate-to-

endplate with low-modulus cement, but further studies are

necessary to determine optimal cement material properties.

This study had the following limitations. First, the

experimental setup was not able to reproduce in vivo

loading and boundary conditions exactly because of miss-

ing endplates and intervertebral disks. However, using

vertebral sections minimized errors due to the compliances

embedding and the interface between bone and embedding.

Eswaran et al. [27] showed that vertebral body sections

captured the load-sharing variations qualitatively, but

quantitatively overestimated the maximum shell-load

fraction (21% on average). Second, the number of speci-

mens with partial fillings was rather small (N = 3), but

strength increases were similar for all eight specimens with

this filling pattern because damage localized in the non-

augmented part. Third, the specimens were augmented in

vitro. Fourth, the study was limited to prophylactic ver-

tebroplasty, which is not widely accepted although recent

studies [28, 29] showed a reduced risk of new fractures.

In conclusion, the present study showed that the low-

modulus cement was able to significantly increase

strength and stiffness of vertebral body sections, but,

endplate-to-endplate fillings were required with both

cements to increase structural properties. This confirms

the importance of the bridging mechanism, which allows

stress transmission between both endplates. Pressure

concentrations above/below the endplates were smaller

with low-modulus cement compared to standard cement.

However, further studies are required to investigate if this

reduction of pressure concentrations is sufficient to reduce

complications.
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